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Abstract. We propose a new fixed precision arithmetic package called
RecInt. It uses a recursive double-size data-structure. Contrary to ar-
bitrary precision packages like GMP, that create vectors of words on the
heap, RecInt large integers are created on the stack. The space allocated
for these integers is a power of two and arithmetic is performed mod-
ulo that power. Operations are thus easily implemented recursively by a
divide and conquer strategy. Among those, we show that this packages
is particularly well adapted to Newton-Raphson like iterations or Mont-
gomery reduction. Recursivity is implemented via doubling algorithms
on templated data-types. The idea is to extend machine word function-
ality to any power of two and to use template partial specialization to
adapt the implemented routines to some specific sizes and thresholds.
The main target precision is for cryptographic sizes, that is up to several
tens of machine words. Preliminary experiments show that good perfor-
mance can be attained when comparing to the state of art GMP library:
it can be several order of magnitude faster when used with very few
machine words. This package is now integrated within the Givaro C++
library and has been used for efficient exact linear algebra computations.

1 Introduction

Mathematical computations that needs integers above machine word precision
are compelled to rely on a third party library. Among arbitrary precision li-
braries for integers, GMP [11] (or its fork MPIR - www.mpir.org) is the most
renown and efficient. The underlying structure of GMP/MPIR integers is based
on an array of machine word integers that are accessed through a pointer. For
instance, a 256-bits integers a can been represented by a dimension four array
[a0, a1, a2, a3] such that a = a0 + a1264 + a22128 + a12192. Additionally to the
pointer, GMP/MPIR stores two integers that represent respectively the number
of allocated words and the number of used words, ensuring the dynamic of the
precision. Indeed, such a structure is well designed to efficiently handle arbi-
trary precision but can be too costly when one knows in advance the targeted

‡ This material is based on work supported in part by the Agence Nationale pour la
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precision. Furthermore, when dealing with multiple integers at the same time,
i.e. in matrix computation, access through pointers breaks cache mechanisms
and penalizes performances. Hopefully, one can access to a low level API (mpn
level) to both handle fixed precision and multiple integer without suffering from
an heavy interface. However, this approach let the memory management to the
user and cannot be incorporated to code that have been designed at a higher
level. The purpose of our work is to provide an alternative to the GMP library
for fixed precision integers that allow the flexibility of a high level library while
still being efficient. In particular, our approach is to design very simple codes
that extend naturally machine word to other powers of two.

A common and efficient way to compute over prime finite fields is to first
perform the operation over the integers and map the result back to the field
via modular reduction. In this specific case, the use of arbitrary precision is
not relevant since precision is fixed by the cardinality of the finite field. Indeed,
doubling the precision is often sufficient. To further optimize this approach, one
can use precompiled code to tackle specific range of modulus. This approach has
been proposed in the MPFQ library for cryptographic size moduli [10]. While
being very efficient to perform scalar computation over finite field, i.e. modular
exponentiation, the design of this library does not allow to use lazy modular
reduction that proved very efficient for linear algebra [7].

Besides fixed precision integers, our package also provides prime fields sup-
port that can be easily embedded in high level code, while offering very good
performance, in particular for matrix computations.

2 Functionality

2.1 Fixed precision arithmetic : extending the word size

With fixed precision integers, the maximum number of bit is given in advance
and all arithmetic operations are done within this precision. In particular, if
K is the maximum bitsize (i.e. the precision) then all computations are done
modulo 2K . This corresponds to forgetting the carry for addition/subtraction or
to getting the lowest K-bits part of the integer products.

Fixing K in advance facilitates the storage of integers through static array
of size dK/64e on 64-bits architecture. In order to mimic word-size integers and
to fully use the memory, we focus only on supporting integers of size a power of
two: K = 2k, with k >= 6. This assumption will allow us to provide a simple
recursive data structure that eases manipulation and implementation of most
arithmetic operations as explained in Section 3.1.

2.2 Fixed precision types

Our C++ package is devoted to provide functionality for fixed integer types.
As for native integers, we provide signed and unsigned types. Furthermore,
we extend this by providing a modular integer type that allows, e.g., com-
putation over prime finite fields as a standard type. We denote by ruint<k>
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the type of our unsigned integer at precision 2k (for instance we also define:
using ruint128 = ruint<7>; using ruint256 = ruint<8>; etc.). Then the
other types (signed and modular) are implemented with this structure. Our
fixed precision integers are integrated in the Givaro library and available at
https://github.com/linbox-team/givaro.

