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Suppose that we are monitoring incoming observations for a change in mean via a cusum test statistic. The usual nonparametric methods give first and second order approximations for the one-and two-sided cases. Withers and Nadarajah [Statistics and Probability Letters, 79, 2009, 689-697] showed how to improve the order of these approximations for linear statistics. Here, an extension is provided for non-linear statistics with non-zero asymptotic variances. This involves development of two calculi analogous to that of von Mises.

Introduction and Summary

Suppose that we are monitoring incoming observations for a change in mean via a cusum test statistic. The usual nonparametric asymptotic methods give a first order approximation in the one-sided case and a second order approximation in the two-sided case, where by Ith order we mean an error of magnitude n -I/2 for n the sample size. [START_REF] Withers | Accurate tests and intervals based on linear cusum statistics[END_REF] showed how to improve on the order of these approximations for asymptotically normal linear statistics. For smooth non-linear statistics with non-zero asymptotic covariance, asymptotic normality still holds and Ith order approximations to their distributions and quantiles can be obtained by expanding their cumulants as power series in n -1 then applying Edgeworth-Cornish-Fisher technology. To do this two calculi are developed analogous but simpler to that of von Mises. In the case, where the mean is not changing, the corresponding tests can be viewed as one-and two-sided confidence intervals for the mean.

Set X 0 = 0 and let X = X 1 , X 2 , • • • be independent random variables in R p from some distribution F (x) say, with mean µ, and finite moments. (If p = 1 we denote the rth cumulant by κ r and set σ 2 = κ 2 .) These observations can be considered as a random process which may at some point go "out of control", changing their distribution. We define the average process of the observations as

M n (t) = n -1 S [nt]
(1.1)
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for S 0 = 0, S i = i j=1 X j and 0 ≤ t ≤ 1, where [x] is the integral part of x. A change in mean can be tracked by monitoring the average process via some functional of it, say T (M n ), referred to as a cusum statistic. We denote the mean of the average process (1.1) by

m n (t) = E M n (t) = µ[nt]/n → m(t) = µt (1.2)
as n → ∞ for 0 ≤ t ≤ 1. Given a functional T , θ = T (M n ) can be thought of as an estimate of θ = T (m). In this way we can if desired use θ to provide an estimate of µ. We shall assume that θ satisfies the standard cumulant expansion given by

κ r ( θ) = ∞ i=r-1 a ri n -i (1.3) for r = 1, 2, • • •.
For univariate data the most common prospective and retrospective two-sided cusum statistics and functionals are

A n = A(M n ) = n max k=1 |S k -kµ|/n, (1.4) 
B n = B(M n ) = n max k=1 |S k -k Xn |/n (1.5) for A(g) = sup [0,1] |g(t) -tµ| and B(g) = sup [0,1] |g(t) -tg(1)|, where Xn = M n (1) = S n /n. If σ is a consistent estimate of the standard deviation σ, then as n → ∞ σ -1 n 1/2 {M n (t) -tµ} L → W (t), σ -1 n 1/2 {M n (t) -tM n (1)} L → W 0 (t)
for W (t) a Wiener process and W 0 (t) = W (t) -tW (1) a Brownian Bridge. So,

σ -1 n 1/2 A n L → sup [0,1] |W (t)|, (1.6) 
σ -1 n 1/2 B n L → sup [0,1] |W 0 (t)|. (1.7)
See [START_REF] Billingsley | Convergence of Probability Measures[END_REF] and [START_REF] Anderson | Asymptotic theory of certain 'goodness of fit' criteria based on stochastic processes[END_REF].

These asymptotic results are easily extended to functionals like sup{|g(t)

-tµ 0 | -b(t)}, that is to test H 0 : µ = µ 0 versus H 1 : µ = µ 0 by rejecting H 0 if M n (t) -tµ 0 crosses a given boundary ±b(t).
An alternative is to use the L 1 norm. For example, the one-sided test of

H 0 : µ = µ 0 versus H 1 : µ > µ 0 one can use 1 0 {g(t)-tµ 0 -b(t)}dt, or equivalently 1 0 g(t)
dt. This is an example of the statistics and functionals we consider here. They include T (M n ) for

