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Based on Non-Linear Cusum Statistics
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Saralees Nadarajah
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Abstract: Suppose that we are monitoring incoming observations for a change in mean
via a cusum test statistic. The usual nonparametric methods give first and second order
approximations for the one- and two-sided cases. Withers and Nadarajah [Statistics and
Probability Letters, 79, 2009, 689–697] showed how to improve the order of these approx-
imations for linear statistics. Here, an extension is provided for non-linear statistics with
non-zero asymptotic variances. This involves development of two calculi analogous to that
of von Mises.

Keywords: Approximations; Cusums; Edgeworth-Cornish-Fisher; Non-linear statistics.

1 Introduction and Summary

Suppose that we are monitoring incoming observations for a change in mean via a cusum
test statistic. The usual nonparametric asymptotic methods give a first order approxima-
tion in the one-sided case and a second order approximation in the two-sided case, where
by Ith order we mean an error of magnitude n−I/2 for n the sample size. Withers and
Nadarajah (2009) showed how to improve on the order of these approximations for asymp-
totically normal linear statistics. For smooth non-linear statistics with non-zero asymptotic
covariance, asymptotic normality still holds and Ith order approximations to their distri-
butions and quantiles can be obtained by expanding their cumulants as power series in n−1

then applying Edgeworth-Cornish-Fisher technology. To do this two calculi are developed
analogous but simpler to that of von Mises. In the case, where the mean is not changing,
the corresponding tests can be viewed as one- and two-sided confidence intervals for the
mean.

Set X0 = 0 and let X = X1,X2, · · · be independent random variables in Rp from
some distribution F (x) say, with mean µ, and finite moments. (If p = 1 we denote the
rth cumulant by κr and set σ2 = κ2.) These observations can be considered as a random
process which may at some point go “out of control”, changing their distribution. We define
the average process of the observations as

Mn(t) = n−1S[nt] (1.1)
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for S0 = 0, Si =
∑i

j=1 Xj and 0 ≤ t ≤ 1, where [x] is the integral part of x. A change
in mean can be tracked by monitoring the average process via some functional of it, say
T (Mn), referred to as a cusum statistic. We denote the mean of the average process (1.1)
by

mn(t) = E Mn(t) = µ[nt]/n → m(t) = µt (1.2)

as n → ∞ for 0 ≤ t ≤ 1. Given a functional T , θ̂ = T (Mn) can be thought of as an estimate
of θ = T (m). In this way we can if desired use θ̂ to provide an estimate of µ. We shall
assume that θ̂ satisfies the standard cumulant expansion given by

κr(θ̂) =
∞∑

i=r−1

arin
−i (1.3)

for r = 1, 2, · · ·.
For univariate data the most common prospective and retrospective two-sided cusum

statistics and functionals are

An = A(Mn) =
n

max
k=1

|Sk − kµ|/n, (1.4)

Bn = B(Mn) =
n

max
k=1

|Sk − kX̄n|/n (1.5)

for A(g) = sup[0,1] |g(t) − tµ| and B(g) = sup[0,1] |g(t) − tg(1)|, where X̄n = Mn(1) = Sn/n.
If σ̂ is a consistent estimate of the standard deviation σ, then as n → ∞

σ̂−1n1/2{Mn(t) − tµ} L→ W (t),

σ̂−1n1/2{Mn(t) − tMn(1)} L→ W0(t)

for W (t) a Wiener process and W0(t) = W (t) − tW (1) a Brownian Bridge. So,

σ̂−1n1/2An
L→ sup

[0,1]
|W (t)|, (1.6)

σ̂−1n1/2Bn
L→ sup

[0,1]
|W0(t)|. (1.7)

See Billingsley (1968) and Anderson and Darling (1952).

These asymptotic results are easily extended to functionals like sup{|g(t) − tµ0| − b(t)},
that is to test H0 : µ = µ0 versus H1 : µ 6= µ0 by rejecting H0 if Mn(t) − tµ0 crosses a given
boundary ±b(t). An alternative is to use the L1 norm. For example, the one-sided test of
H0 : µ = µ0 versus H1 : µ > µ0 one can use

∫ 1
0 {g(t) − tµ0 − b(t)}dt, or equivalently

∫ 1
0 g(t)dt.