Signed type. The recursive signed integer is defined as a rint<k> type. The
data structure is just a ruint<k> and operations are performed via unsigned
operations thanks to a two’s complement representation.

Modular integer type. A special type rmint<k> is provided for modular
operations. The data structure is composed of an unsigned value, ruint<k>,
as well as a global ruint<k> for the modulus that is shared by all modular
elements. Modular elements modulo p are represented in the range [0, p− 1] and
all operations guarantee that values are always reduced to this range.

2.3 Integer operations

Our package provides basic integer operations defined both as mathematical op-
erator (×,+,−, /) or with their functional variants (mul,add,sub,div). A simple
example of using our package for doing vector dot product with 256-bit integers
is given below:
ruint<8> *A,*B,res=0; ... for(size_t i=0;i<n;i++) res+=A[i]*B[i];

Elements of type ruint<8> can be easily converted to rint<8> for computing
with signed integer, or to rmint<8> for computing modulo a 256-bit prime. Sev-
eral other functions are available (gcd, axpy, exponentiation, comparison, shift)
as well as some internal functions that eases algorithm implementation, e.g. ad-
dition with carry, internal access to the structure, etc.

Two types of modular reduction. One can easily switch between two type
of modular reduction. In particular, one can choose between classic modular
reduction using Euclidean division or the one using Montgomery’s method [13],
described in Section 3.2. The choice of representation is done at compile time,
by a template constant: rmint<k>, or rmint<K, MG INACTIVE> gives you the
classical one, while rmint<K, MG ACTIVE> uses Montgomery’s reduction.

3 Underlying theory and technical contribution

One drawback of arbitrary precision integers is to use a dynamic structure to
handle the variation of integers value. There, defining contiguous structure of
such integers leads to break cache prefetching when accessing data. Generally,
one alternative is then to use a low level API where dynamics of the integers is
delegated to the programmer. Unfortunately, this often becomes incompatible
with the design of code at a high level, and then may not allow to re-use existing
code. In the following section, we present our prototype designing a simple data
structure preserving good performances.

https://github.com/linbox-team/givaro


4 Breust-Chabot-Dumas-Fousse-Giorgi

3.1 Template recursive data structure

Using specificities of fixed precision integers, we can represent an integer of 2k

bits as two integers of 2k−1 bits and therefore use a recursive representation.
ruint<k> is our recursive unsigned integer of 2k bits. The base case ruint<6> is
called a limb and it corresponds to a native 64-bits integer. With these conven-

tions, a ruint<k> can store any value between 0 and 22
k − 1. In order to ensure

a static contiguous storage, we chose to use a template recursive data structure
with partial specialization. Note that the compiler will always completely unroll
this structure at compiled time.

Our C++ template structure ruint<> is given hereafter together with an
example for 256-bits integers, where High and Low correspond respectively to
the leading and trailing 2k−1-bits of the 2k-bit integer.

ruint<6> = uint64 t

ruint<7>

33

// ruint<6> = uint64 t

ruint<8>

44

**
ruint<7> //

++
ruint<6> = uint64 t

ruint<6> = uint64 t

template <size_t k>

struct ruint {

ruint<k-1> High, Low;

};

template <> struct ruint<6>

{uint64_t Value;};

3.2 Arithmetic operations.

Thanks to the recursive structure of ruint<k>, the implementation of arithmetic
operations can be done by a recursive approach. For instance, addition can be
done by two recursive calls with a carry propagation in between. Of course, the
base case is mapped to the corresponding word-size integer operation. One major
interest of such approach is that the compiler will unroll all the recursive calls
leading to reduced control flow overhead and better instruction scheduling. As
shown in Figure 1 (left), such approach leads to better performance against the
GMP library for the addition of two integers (when the result is stored in one
of the operand) up to 1024 bits.
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Fig. 1. Comparing integer addition (left) and multiplication (right) with GMP library
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Multiplication is handled via a naive approach (or via Karatsuba’s method),
still using a recursive implementation, as shown in the following code:
template <size_t K> inline void lmul_naive

