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Abstract

For a large Markovian model, a “product form” is an explicit de-
scription of the steady-state behaviour which is otherwise generally
untractable. Being first introduced in queueing networks, it has been
adapted to Markovian Petri nets. Here we address three relevant issues
for product-form Petri nets which were left fully or partially open: (1)
we provide a sound and complete set of rules for the synthesis; (2) we
characterise the exact complexity of classical problems like reachability;
(3) we introduce a new subclass for which the normalising constant (a
crucial value for product-form expression) can be efficiently computed.

Keywords: Petri nets, product-form, synthesis, complexity anal-
ysis, reachability, normalising constant

1 Introduction

Product-form for stochastic models. Markovian models of discrete
events systems are powerful formalisms for modelling and evaluating the
performances of such systems. The main goal is the equilibrium performance
analysis. It requires to compute the stationary distribution of a continuous
time Markov process derived from the model. Unfortunately the potentially
huge (sometimes infinite) state space of the models often prevents the mod-
eller from computing explicitly this distribution. To cope with the issue, one
can forget about exact solutions and settle for approximations, bounds, or
even simulations. The other possibility is to focus on subclasses for which
some kind of explicit description is indeed possible. In this direction, the
most efficient and satisfactory approach may be the product-form method:
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for a model composed of modules, the stationary probability of a global
state may be expressed as a product of quantities depending only on local
states divided by a normalising constant.

Such a method is applicable when the interactions between the modules
are “weak”. This is the case for queueing networks where the interactions
between queues are described by a random routing of clients. Various classes
of queueing networks with product-form solutions have been exhibited [11,
3, 12]. Moreover efficient algorithms have been designed for the computation
of the normalising constant [18].
Product-form Petri nets. Due to the explicit modelling of competition
and synchronisation, the Markovian Petri nets formalism [1] is an attractive
modelling paradigm. Similarly to queueing networks, product-form Marko-
vian Petri Nets were introduced to cope with the combinatorial explosion of
the state space. Historically, works started with purely behavioural prop-
erties (i.e. by an analysis of the reachability graph) as in [13], and then
progressively moved to more and more structural characterisations [14, 10].
Building on the work of [10], the authors of [9] establish the first purely
structural condition for which a product form exists and propose a polyno-
mial time algorithm to check for the condition, see also [15] for an alternative
characterisation. These nets are called Π2-nets.
Open issues related to product-form Petri nets.

• From a modelling point of view, it is more interesting to design specific
types of Petri nets by modular constructions rather than checking a
posteriori whether a net satisfies the specification. For instance, in [7],
a sound and complete set of rules is proposed for the synthesis of
live and bounded free-choice nets. Is it possible to get an analog for
product-form Petri nets?

• From a qualitative analysis point of view, it is interesting to know the
complexity of classical problems (reachability, coverability, liveness,
etc.) for a given subclass of Petri nets and to compare it with that of
general Petri nets. For product-form Petri nets, partial results were
presented in [9] but several questions were left open. For instance,
the reachability problem is PSPACE-complete for safe Petri nets but
in safe product-form Petri nets it is only proved to be NP-hard in [9].

• From a quantitative analysis point of view, an important and diffi-
cult issue is the computation of the normalising constant. Indeed,
in product-form Petri nets, one can directly compute relative prob-
abilities (e.g. available versus unavailable service), but determining
absolute probabilities requires to compute the normalising constant
(i.e. the sum over reachable states of the relative probabilities). In
models of queueing networks, this can be efficiently performed using
dynamic programming. In Petri nets, it has been proved that the ef-
ficient computation is possible when the linear invariants characterise
the set of reachable markings [6]. Unfortunately, all the known sub-
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classes of product-form nets that fulfill this characterisation are models
of queueing networks!