This is an example of the statistics and functionals we consider here. They include T (Mn)
for

T (g) =
∫ 1

0
w(g(t), t)dt or

∫ 1

0
w(g(t), t)dg(t) (1.8)

for w(x, t) : Rp × [0, 1] → Rq, as well as smooth functions of such functionals. These
functionals have the advantage of being asymptotically normal, unlike (1.6) and (1.7), and
of having distribution, density and quantiles given by their Edgeworth-Cornish-Fisher ex-
pansions. In contrast, expansions for the distribution, density and quantiles of the cusum
statistics (1.4)–(1.7), are not available.
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The aim of this note is to extend the work of Withers and Nadarajah (2009) for non-
linear functionals. In this case, the cumulant expansions in (1.3) and hence the Edgeworth-
Cornish-Fisher expansions (Section 2, Withers and Nadarajah, 2009) are obtained in terms
of functional derivatives of T at m using the Euler-McLaurin expansion. Section 2 defines
the functional derivatives needed. There are two types depending on whether integration is
with respect to dt or dg(t). These are analogous to those of von Mises (1947) as extended
in Withers (1983, 1988). We show that the chain rule applies to such derivatives. Examples
include (1.8) and smooth functions of such functionals. Section 3 gives the cumulants of
T (Mn) needed to obtain its Edgeworth-Cornish-Fisher expansions (Section 2, Withers and
Nadarajah, 2009). For example, as n → ∞,

n var(T (Mn)) → σ2
∫

Tm(t)2dt

for m(t) of (1.2) and Tg(t) the first derivative of T (g) in the calculus of Section 2.

2 Functional Derivatives

Since Mn(t) is not a distribution function, the calculus of von Mises (1947) does not apply
to functionals of it. In this section we develop two differential calculi which can be applied
to such functionals. The first calculus is for functionals like

∫ 1
0 w(g(t), t)dt when g(0) = 0

and for f(
∫

wdg) without the condition g(0) = 0. The second calculus covers functionals
like

∫ 1
0 w(g(t), t)dt without the condition g(0) = 0.

2.1 First Calculus

Consider functions g, h : I → R, where I ⊂ Rp, and a functional T (g) in R. Suppose that
for real ǫ,

T (g + ǫh) = T (g) +
∞∑

r=1

Tr(g, h)ǫr/r!, (2.1)

where

Tr(g, h) =
∫

I
· · ·

∫

I
Tg(t1, . . . , tr)dh(t1) . . . dh(tr)

is assumed to exist. We call Tg(t1, . . . , tr) the rth order (functional) derivative of T (g) with
respect to the first calculus, or simply the first rth order derivative. It is made unique by
the condition

Tg(t1, . . . , tr) is symmetric in t1, . . . , tr. (2.2)

Restrictions on h may be required in order that (2.1) hold, as the examples show. That is,
for a given T the expansion for T (gn) − T (g) may place restrictions on eligible gn − g.

Note 2.1 Condition (2.1) can be weakened in two ways. Firstly, it need only hold in a
neighbourhood of zero, say |ǫ| < δ. This is satisfied by ǫ = n−1/2 if n > δ−2. One can then
take, for example, g(t) = m(t) and h(t) = n1/2(Mn(t) − m(t)), so that the left hand side of

3
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(2.1) is T (Mn). Secondly, the infinite Taylor series (2.1) can be replaced by a partial series
with a remainder term, analogous to the usual ordinary Taylor series for a real function of
a real variable, given in Section 3.6.1 of Abramowitz and Stegun (1964).

Like von Mises’ calculus, these calculi cannot be applied to sup functionals like that of
(1.4) and (1.5).

Set

∆t(s) = I(t ≤ s) =
p∏

i=1

I(ti ≤ si). (2.3)

Taking λ1, · · · , λr in R and h(s) =
∑r

i=1 λi∆ti(s), where ∆ti(·) is defined by (2.3), we see
that Tg(t1, . . . , tr) is the coefficient of λ1 · · · λr in Tr(g, h)/r!, so that Tg(t1, . . . , tr) is the
coefficient of λ1 · · · λrǫ

r in T (g + ǫh)/r!. So, the first derivative is

S(g) = Tg(t) = lim
ǫ→0

{T (g + ǫ∆t) − T (g)} /ǫ, (2.4)

where ∆t is defined by (2.3). Similarly, by the method of proof of Theorem 2.1 of Withers
(1983), it follows that

Tg(t1, . . . , tr+1) = Sg(tr+1) for S(g) = Tg(t1, . . . , tr). (2.5)

That is, the derivative of the rth derivative is the r + 1st derivative, just as for ordinary
partial derivatives. The situation is analogous to, but simpler to the theory of derivatives of
functionals of distribution functions developed by Von Mises (1947) and refined by Withers
(1983). Note that in general

∫ 1
0 Tg(t1, . . . , tr)dt1 6= 0, whereas for the von Mises derivative∫

TF (x1, . . . , xr)dF (x1) = 0: see (2.3) of Withers (1983).