(ruint<K>& ah, ruint<K>& al, const ruint<K>& b, const ruint<K>& c) {

bool rmid, rlow; ruint<K> bcmid, blcl;

lmul_naive(blcl, b.Low, c.Low); // Low part

lmul_naive(bcmid, b.High, c.Low); // Middle part

laddmul(rmid, bcmid, b.Low, c.High, bcmid); // Middle part

laddmul(ah, b.High, c.High, bcmid.High); // High part

copy(al.Low, blcl.Low);

add(rlow, al.High, blcl.High, bcmid.Low);

if (rlow) add_1(ah);

if (rmid) add_1(rmid, ah.High);

}

Still, without using any specific assembly code, contrary to GMP, our ap-
proach allows to have good speed-up for small integers up to 256-bits, as shown
in Figure 1 (right). Remark: We use Karatsuba’s method only for more than
1024 bits.

Montgomery’s modular reduction. Classical modular reduction uses inte-
ger division to map the result back into the desired integer range. Besides good
theoretical complexity [2], this approach is not efficient in practice since hard-
ware divisions are costly. If there exists a radix β such that divisions with β are
inexpensive and gcd(β,M) = 1, Montgomery gives in [13] a method for mod-
ular reduction without trial division. The idea of Montgomery is to compute
Cβ−1 mod M instead of computing C mod M . As shown in [2, Algorithm 2.7],
the fast version of this reduction requires to compute integer products modulo
β and integer division by β. Assuming β to be a power of 2, this provides an
algorithm without any division.

When the integer C to be reduced has a precision 2k+1 and the modulo has

a precision of 2k, i.e. β = 22
k

, this boils down to two multiplications at precision
2k. The design of our recursive integers is naturally compliant to such method
and implementation is almost straightforward. From our first experiment, this
straightforward implementation gives 1.5 speedup against GMP for 128-bits in-
teger but becomes not competitive for larger modulus.

Inversion modulo 22k

. On of the main operation in the setup of Montgomery

reduction is the computation of the inverse of M modulo β = 22
k

. The classical
algorithm for this is to use the extended Euclidean algorithm. But with the
special structure of B, it is better to use a Newton-Raphson iteration [1,5],
doubling the precision at each iteration. Thus here also our recursive structure
is perfectly suited to this kind of algorithm, as shown in Figure 2 (left). Note
that GMP uses an extended gcd.

Recursive division. For the integer division, our structure is also well suited
to a recursive algorithm. Thus, we use that of [3] which uses two sub-algorithms
dividing respectively 2 digits by 1 digit and 3 halves by 2. They allow then a
recursive division of an s-digits integer by a r-digits integer with complexity
O(rslog(3)−1 + r log(s)).
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Fig. 2. Newton-Raphson iteration for the inverse modulo a prime power (left) and
Modular matrix-vector multiplication (right)

Recursive shift. One operation is slightly more complicated on a recursive
structure: shifting. At each recursive level, five cases have to be explored: no
shift; shifting the lower part on the high part, in parts or completely; shifting
more than half the word; shifting more than the whole word. For instance, if

the shift d is such that 0 < d < 22
k−1

, then b = a << d satisfies: b.High =
(a.High� d)⊕

(
a.Low � (2k−1 − d)

)
and b.Low = (a.Low � d).

4 Application

4.1 Dense linear algebra: Freivalds certificate

For dense linear algebra, a basic building block is the matrix-vector multiplica-
tion. We show in Figure 2 (right) a multi-precision version of a modular matrix-
vector multi-precision. There, we use the FFLAS-FFPACK package [7], version
2.2.1 (http://linalg.org/projects/fflas-ffpack) and just change the un-
derlying representation from GMP to RecInt.

This possibility of easily changing the base representation can also be ex-
tremely important when certifying the results. In verified computing, a client
(the Verifier) will check the results provided by a server (typically a cloud, the
Prover). In dense linear algebra the basic tools for this is Freivalds’ certificate
for matrix-multiplication [9]. It uses matrix-vector multiplications with random

vectors to check that C = AB, via Cv − A(Bv)
?