Our contribution. Here we address the three above issues. In Section
3, we provide a set of sound and complete rules for generating any Π2-
net. We also use these rules for transforming a general Petri net into a
related product-form Petri net. In Section 4, we solve relevant complexity
issues. More precisely, we show that the reachability and liveness problems
are PSPACE-complete for safe product-form nets and that the coverability
problem is EXPSPACE-complete for general product-form nets. From these
complexity results, we conjecture that the problem of computing the nor-
malising constant does not admit an efficient solution for the general class
of product-form Petri nets. However, in Section 5, we introduce a large
subclass of product-form Petri nets, denoted Π3-nets, for which the nor-
malising constant can be efficiently computed. We emphasise that contrary
to all subclasses related to queueing networks, Π3-nets may admit spurious
markings (i.e. that fufill the invariants while being unreachable).

The above results may change our perspective on product-form Petri
nets. It is proved in [15] that the intersection of free-choice and product-
form Petri nets is the class of Jackson networks [11]. This may suggest
that the class of product-form Petri nets is somehow included in the class of
product-form queueing networks. In the present paper, we refute this belief
in two ways. First by showing that some classical problems are as complex
for product-form Petri nets as for general Petri nets whereas they become
very simple for product-form queueing networks. Second by exhibiting the
class of Π3-nets, see the above discussion.
Notations. We often denote a vector u ∈ RS by

∑
s u(s)s. The support of

vector u is the subset S′ ≡ {s ∈ S | u(s) 6= 0}.

2 Petri nets, product-form nets, and Π
2-nets

Definition 2.1 (Petri net). A Petri net is a 5-tuple N = (P, T,W−,W+,m0)
where:

• P is a finite set of places;
• T is a finite set of transitions, disjoint from P ;
• W−, resp. W+, is a P × T matrix with coefficients in N;
• m0 ∈ NP is the initial marking.

Below, we also call Petri net the unmarked quadruple (P, T,W−,W+).
The presence or absence of a marking will depend on the context.

A Petri net is represented in Figure 1. The following graphical conven-
tions are used: places are represented by circles and transitions by rect-
angles. There is an arc from p ∈ P to t ∈ T (resp. from t ∈ T to
p ∈ P ) if W+(p, t) > 0 (resp. W−(p, t) > 0), and the weight W+(p, t)
(resp. W−(p, t)) is written above the corresponding arc except when it is
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equal to 1 in which case it is omitted. The initial marking is materialised:
if m0(p) = k, then k tokens are drawn inside the circle p. Let P ′ ⊂ P and
m be a marking then m(P ′) is defined by m(P ′) ≡

∑
p∈P ′ m(p).

The matrixW =W+−W− is the incidence matrix of the Petri net. The
input bag •t (resp. output bag t•) of the transition t is the column vector of
W− (resp. W+) indexed by t. For a place p, we define •p and p• similarly.
A T-semi-flow (resp. S-semi-flow) is a Q-valued vector v such that W.v = 0
(resp. v.W = 0).

A symmetric Petri net is a Petri net such that: ∀t ∈ T, ∃t− ∈ T, •t =
(t−)•, t• = •t−. A state machine is a Petri net such that: ∀t ∈ T, |•t| =
|t•| = 1.

Definition 2.2 (Firing rule). A transition t is enabled by the marking m

if m ≥ •t (denoted by m
t

−→); an enabled transition t may fire which trans-

forms the marking m into m− •t+ t•, denoted by m
t

−→ m′ = m− •t+ t•.

p1

p2

t1 t2 t3 t4

2

2 2

2

W =

(
−2 −1 1 2
2 1 −1 −2

)
.

m0 = (2, 0) .

Figure 1: Petri net.

A marking m′ is reachable from the marking m if there exists a firing
sequence σ = t1 . . . tk (k ≥ 0) and a sequence of markings m1, . . . ,mk−1

such that m
t1−→ m1

t2−→ · · ·
tk−1
−−−→ mk−1

tk−→ m′. We write in a condensed way:
m

σ
−→ m′.
We denote by R(m) the set of markings which are reachable from the

marking m. The reachability graph of a Petri net with initial marking m0 is

the directed graph with nodes R(m0) and arcs {(m,m′)|∃t ∈ T : m
t
−→ m′}.