Example 2.1 Suppose that p = 1 and T (g) =
∫ 1
0 w(t)dg(t), where w(t) : [0, 1] → R and

g : [0, 1] → R are chosen such that T (g) exists. Set wr = (
∫

wr)1/r for 0 < r < ∞. Then
Tg(t) = w(t) and higher derivatives are zero. So,

∫
Tmdm = µw1 6= 0 in general.

Example 2.2 Suppose that p = 1 and T (g) =
∫ 1
0 W (t)g(t)dt. Then one needs to impose

the condition h(0) = 0 giving Tg(t) =
∫ 1
t W (s)ds or the condition h(1) = 0 giving Tg(t) =∫ t

0 W (s)ds. The higher derivatives are zero. The condition h(0) = 0 restricts application
to T (gn) − T (g) with gn(0) − g(0) = 0, a condition satisfied by (gn, g) = (Mn,m) of (1.1),
(1.2). The condition h(1) = 0 restricts application to T (gn) − T (g) with gn(1) − g(1) = 0,
a condition not satisfied by (gn, g) = (Mn,m).

For the next examples it is helpful to use ∧ and ∨ to denote min and max:

tr∧ =
r

min
i=1

ti, tr∨ = rmax
i=1

ti. (2.6)

If p > 1 then min and max are interpreted element-wise.

Example 2.3 Take p = 1. Let s be any point in [0, 1]. Consider functions g : [0, 1] → R,
and a smooth function w : R → R. Denote its rth derivative by w.r. If h(0) = 0 and
T (g) = w(g(s)) then

Tg(t1, . . . , tr) = w.r(g(s))∆t1(s) · · · ∆tr(s) = w.r(g(s))∆tr∨ (s),

4
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where ∆t1(·) is defined by (2.3). If h(s+) = h(s) and T (g) = w(g(s) − g(1)) then

Tg(t1, . . . , tr) = w.r(g(s) − g(1))(∆t1(s) − 1) · · · (∆tr(s) − 1)
= (−1)rw.r(g(s) − g(1))I(s < tr∧).

Example 2.4 Let ν be a measure on some space L. For s in L let Ts(g) be a functional
with finite rth derivative Tsg(t1, · · · , tr). For S(g) =

∫
Ts(g)dν(s),

Sg(t1, . . . , tr) =
∫

Tsg(t1, . . . , tr)dν(s).

Putting these two examples together, we have

Example 2.5 Take p = 1. Let w(x, t) : R × [0, 1] → R have finite partial derivatives
w.r0(x, t) = (∂/∂x)rw(x, t). If g(0) = 0 and S(g) =

∫ 1
0 w(g(s), s)ds then

Sg(t1, . . . , tr) =
∫ 1

tr∨
w.r0(g(s), s)ds. (2.7)

If g is right-continuous (for example, g = Mn − m) and

S(g) =
∫ 1

0
w(g(s) − g(1), s)ds (2.8)

then

Sg(t1, . . . , tr) = (−1)r
∫ tr∧

0
w.r0(g(s) − g(1), s)ds. (2.9)

For example, alternatives to the statistics An and Bn of (1.4) and (1.5) are

Cn = Cn(Mn) = n−3
n∑

j=1

(Sj − jµ)2w(j/n)/2,

Dn = Dn(Mn) = n−3
n∑

j=1

(Sj − jSn/n)2w(j/n)/2

for

Cn(g) =
∫ 1

0
(g(s) − µ[ns]/n)2w([ns]/n)ds/2,

Dn(g) =
∫ 1

0
(g(s) − g(1)[ns]/n)2w([ns]/n)ds/2.