T (g) = 1 0 w(g(t), t)dt or 1 0 w(g(t), t)dg(t) (1.8)
for w(x, t) : R p × [0, 1] → R q , as well as smooth functions of such functionals. These functionals have the advantage of being asymptotically normal, unlike (1.6) and (1.7), and of having distribution, density and quantiles given by their Edgeworth-Cornish-Fisher expansions. In contrast, expansions for the distribution, density and quantiles of the cusum statistics (1.4)-(1.7), are not available.
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The aim of this note is to extend the work of [START_REF] Withers | Accurate tests and intervals based on linear cusum statistics[END_REF] for nonlinear functionals. In this case, the cumulant expansions in (1.3) and hence the Edgeworth-Cornish-Fisher expansions (Section 2, Withers and Nadarajah, 2009) are obtained in terms of functional derivatives of T at m using the Euler-McLaurin expansion. Section 2 defines the functional derivatives needed. There are two types depending on whether integration is with respect to dt or dg(t). These are analogous to those of von [START_REF] Mises | On the asymptotic distribution of differentiable statistical functions[END_REF] as extended in [START_REF] Withers | Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals[END_REF][START_REF] Withers | Nonparametric confidence intervals for functions of several distributions[END_REF]. We show that the chain rule applies to such derivatives. Examples include (1.8) and smooth functions of such functionals. Section 3 gives the cumulants of T (M n ) needed to obtain its Edgeworth-Cornish-Fisher expansions (Section 2, Withers and Nadarajah, 2009). For example, as n → ∞,

n var(T (M n )) → σ 2 T m (t) 2 dt
for m(t) of (1.2) and T g (t) the first derivative of T (g) in the calculus of Section 2.

Functional Derivatives

Since M n (t) is not a distribution function, the calculus of von [START_REF] Mises | On the asymptotic distribution of differentiable statistical functions[END_REF] does not apply to functionals of it. In this section we develop two differential calculi which can be applied to such functionals. The first calculus is for functionals like 1 0 w(g(t), t)dt when g(0) = 0 and for f ( wdg) without the condition g(0) = 0. The second calculus covers functionals like 1 0 w(g(t), t)dt without the condition g(0) = 0.

First Calculus

Consider functions g, h : I → R, where I ⊂ R p , and a functional T (g) in R. Suppose that for real ǫ,

T (g + ǫh) = T (g) + ∞ r=1 T r (g, h)ǫ r /r!, (2.1) 
where

T r (g, h) = I • • • I T g (t 1 , . . . , t r )dh(t 1 ) . . . dh(t r )
is assumed to exist. We call T g (t 1 , . . . , t r ) the rth order (functional) derivative of T (g) with respect to the first calculus, or simply the first rth order derivative. It is made unique by the condition

T g (t 1 , . . . , t r ) is symmetric in t 1 , . . . , t r . ( 2 

.2)

Restrictions on h may be required in order that (2.1) hold, as the examples show. That is, for a given T the expansion for T (g n ) -T (g) may place restrictions on eligible g ng.

Note 2.1 Condition (2.1) can be weakened in two ways. Firstly, it need only hold in a neighbourhood of zero, say |ǫ| < δ. This is satisfied by ǫ = n -1/2 if n > δ -2 . One can then take, for example, g(t) = m(t) and h(t) = n 1/2 (M n (t)m(t)), so that the left hand side of
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(2.1) is T (M n ). Secondly, the infinite Taylor series (2.1) can be replaced by a partial series with a remainder term, analogous to the usual ordinary Taylor series for a real function of a real variable, given in Section 3.6.1 of [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF].

Like von Mises' calculus, these calculi cannot be applied to sup functionals like that of (1.4) and (1.5).