Given (N ,m0) and m1, the reachability problem is to decide if m1 ∈
R(m0), and the coverability problem is to decide if ∃m2 ∈ R(m0),m2 ≥ m1.

A Petri net (N ,m0) is live if every transition can always be enabled

again, that is: ∀m ∈ R(m0),∀t ∈ T, ∃m′ ∈ R(m), m′ t
−→. A Petri net

(N ,m0) is bounded if R(m0) is finite. It is safe or 1-bounded if: ∀m ∈
R(m0), m(p) ≤ 1.
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2.1 Product-form Petri nets

There exist several ways to define timed models of Petri nets, see [2]. We
consider the model of Markovian Petri nets with race policy. Roughly, with
each enabled transition is associated a “countdown clock” whose positive
initial value is set at random according to an exponential distribution whose
rate depends on the transition. The first transition to reach 0 fires, which
may enable new transitions and start new clocks.

Definition 2.3 (Markovian PN). A Markovian Petri net (with race policy)
is a Petri net equipped with a set of rates (µt)t∈T , µt ∈ R+ \ {0}. The firing
time of an enabled transition t is exponentially distributed with parameter µt.
The marking evolves as a continuous-time jump Markov process with state
space R(m0) and infinitesimal generator Q = (qm,m′)m,m′∈R(m0), given by:

∀m, ∀m′ 6= m, qm,m′ =
∑

t:m
t−→m′

µt, ∀m, qm,m = −
∑

m′ 6=m

qm,m′ . (2.1)

W.l.o.g., we assume that there is no transition t such that •t = t•.
Indeed, the firing of such a transition does not modifiy the marking, so its
removal does not modify the infinitesimal generator. We also assume that
(•t1, t

•
1) 6= (•t2, t

•
2) for all transitions t1 6= t2. Indeed, if it is not the case,

the two transitions may be replaced by a single one with the summed rate.
An invariant measure is a non-trivial solution ν to the balance equations:

νQ = 0. A stationary measure (distribution) π is an invariant probability
measure: πQ = 0,

∑
m π(m) = 1.

Definition 2.4 (Product-form PN). A Petri net is a product-form Petri
net if for all rates (µt)t∈T , the corresponding Markovian Petri net admits
an invariant measure ν satisfying:

∃(up)p∈P , up ∈ R+, ∀m ∈ R(m0), ν(m) =
∏

p∈P

u
mp
p . (2.2)

The existence of ν satisfying (2.2) implies that the marking process is
irreducible (in other words, the reachability graph is strongly connected).
In (2.2), the mass of the measure, i.e. ν(R(m0)) =

∑
m ν(m), may be either

finite or infinite. For a bounded Petri net, the mass is always finite. But for
an unbounded Petri net, the typical situation will be as follows: structural
conditions on the Petri net will ensure that the Petri net is a product-form
one. Then, for some values of the rates, ν will have an infinite mass, and,
for others, ν will have a finite mass. In the first situation, the marking
process will be either transient or recurrent null (unstable case). In the
second situation, the marking process will be positive recurrent (stable or
ergodic case).
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When the mass is finite, we call ν(R(m0)) the normalising constant. The
probability measure π(·) = ν(R(m0))

−1ν(·) is the unique stationary measure
of the marking process. Computing explicitly the normalising constant is
an important issue, see Section 5.

The goal is now to get sufficient conditions for a Petri net to be of
product-form. To that purpose, we introduce three notions: weak reversibil-
ity, deficiency, and witnesses.

Let (N,m0) be a Petri net. The set of complexes is defined by C = {•t |
t ∈ T} ∪ {t• | t ∈ T}. The reaction graph is the directed graph whose set of
nodes is C and whose set of arcs is {(•t, t•)|t ∈ T}.