Their non-zero derivatives are

Cng(t1) =
∫ 1

t1
(g(s) − µ[ns]/n)w([ns]/n)ds,

Cng(t1, t2) =
∫ 1

tm2

w([ns]/n)ds,

Dng(t1) =
∫ 1

0
(g(s) − g(1)[ns]/n)w([ns]/n)en(s, t1)ds,

Dng(t1, t2) =
∫ 1

0
en(s, t1)en(s, t2)ds,

5
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where en(s, t) = I(t ≤ s) − [ns]/n. Now replace Cn(g),Dn(g) by their limits

C(g) =
∫ 1

0
(g(s) − µs)2w(s)ds/2,

D(g) =
∫ 1

0
(g(s) − g(1)s)2w(s)ds/2,

and set C ′
n = C(Mn),D′

n = D(Mn). If w(s) = 1 then one may show that Cn − C ′
n and

Dn − D′
n are Op(n−3/2) in probability.

Since D(g) does not have the form (2.8), (2.9) does not apply. This can be fixed by
applying the method not to Mn(t) but to

Nn(t) = [nt]−1
[nt]∑

i=1

Xi,

interpreted as 0 for t ≤ 1/n. However, κ(ŵ1, · · · , ŵr) for ŵi = Nn(ti) is more complicated
than for ŵi = Mn(ti), so we do not pursue this idea beyond the next example.

Example 2.6 Consider

D′
n = D′

n(Nn) = n−1
n−1∑

j=1

(Sj/j − Sn/n)2w(j/n)/2,

where

D′
n(g) =

∫ 1

n−1
(g(s) − g(1))2w([ns]/n)ds/2.

The non-zero derivatives are

D′
ng(t1) = −

∫ 1

n−1
(g(s) − g(1))w([ns]/n)I(s ≤ t)ds,

D′
ng(t1, t2) =

∫ 1

n−1
w([ns]/n)I(s < tm2)ds.

Note that Dn[w] = Dn and D′
n[w] = D′

n are equivalent in that D′
n[w′] = Dn[w] for w′(t) =

t2w(t). Note that

2n3Dn[1] = 2n3D′
n[t2] =

n∑

j=1

(Sj − jX̄n)2

provides a simple alternative to

nBn =
n

max
j=1

|Sj − jX̄n|,

since they provide L2 and L∞ norms of Sj − jX̄n.

6
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2.2 Chain Rule

Since Tg(t1, . . . , tr) is an exact analogue of the ordinary rth order partial derivative, it
satisfies the chain rule. We now spell this out in detail. By Comtet (1974, page 137), Faa
di Bruno’s chain rule for the derivatives of a function of a function is most simply stated in
terms of the exponential Bell polynomials tabled on page 307 of Comtet (1974): for r ≥ 1,
the rth derivative of a real function of a real function, say S(g) = f(T (g)), for g in R,
T : R → R, f : R → R is given by

S(r)(g) =
r∑

k=1

fkBrk(T) (2.10)

at fk = f (k)(T (g)) and T = (T1, T2, · · ·), where Tr = T (r)(g), the rth derivative of T (g).
This extends to g and T (g) multi-dimensional by a simple reinterpretation. For example,
for r = 4, (2.10) gives

S(4)(g) = f1T4 + f2(4T1T3 + 3T 2
2 ) + f3(6T 2

1 T2) + f4T
4
1 .

For g in p dimensions and T (g) in q dimensions this becomes

S.i1i2i3i4(g) = f.j1Tj1.i1i2i3i4 + f.j1j2(
4∑

i

Tj1.i1Tj2.i2i3i4 +
3∑

i

Tj1.i1i2Tj2.i3i4)

+f.j1j2j3

6∑

i

Tj1.i1Tj2.i2Tj3.i3i4 + f.j1j2j3j4Tj1.i1Tj2.i2Tj3.i3Tj4.i4, (2.11)

where, for i1, i2, · · · in 1, 2, · · · , p S.i1i2· · ·(g) = ∂i1∂i2 · · · S(g) for ∂i = ∂/∂gi . Similarly, for the
partial derivatives of Tj(g) for j = 1, · · · , q; and for j1, j2, · · · in 1, 2, · · · , q f.j1j2· · ·(T (g)) =
∂j1∂j2 · · · f(y) at y = T (g) for ∂j = ∂/∂yj . The convention is that j1, j2, · · ·, the repeated
pairs of suffixes in (2.11), are implicitly summed over their range 1, 2, · · · , q. The expressions∑N

i in (2.11) mean summation over all N permutations of the i′s giving different terms.
For example,

4∑

i

Tj1.i1Tj2.i2i3i4 = Tj1.i1Tj2.i2i3i4 + Tj1.i2Tj2.i1i3i4 + Tj1.i3Tj2.i1i2i4 + Tj1.i4Tj2.i1i2i3.