Set ∆ t (s) = I(t ≤ s) = p i=1 I(t i ≤ s i ).
(2.3)

Taking λ 1 , • • • , λ r in R and h(s) = r i=1 λ i ∆ t i (s), where ∆ t i (•) is defined by (2.3), we see that T g (t 1 , . . . , t r ) is the coefficient of λ 1 • • • λ r in T r (g, h)/r!, so that T g (t 1 , . . . , t r ) is the coefficient of λ 1 • • • λ r ǫ r in T (g + ǫh)/r!. So, the first derivative is S(g) = T g (t) = lim ǫ→0 {T (g + ǫ∆ t ) -T (g)} /ǫ, (2.4) 
where ∆ t is defined by (2.3). Similarly, by the method of proof of Theorem 2.1 of [START_REF] Withers | Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals[END_REF], it follows that

T g (t 1 , . . . , t r+1 ) = S g (t r+1 ) for S(g) = T g (t 1 , . . . , t r ). (2.5)
That is, the derivative of the rth derivative is the r + 1st derivative, just as for ordinary partial derivatives. The situation is analogous to, but simpler to the theory of derivatives of functionals of distribution functions developed by Von [START_REF] Mises | On the asymptotic distribution of differentiable statistical functions[END_REF] and refined by [START_REF] Withers | Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals[END_REF]. Note that in general 1 0 T g (t 1 , . . . , t r )dt 1 = 0, whereas for the von Mises derivative T F (x 1 , . . . , x r )dF (x 1 ) = 0: see (2.3) of [START_REF] Withers | Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals[END_REF].

Example 2.1 Suppose that p = 1 and T (g) = 1 0 w(t)dg(t), where w(t) : [0, 1] → R and g : [0, 1] → R are chosen such that T (g) exists. Set w r = ( w r ) 1/r for 0 < r < ∞. Then T g (t) = w(t) and higher derivatives are zero. So, T m dm = µw 1 = 0 in general.

Example 2.2 Suppose that p = 1 and T (g) = 1 0 W (t)g(t)dt. Then one needs to impose the condition h(0) = 0 giving T g (t) = 1 t W (s)ds or the condition h(1) = 0 giving T g (t) = t 0 W (s)ds. The higher derivatives are zero. The condition h(0) = 0 restricts application to T (g n ) -T (g) with g n (0)g(0) = 0, a condition satisfied by (g n , g) = (M n , m) of (1.1), (1.2). The condition h(1) = 0 restricts application to T (g n ) -T (g) with g n (1)g(1) = 0, a condition not satisfied by (g n , g) = (M n , m).

For the next examples it is helpful to use ∧ and ∨ to denote min and max: 

t r∧ = r min i=1 t i , t r∨ = r max i=1 t i . ( 2 
T g (t 1 , . . . , t r ) = w .r (g(s))∆ t 1 (s) • • • ∆ tr (s) = w .r (g(s))∆ tr∨ (s),
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where ∆ t 1 (•) is defined by (2.3). If h(s+) = h(s) and T (g) = w(g(s)g(1)) then

T g (t 1 , . . . , t r ) = w .r (g(s) -g(1))(∆ t 1 (s) -1) • • • (∆ tr (s) -1)
= (-1) r w .r (g(s)g(1))I(s < t r∧ ).

Example 2.4 Let ν be a measure on some space L. For s in L let T s (g) be a functional with finite rth derivative T sg (t If g is right-continuous (for example, g = M nm) and

S(g) = 1 0 w(g(s) -g(1), s)ds (2.8) 
then S g (t 1 , . . . , t r ) = (-1) r tr∧ 0 w .r0 (g(s)g(1), s)ds.

(2.9)

For example, alternatives to the statistics A n and B n of (1.4) and (1.5) are

C n = C n (M n ) = n -3 n j=1 (S j -jµ) 2 w(j/n)/2, D n = D n (M n ) = n -3 n j=1 (S j -jS n /n) 2 w(j/n)/2 for C n (g) = 1 0 (g(s) -µ[ns]/n) 2 w([ns]/n)ds/2, D n (g) = 1 0 (g(s) -g(1)[ns]/n) 2 w([ns]/n)ds/2.
Their non-zero derivatives are 

C ng (t 1 ) = 1 t 1 (g(s) -µ[ns]/n)w([ns]/n)ds, C ng (t 1 , t 2 ) = 1 t m2 w([ns]/n)ds, D ng (t 1 ) = 1 0 (g(s) -g(1)[ns]/n)w([ns]/n)e n (s, t 1 )ds, D ng (t 1 , t 2 ) =
C ′ n = C(M n ), D ′ n = D(M n ). If w(s) = 1 then one may show that C n -C ′ n and D n -D ′ n are O p (n -3/2 ) in probability.
Since D(g) does not have the form (2.8), (2.9) does not apply. This can be fixed by applying the method not to M n (t) but to

N n (t) = [nt] -1 [nt] i=1 X i ,
interpreted as 0 for t ≤ 1/n. However, κ( w 1 , • • • , w r ) for w i = N n (t i ) is more complicated than for w i = M n (t i ), so we do not pursue this idea beyond the next example.