== 0 on a random projection.
With this certificate it is then possible to check any fast dense linear algebra
computations with any precision [12, § 5]. These certificates have a double goal.
First this is a way to improve the confidence in a result, and this is even more
the case if the underlying data structure is different for the computation and for
the certificate. Second it provides a way to check outsourced computations. This
is economically viable only if the Verifier’s time is faster than the Prover’s time.
We show in Figure 2 (right) that RecInt makes it possible to gain on all dense
linear algebra verification, when operations require a few machine words.

http://linalg.org/projects/fflas-ffpack
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4.2 Sparse Linear algebra: prime power rank

The Smith normal form is useful, in topology for instance, for computing the
homology of a simplicial complex over the integers. There, the involved matrices
are quite often sparse and computations reduce to computing the rank of these
matrices modulo some prime powers [8, § 5.1]. We report in Table 1 on timings
using the LinBox library [6], version 1.4.1 (https://github.com/linbox-team/
linbox). The last invariant factor of the matrix S16.231x231 is 263, while that
of S22.1002x1002 is 285, so both need some extra precision to be computed. But
as this factor is not known in advance, a strategy is to double the precision, until
the rank modulo the prime power reaches the integer rank of the matrix. For
the considered matrices we would stop at 256 bits, but we see in Table 1 that
the strategy can be faster until 512 bits. As a comparison we also give timings
modulo 340 to show that this is not specific to the characteristic 2.

Table 1. Rank modulo a prime power http://hpac.imag.fr/Matrices/Tsuchioka

Matrix mod int64 t
RecInt

GMP
6 7 8 9 10

S16.231x231 340 - 0.01s 0.05s 0.12s 0.37s 1.28s 0.19s
S16.231x231 263 0.03s 0.03s 0.09s 0.29s 1.15s 4.64s 1.85s
S16.231x231 264 - - 0.09s 0.30s 1.15s 4.64s 1.85s

S22.1002x1002 340 - 0.34s 1.04s 2.60s 7.67s 25.84s 6.32s
S22.1002x1002 263 - 2.60s 7.00s 23.10s 88.24s 356.79s 154.22s
S22.1002x1002 286 - - 7.37s 24.17s 90.30s 357.44s 190.36s

4.3 Towards an FPGA implementation

We present here the first attempts towards an implementation on a FPGA. To
build a programmable hardware (http://shiva.minalogic.net/), we had to
provide basic arithmetic libraries to be used in an Elliptic curve based encryption
scheme. We chose to use a dedicated software transforming C++ source into
VHDL called GAUT [4]. The creation of a VHDL program can be split in the
following steps: compilation of the C++ source and creation of the corresponding
graph; compilation of the library containing the required operations; synthesis
of the VHDL program and estimation of performance.

Table 2. FPGA area of modular exponentiation for different output flows, with
RecInt integers from 128 to 512 bits

128 bits
op/s 7812 15625 31250 62500 125000 250000

Flipflops 3040 6100 7008 9538 16617 32199

256 bits
op/s 976 1953 3906 7812 15625 31250

Flipflops 3618 4391 6923 7654 8776 14542

512 bits
op/s 61 122 244 488 976 1953

Flipflops 3553 3553 3553 4704 5729 7458

https://github.com/linbox-team/linbox
https://github.com/linbox-team/linbox
http://hpac.imag.fr/Matrices/Tsuchioka
http://shiva.minalogic.net/
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Table 2 shows some simulations of a modular exponentiation on a Virtex 5.
We made the output flow vary in order to check the effect on the required size on
the FPGA. We notice that required size can be significantly reduced if we accept
a lower output flow. One nice point is that, due to the simple recursive structure
of RecInt, these results have been obtained without significant modifications
on the C++ source and automatically transformed. They are not optimal but
rather promising, with no significant work load.

5 Conclusion and Perspective

Our RecInt package is a first attempt to provide high level API for fixed pre-
cision integers that are usable out of the box. Thus it is easy to switch from
native integer types and to still provide good performance when compared to
standard libraries. To further improve the performance, we need to introduce
SIMD vectorized instructions in the design of our specializations and remove as
much as possible conditional jumps. Modular multiplication should also benefit
from either Barret’s method or Montgomery-Svoboda’s algorithm [2, §2.4.2].
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of Comp. Sc., pages 57–69, Olomouc, Czechoslovakia, 1979. Springer-Verlag.
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