This chain rule in turn has a simple reinterpretation for functions of functionals. Consider
the real functional S(g) = f(T (g)), where T (g) is a q-dimensional functional on functions
g : I → R, where I ⊂ Rp, and f(T ) is an ordinary function from Rq to R. Then, for
example, the fourth order functional derivatives of S(g) are given in terms of the functional
derivatives of T (g) by (2.11) with S.i1i2· · ·(g) replaced by Sg(t1t2 · · ·) and Tj.i1i2· · · replaced
by Tjg(t1t2 · · ·), the functional derivatives of Tj(g):

Sg(t1t2t3t4) = f.j1Tj1g(t1t2t3t4) + f.j1j2

4∑

t

Tj1g(t1)Tj2g(t2t3t4)

+
3∑

t

Tj1g(t1t2)Tj2g(t3t4)) + f.j1j2j3

6∑

t

Tj1g(t1)Tj2g(t2)Tj3g(t3t4)

+f.j1j2j3j4Tj1g(t1)Tj2g(t2)Tj3g(t3)Tj4g(t4).

7
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2.3 Extension to Vector g

We now extend the results of this section to g, h, ǫ s-vectors. Let ǫh denote the s-vector
with ith component ǫihi for i = 1, · · · , s. For r in N s, where N = {0, 1, 2, · · · }, set

|r| =
s∑

i=1

ri, ǫr/r! =
s∏

i=1

ǫri/ri!.

Now consider functionals T (g) such that for all s-vector functions g, h on I ⊂ Rp,

T (g + ǫh) =
∑

r∈N s

Tr(g, h)ǫr/r!

for

Tr(g, h) =
∫ |r|

I
Tg({uij , i = 1, · · · , s; j = 1, · · · ri})

s∏

i=1

ri∏

j=1

dhi(uij),

where
∫ |r|
I denotes |r| integrals over I. The rth derivative, the above integrand, is again

made unique by the condition that it is symmetric in each of its s rows. Taking hi(u) =∑ri
j=1 λij∆ti(u), where ∆ti(·) is defined by (2.3), we see that this derivative is the coefficient

of
∏s

i=1

∏ri
j=1 λij in Tr(g, h)/r!.

Let eis be the ith unit vector in Rs. Then as in (2.4), for t in R the s first derivatives
are

Si(g) = lim
ǫ→0

{T (g + ǫeis∆t) − T (g)} /ǫ,

where ∆t is defined by (2.3). Similarly, (2.5) holds if t1, . . . , tr+1 and t1, . . . , tr are interpreted
as ith rows with the other rows implicit and the same on both sides, that is

Example 2.7 Take

I ⊂ Rp, g : I → R, w : I → Rq, T (g) =
∫

wdg, S(g) = f(
∫

wdg).

Then

Sg(t1, · · · , tr) = fj̇1· · ·jr
(
∫

wdg)wj1(t1) · · · wjr(tr).

2.4 Second Calculus

Consider functions g, h : I → R, where I ⊂ Rp, and a functional T (g) in R. Suppose that
for real ǫ, (2.1) holds, where now

Tr(g, h) =
∫

I
· · ·

∫

I
Tg(t1, . . . , tr)h(t1)dt1 . . . h(tr)dtr

is assumed to exist. We call Tg(t1, . . . , tr) the rth order (functional) derivative of T (g) with
respect to the second calculus, or simply the second rth order derivative. It is made unique
by the condition (2.2).

Let δ(t) denote the Dirac function on R. For t, s ∈ Rq, set δ(t) =
∏q

i=1 δ(ti) and
δt(s) = δ(t − s). Taking λ1, · · · , λr in R and h(s) =

∑r
i=1 λiδti(s), we see that Tg(t1, . . . , tr)

is the coefficient of λ1 · · · λr in Tr(g, h)/r!. So, the first derivative is (2.4) with ∆t replaced
by δt. Similarly, (2.5) and the chain rule hold.

8
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Example 2.8 Take p = 1. Suppose that T (g) =
∫ 1
0 v(t)g(t)dt =

∫
vg say. Then Tg(t) =

v(t) and higher derivatives are zero.

Example 2.9 Take p = 1. Let s be any point in [0, 1]. Consider functions g : [0, 1] → R,
and w : R → R. If T (g) = w(g(s)) then

Tg(t1, . . . , tr) = w.r(g(s))δt1 (s) · · · δtr (s).