Example 2.6 Consider

D ′ n = D ′ n (N n ) = n -1 n-1 j=1 (S j /j -S n /n) 2 w(j/n)/2,
where

D ′ n (g) = 1 n -1 (g(s) -g(1)) 2 w([ns]/n)ds/2.
The non-zero derivatives are

D ′ ng (t 1 ) = - 1 n -1 (g(s) -g(1))w([ns]/n)I(s ≤ t)ds, D ′ ng (t 1 , t 2 ) = 1 n -1 w([ns]/n)I(s < t m2 )ds. Note that D n [w] = D n and D ′ n [w] = D ′ n are equivalent in that D ′ n [w ′ ] = D n [w] for w ′ (t) = t 2 w(t). Note that 2n 3 D n [1] = 2n 3 D ′ n [t 2 ] = n j=1 (S j -j Xn ) 2
provides a simple alternative to

nB n = n max j=1 |S j -j Xn |,
since they provide L 2 and L ∞ norms of S jj Xn .
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Chain Rule

Since T g (t 1 , . . . , t r ) is an exact analogue of the ordinary rth order partial derivative, it satisfies the chain rule. We now spell this out in detail. By Comtet (1974, page 137), Faa di Bruno's chain rule for the derivatives of a function of a function is most simply stated in terms of the exponential Bell polynomials tabled on page 307 of [START_REF] Comtet | Advanced Combinatorics[END_REF]: for r ≥ 1, the rth derivative of a real function of a real function, say S(g) = f (T (g)), for g in R, T : R → R, f : R → R is given by

S (r) (g) = r k=1 f k B rk (T) (2.10) at f k = f (k) (T (g)) and T = (T 1 , T 2 , • • •)
, where T r = T (r) (g), the rth derivative of T (g). This extends to g and T (g) multi-dimensional by a simple reinterpretation. For example, for r = 4, (2.10) gives

S (4) (g) = f 1 T 4 + f 2 (4T 1 T 3 + 3T 2 2 ) + f 3 (6T 2 1 T 2 ) + f 4 T 4 1 .
For g in p dimensions and T (g) in q dimensions this becomes

S .i 1 i 2 i 3 i 4 (g) = f .j 1 T j 1 .i 1 i 2 i 3 i 4 + f .j 1 j 2 ( 4 i T j 1 .i 1 T j 2 .i 2 i 3 i 4 + 3 i T j 1 .i 1 i 2 T j 2 .i 3 i 4 ) +f .j 1 j 2 j 3 6 i T j 1 .i 1 T j 2 .i 2 T j 3 .i 3 i 4 + f .j 1 j 2 j 3 j 4 T j 1 .i 1 T j 2 .i 2 T j 3 .i 3 T j 4 .i 4 , (2.11)
where, for i

1 , i 2 , • • • in 1, 2, • • • , p S .i 1 i 2 ••• (g) = ∂ i 1 ∂ i 2 • • • S(g) for ∂ i = ∂/∂ g i .
Similarly, for the partial derivatives of T j (g) for j = 1, • • • , q; and for

j 1 , j 2 , • • • in 1, 2, • • • , q f .j 1 j 2 ••• (T (g)) = ∂ j 1 ∂ j 2 • • • f (y) at y = T (g) for ∂ j = ∂/∂ y j .
The convention is that j 1 , j 2 , • • •, the repeated pairs of suffixes in (2.11), are implicitly summed over their range 1, 2, • • • , q. The expressions N i in (2.11) mean summation over all N permutations of the i ′ s giving different terms. For example,

4 i T j 1 .i 1 T j 2 .i 2 i 3 i 4 = T j 1 .i 1 T j 2 .i 2 i 3 i 4 + T j 1 .i 2 T j 2 .i 1 i 3 i 4 + T j 1 .i 3 T j 2 .i 1 i 2 i 4 + T j 1 .i 4 T j 2 .i 1 i 2 i 3 .
This chain rule in turn has a simple reinterpretation for functions of functionals. Consider the real functional S(g) = f (T (g)), where T (g) is a q-dimensional functional on functions g : I → R, where I ⊂ R p , and f (T ) is an ordinary function from R q to R. Then, for example, the fourth order functional derivatives of S(g) are given in terms of the functional derivatives of T (g) by (2.11) 

with S .i 1 i 2 ••• (g) replaced by S g (t 1 t 2 • • •) and T j.i 1 i 2 ••• replaced by T jg (t 1 t 2 • • •), the functional derivatives of T j (g): S g (t 1 t 2 t 3 t 4 ) = f .j 1 T j 1 g (t 1 t 2 t 3 t 4 ) + f .j 1 j 2 4 t T j 1 g (t 1 )T j 2 g (t 2 t 3 t 4 ) + 3 t T j 1 g (t 1 t 2 )T j 2 g (t 3 t 4 )) + f .j 1 j 2 j 3 6 t T j 1 g (t 1 )T j 2 g (t 2 )T j 3 g (t 3 t 4 )
+f .j 1 j 2 j 3 j 4 T j 1 g (t 1 )T j 2 g (t 2 )T j 3 g (t 3 )T j 4 g (t 4 ).

A C C E P T E D M A N U S C R I P T
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Extension to Vector g

We now extend the results of this section to g, h, ǫ s-vectors. Let ǫh denote the s-vector

with ith component ǫ i h i for i = 1, • • • , s. For r in N s , where N = {0, 1, 2, • • •}, set |r| = s i=1 r i , ǫ r /r! = s i=1 ǫ r i /r i !.
Now consider functionals T (g) such that for all s-vector functions g, h on I ⊂ R p ,

T (g + ǫh) = r∈N s T r (g, h)ǫ r /r! for T r (g, h) = |r| I T g ({u ij , i = 1, • • • , s; j = 1, • • • r i }) s i=1 r i j=1 dh i (u ij ),
where |r| I denotes |r| integrals over I. The rth derivative, the above integrand, is again made unique by the condition that it is symmetric in each of its s rows. Taking

h i (u) = r i j=1 λ ij ∆ t i (u), where ∆ t i (•) is defined by (2.3), we see that this derivative is the coefficient of s i=1 r i j=1 λ ij in T r (g, h)/r!.
Let e is be the ith unit vector in R s . Then as in (2.4), for t in R the s first derivatives are

S i (g) = lim ǫ→0 {T (g + ǫe is ∆ t ) -T (g)} /ǫ,
where ∆ t is defined by (2.3). Similarly, (2.5) holds if t 1 , . . . , t r+1 and t 1 , . . . , t r are interpreted as ith rows with the other rows implicit and the same on both sides, that is Example 2.7 Take I ⊂ R p , g : I → R, w : I → R q , T (g) = wdg, S(g) = f ( wdg).

Then S g (t 1 , • • • , t r ) = f j1 •••jr ( wdg)w j 1 (t 1 ) • • • w jr (t r ).

Second Calculus

Consider functions g, h : I → R, where I ⊂ R p , and a functional T (g) in R. Suppose that for real ǫ, (2.1) holds, where now

T r (g, h) = I • • • I T g (t 1 , . . . , t r )h(t 1 )dt 1 . . . h(t r )dt r
is assumed to exist. We call T g (t 1 , . . . , t r ) the rth order (functional) derivative of T (g) with respect to the second calculus, or simply the second rth order derivative. It is made unique by the condition (2.2).

Let δ(t) denote the Dirac function on R. For t, s ∈ R q , set δ(t) = q i=1 δ(t i ) and δ t (s) = δ(ts). Taking λ 1 , • • • , λ r in R and h(s) = r i=1 λ i δ t i (s), we see that T g (t 1 , . . . , t r ) is the coefficient of λ 1 • • • λ r in T r (g, h)/r!. So, the first derivative is (2.4) with ∆ t replaced by δ t . Similarly, (2.5) and the chain rule hold.
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Example 2.8 Take p = 1. Suppose that T (g) = 1 0 v(t)g(t)dt = vg say. Then T g (t) = v(t) and higher derivatives are zero.