If T (g) = w(g(s) − g(1)) then

Tg(t1, . . . , tr) = w.r(g(s) − g(1))(δt1 (s) − δt1(1)) · · · (δtr (s) − δtr(1)).

Since the analog of Example 3.4 in Withers and Nadarajah (2009) holds for the second
calculus, we have in the notation of Example 2.5,

Example 2.10 Take

I ⊂ Rp, g : I → R, v : I → Rq, T (g) =
∫

I
vg, S(g) = f(

∫

I
vg).

Then

Sg(t1, · · · , tr) = fj̇1· · ·jr
(
∫

I
vg)vj1(t1) · · · vjr(tr).

We note in passing that our method avoids the complexities of Gateaux, Fréchet and
Hadamard derivatives. For more on these see, for example, Dudley (1992), Bednarski et al.
(1991), Ren and Sen (1991, 1995) and Pons and de Turckheim (1991).

3 Cumulant Expansions

Here we apply the first calculus of the previous section with p = 1, I = [0, 1] in order
to obtain the leading coefficients {ari} in the cumulant expansion (1.3) for θ̂ = T (Mn).
The higher order tests and confidence intervals can then be obtained as in Withers and
Nadarajah (Section 2, 2009). By (2.1)

T (Mn) = T (m) +
∞∑

r=1

∫ 1

0
· · ·

∫ 1

0
Tm(t1, . . . , tr)

d(Mn(t1) − m(t1)) . . . d(Mn(tr) − m(tr))/r!.

Cumulant expansions for T (Mn) could be obtained from this, following the method in
Withers (1983), where cumulant expansions for T (Fn) were obtained for Fn the empirical
distribution of a random sample from F . However, in Withers (1988) we showed that these
could be obtained much more easily by applying the cumulant expansions of Withers (1982)
for t(ŵ) by identifying ŵi with Fn(xi), i = 1, . . . , p and letting p → ∞. Here we take the
same short cut with ŵi = Mn(ti). We begin with some notation.

For f : [0, 1]r → R, set

(f)r =
∫ 1

0
· · ·

∫ 1

0
f(t1, · · · , tr)dt1 · · · dtr.

9
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For π1, π2, · · · sets with elements in {1, 2, · · · r} set

[π1, π2, · · ·] = [π1, π2, · · ·]T = (h)r for h(t1, · · · , tr) = Tπ1Tπ2 · · · ,

where, for π = {i, j, · · · }, Tπ = Tm(ti, tj , · · ·). For example,

[1i] =
∫

Tm(t1)idt1 = (T i
1)1,

[1i, 11j ] = (T i
1T

j
11)1,

[1i, 12j , 2k] = (T i
1T

j
12T

k
2 )2

for (T i
1)(t1) = Tm(t1)i, (T i

1T
j
11)(t1) = Tm(t1)i Tm(t1t1)j and (T i

1T
j
12T

k
2 )(t1t2) = Tm(t1)i

Tm(t1t2)j Tm(t2)k. For ŵi = Mn(ti),

κ(ŵi1 , · · · , ŵir) = κrn
1−rkn(tr∧)

for tr∧ of (2.6), where kn(t) = [nt]/n = t+n−1ℓn(t) for ℓn(t) = [nt]−nt. So, (1.3) holds with
ari given by Withers (1982) with ki1· · ·ir

r−1 replaced by κrdtr∧, ki1· · ·ir
r replaced by κrdℓn(tr∧),

other ki1· · ·ir
j replaced by 0,

∑
replaced by

∫
and tij... replaced by Tm(t1t2 · · ·). For example,

a21 =
∑

ij

tik
ij
1 tj = κ2

∫ ∫
Tm(t1)Tm(t2)dt2∧ = κ2

∫
Tm(t)2dt = κ2 [12],

and the second term in a11 is

∑

ij

tijk
ij
1 /2 = κ2

∫ ∫
Tm(t1, t2)dt2∧/2 = κ2

∫ ∫
Tm(t, t)dt/2 = κ2 [11]/2.