Example 2.9 Take p = 1. Let s be any point in [0, 1]. Consider functions g : [0, 1] → R, and w : R → R. If T (g) = w(g(s)) then

T g (t 1 , . . . , t r ) = w .r (g(s))δ t 1 (s) • • • δ tr (s).
If T (g) = w(g(s)g( 1)) then 

T g (t 1 , . . . , t r ) = w .r (g(s) -g(1))(δ t 1 (s) -δ t 1 (1)) • • • (δ tr (s) -δ tr (1)).
I ⊂ R p , g : I → R, v : I → R q , T (g) = I vg, S(g) = f ( I vg). Then S g (t 1 , • • • , t r ) = f j1 •••jr ( I vg)v j 1 (t 1 ) • • • v jr (t r ).
We note in passing that our method avoids the complexities of Gateaux, Fréchet and Hadamard derivatives. For more on these see, for example, Dudley (1992), [START_REF] Bednarski | Statistical expansions and locally uniform Fréchet differentiability[END_REF], Ren andSen (1991, 1995) and Pons and de Turckheim (1991).

Cumulant Expansions

Here we apply the first calculus of the previous section with p = 1, I = [0, 1] in order to obtain the leading coefficients {a ri } in the cumulant expansion (1.3) for θ = T (M n ). The higher order tests and confidence intervals can then be obtained as in Withers and Nadarajah (Section 2, 2009). By (2.1)

T (M n ) = T (m) + ∞ r=1 1 0 • • • 1 0 T m (t 1 , . . . , t r ) d(M n (t 1 ) -m(t 1 )) . . . d(M n (t r ) -m(t r ))/r!.
Cumulant expansions for T (M n ) could be obtained from this, following the method in [START_REF] Withers | Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals[END_REF], where cumulant expansions for T (F n ) were obtained for F n the empirical distribution of a random sample from F . However, in [START_REF] Withers | Nonparametric confidence intervals for functions of several distributions[END_REF] we showed that these could be obtained much more easily by applying the cumulant expansions of [START_REF] Withers | Second order inference for asymptotically normal random variables[END_REF] for t( w) by identifying w i with F n (x i ), i = 1, . . . , p and letting p → ∞. Here we take the same short cut with w i = M n (t i ). We begin with some notation.

For f : [0, 1] r → R, set (f ) r = 1 0 • • • 1 0 f (t 1 , • • • , t r )dt 1 • • • dt r . A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT for g 3 (t) = 1 0 T m (s)T m (s, t)ds.
In this way, discarding the terms in a rr of magnitude O(n -1 ) or less, one obtains

a 10 = T (m), a 21 = κ 2 [1 2 ], (3.1) 
a 11 = κ 1 α 1 (T m ) + κ 2 [11]/2, (3.2) 
a 32 = κ 3 [1 3 ] + 3κ {min(s 0 , s i )f 1 (s i )ds i }.

. 6 )

 6 If p > 1 then min and max are interpreted element-wise. Example 2.3 Take p = 1. Let s be any point in [0, 1]. Consider functions g : [0, 1] → R, and a smooth function w : R → R. Denote its rth derivative by w .r . If h(0) = 0 and T (g) = w(g(s)) then

1 0e

 1 n (s, t 1 )e n (s, t 2 )ds,A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPTwhere e n (s, t) = I(t ≤ s) -[ns]/n. Now replace C n (g), D n (g) by their limits s)g(1)s) 2 w(s)ds/2, and set

  Since the analog of Example 3.4 in Withers and Nadarajah (2009) holds for the second calculus, we have in the notation of Example 2.5, Example 2.10 Take