The first term in a11 is

tik
i
1 = κ1

∫
Tm(t)dℓn(t) = κ1α1(T1) + n−1κ1α2(T1) + O(n−2)

= κ1(Tm(1) − Tm(0))/2 + n−1κ1(Tm(1) − Tm(0))/12 + O(n−2),

for αi(g) of the Euler-McLaurin expansion (A.1) of Withers and Nadarajah (2009, Appendix
A), since this implies that

∫ 1

0
g(t)dℓn(t) =

2K−2∑

k=0

αk+1(g)n−k + nrn,2K ,

where rnk = O(n−k) if g(k) is bounded on [0, 1]. The first term in a22 is

tik
ij
2 tj = κ2

∫ ∫
T1T2dℓn(t2∧) = κ2

∫
T 2

1 dℓn(t1) = κ2α1(T 2
1 ) + O(n−1)

= κ2(Tm(1)2 − Tm(0)2)/2 + O(n−1).

By the corrigendum to Withers (1982), the fifth term in a22 is

2tik
ij
1 tjkk

k
1 = 2κ1κ2

∫ ∫ ∫
T1T23dt2∧dℓn(t3) = 2κ1κ2α1(g3) + O(n−1)

= κ1κ2(g3(1) − g3(0)) + O(n−1)

10
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for g3(t) =
∫ 1
0 Tm(s)Tm(s, t)ds. In this way, discarding the terms in arr of magnitude O(n−1)

or less, one obtains

a10 = T (m),
a21 = κ2 [12], (3.1)
a11 = κ1α1(Tm) + κ2 [11]/2, (3.2)
a32 = κ3 [13] + 3κ2

2[1, 12, 2], (3.3)
a22 = κ2α1(T 2

m) + κ3 [1, 11] + κ2
2 [122]/2 + κ2

2 [1, 122]
+2κ1κ2α1(g3),

a43 = κ4 [14] + 12κ2κ3 [12, 12, 2] + 12κ3
2 [1, 12, 23, 3]

+4κ3
2 [1, 2, 3, 123].

Note the formal equivalence, apart from the bias terms αk, with the expressions for the
cumulant coefficients of T (Fn) given by Withers (1983, page 580). (The negative term in
a43 does not appear here due to the different form there for the rth order cumulants of ŵ.)
So, we obtain from Withers (1983) the coefficients needed to extend inference to O(n−2):

a12 = κ1α2(Tm) + κ3 [111]/6 + κ2
2 [1122]/8,

a33 = 3κ4 [12, 11]/2 + 3κ2κ3[1, 12, 22] + 3κ2κ3 [1, 122] + 3κ2κ3 [1, 2, 122]
+3κ2κ3 [12, 122]/2 + 3κ3

2 [1, 2, 1233]/2 + κ3
2 [12, 23, 31]

+3κ3
2 [1, 12, 233] + 3κ3

2 [1, 23, 123] + d3,

a54 = κ5 [15] + 20κ2κ4 [1, 23, 12] + 60κ2
2κ3 [1, 2, 3, 12, 23]

+60κ2
2κ3 [1, 22, 13, 23] + 30κ2

2κ3 [1, 2, 32, 123]
+5κ4

2 [1, 2, 3, 4, 1234] + 60κ4
2 [1, 2, 34, 13, 24]

+60κ4
2 [1, 2, 3, 14, 234],

where d3 of a33 is the bias term, obtainable from 3∆abc of Withers (1983, page 67) as
d3 = α1(g) = (g(1) − g(0))/2 for

g(s) = 3κ1κ3

∫ 1

0
Tm(s, t)Tm(t)2dt + 3κ1κ

2
2

∫ 1

0

∫ 1

0
{Tm(s, t, u)Tm(t)Tm(u)

+2Tm(s, t)Tm(t, u)Tm(u)}dtdu.

Example 3.1 Suppose that T (g) =
∫ 1
0 w(g(s), s)ds. By (2.7) the rth derivative at g = m is∫ 1

tr∨ fr(s)ds, where fr(s) = w.r0(m(s), s). So, a21, a11, a32 are given by (3.1)–(3.3) in terms
of

[1r] =
∫

· · ·
∫

sr∧
r∏

i=1

{f1(si)dsi},

[11] =
∫

sf2(s)ds,

α1(Tm) = −
∫

f1(s)ds/2,

[1, 12, 2] =
∫ ∫ ∫

f2(s0)ds0

2∏

i=1

{min(s0, si)f1(si)dsi}.

11
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In particular,

a21 = κ2

∫
ds1

∫
ds2f1(s1)f1(s2)s2∧,

2a11 = −µ

∫
f1(s)ds + κ2

∫
sf2(s)ds.
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