4 2 [ 1 , 2 , 3 , 1 0 1 0 1 0Example 3 . 1

 212311131 [START_REF] Withers | Accurate tests and intervals based on linear cusum statistics[END_REF] 234],where d 3 of a 33 is the bias term, obtainable from 3 ∆ abc of Withers (1983, page 67) asd 3 = α 1 (g) = (g(1)g(0))/2 for g(s) = 3κ 1 κ 3 T m (s, t)T m (t) 2 dt + 3κ 1 κ 2 2 {T m (s, t, u)T m (t)T m (u) +2T m (s, t)T m (t, u)T m (u)}dtdu. Suppose that T (g) = 10 w(g(s), s)ds. By (2.7) the rth derivative at g = m is 1 tr∨ f r (s)ds, where f r (s) = w .r0 (m(s), s). So, a 21 , a 11 , a 32 are given by (3.1)-(3.3) in terms of[1 r ] = • • • s r∧ r i=1 {f 1 (s i )ds i }, [11] = sf 2 (s)ds, α 1 (T m ) =f 1 (s)ds/2,[1, 12, 2] = f 2 (s 0 )ds 0 2 i=1

  1 , • • • , t r ). For S(g) = T s (g)dν(s),S g (t 1 , . . . , t r ) = T sg (t 1 , . . . , t r )dν(s).

	Putting these two examples together, we have	
	1 tr∨	w .r0 (g(s), s)ds.	(2.7)

Example 2.5 Take p = 1. Let w(x, t) : R × [0, 1] → R have finite partial derivatives w .r0 (x, t) = (∂/∂ x ) r w(x, t). If g(0) = 0 and S(g) = 1 0 w(g(s), s)ds then S g (t 1 , . . . , t r ) =

  2 2[START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF][START_REF] Withers | Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals[END_REF][START_REF] Anderson | Asymptotic theory of certain 'goodness of fit' criteria based on stochastic processes[END_REF],(3.3)a 22 = κ 2 α 1 (T 2 m ) + κ 3 [1, 11] + κ 2 2 [12 2 ]/2 + κ 2 2 [1, 122] +2κ 1 κ 2 α 1 (g 3 ), a 43 = κ 4 [1 4 ] + 12κ 2 κ 3 [1 2 , 12, 2] + 12κ 3 2 [1, 12, 23, 3] +4κ 3 2 [1, 2, 3, 123].Note the formal equivalence, apart from the bias terms α k , with the expressions for the cumulant coefficients of T (F n ) given by Withers (1983, page 580). (The negative term in a 43 does not appear here due to the different form there for the rth order cumulants of w.) So, we obtain from[START_REF] Withers | Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals[END_REF] the coefficients needed to extend inference to O(n -2 ):a 12 = κ 1 α 2 (T m ) + κ 3 [111]/6 + κ 2 2 [1122]/8, a 33 = 3κ 4 [1 2 , 11]/2 + 3κ 2 κ 3 [1, 12, 22] + 3κ 2 κ 3 [1, 12 2 ] + 3κ 2 κ 3 [1, 2, 122] +3κ 2 κ 3 [1 2 , 122]/2 + 3κ3 2 [1, 2, 1233]/2 + κ 3 2 [12, 23, 31] +3κ 3 2 [1, 12, 233] + 3κ 3 2 [1, 23, 123] + d 3 , a 54 = κ 5 [1 5 ] + 20κ 2 κ 4 [1, 2 3 , 12] + 60κ 2 2 κ 3 [1, 2, 3, 12, 23] +60κ 2 2 κ 3 [1, 2 2 , 13, 23] + 30κ 2 2 κ 3 [1, 2, 3 2 , 123]

	+5κ 4 2 [1, 2, 3, 4, 1234] + 60κ 4 2 [1, 2, 34, 13, 24]
	+60κ
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ACCEPTED MANUSCRIPT

For π 1 , π 2 , • • • sets with elements in {1, 2,

3) holds with a ri given by [START_REF] Withers | Second order inference for asymptotically normal random variables[END_REF] 

replaced by and t ij... replaced by T m (t 1 t 2 • • •). For example,

and the second term in a 11 is ij

The first term in a 11 is

for α i (g) of the Euler-McLaurin expansion (A.1) of Withers and Nadarajah (2009, Appendix A), since this implies that

where

By the corrigendum to [START_REF] Withers | Second order inference for asymptotically normal random variables[END_REF], the fifth term in a 22 is

= κ 1 κ 2 (g 3 (1)g 3 (0)) + O(n -1 )

ACCEPTED MANUSCRIPT

In particular, a 21 = κ 2 ds 1 ds 2 f 1 (s 1 )f 1 (s 2 )s 2∧ , 2a 11 = -µ f 1 (s)ds + κ 2 sf 2 (s)ds.