Definition 2.5 (Weak reversibility: Π-nets). A Petri net is weakly re-
versible (WR) if every connected component of its reaction graph is strongly
connected. Weakly reversible Petri nets are also called Π-nets.

The notion and the name “WR” come from the chemical literature. In
the Petri net context, it was introduced in [4, Assumption 3.2] under a
different name and with a slightly different but equivalent formulation. WR
is a strong constraint. It should not be confused with the classical notion
of “reversibility” (the marking graph is strongly connected). In particular,
WR implies reversibility! Observe that all symmetric Petri nets are WR.

The notion of deficiency is due to Feinberg [8].

Definition 2.6 (Deficiency). Consider a Petri net with incidence matrix
W and set of complexes C. Let ℓ be the number of connected components of
the reaction graph. The deficiency of the Petri net is defined by: |C| − ℓ −
rank(W ).

The notion of witnesses appears in [9].

Definition 2.7 (Witness). Let c be a complex. A witness of c is a vector
wit(c) ∈ QP such that for all transition t:





wit(c) ·W (t) = −1 if •t = c

wit(c) ·W (t) = 1 if t• = c

wit(c) ·W (t) = 0 otherwise ,

where W (t) denotes the column vector of W indexed by t.

Examples. Consider the Petri net of Figure 1. First, it is WR. Indeed, the
set of complexes is C = {p1, p2, 2p1, 2p2} and the reaction graph is:

p1 ↔ p2 , 2p1 ↔ 2p2 ,

with two connected components which are strongly connected. Second, the
deficiency is 1 since |C| = 4, ℓ = 2, and rank(W ) = 1. Last, one can check
that none of the complexes admit a witness.
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Consider now the Petri net of Figure 3. It is WR and it has deficiency
0.

Proposition 2.8 (deficiency 0 ⇐⇒ witnesses, in [15, Prop. 3.9]). A Petri
net admits a witness for each complex iff it has deficiency 0.

Next Theorem is a combination of Feinberg’s Deficiency zero Theorem [8]
and Kelly’s Theorem [12, Theorem 8.1]. (It is proved under this form in [15,
Theorem 3.8].)

Theorem 2.9 (WR + deficiency 0 =⇒ product-form). Consider a Marko-
vian Petri net with rates (µt)t∈T , µt > 0, and assume that the underlying
Petri net is WR and has deficiency 0. Then there exists (up)p∈P , up > 0,
satisfying the equations:

∀c ∈ C,
∏

p:cp 6=0

u
cp
p

∑

t:•t=c

µt =
∑

t:t•=c

µt
∏

p:•tp 6=0

u
•tp
p . (2.3)

The marking process has an invariant measure ν s.t.: ∀m, ν(m) =
∏

p∈P u
mp
p .

Checking the WR, computing the deficiency, determining the witnesses,
and solving the equations (2.3), all of these operations can be performed in
polynomial-time, see [9, 15].

Summing up the above, it seems worth to isolate and christen the class
of nets which are WR and have deficiency 0. We adopt the terminology of
[9].

Definition 2.10 (Π2-net). A Π2-net is a Petri net which is WR and has
deficiency 0.

3 Synthesis and regulation of Π2-nets

The reaction graph, defined in Section 2.1, may be viewed as a Petri net
(state machine). Let us formalise this observation. The reaction Petri net

of N is the Petri net A = (C, T,W
−
,W

+
), with for every t ∈ T :

• W
−
(•t, t) = 1 and ∀u 6= •t, W

−
(u, t) = 0

• W
+
(t•, t) = 1 and ∀u 6= t•, W

+
(u, t) = 0

3.1 Synthesis

In this subsection, we consider unmarked nets. We define three rules that
generate all the Π2-nets. The first rule adds a strongly connected state
machine.

Definition 3.1 (State-machine insertion). Let N = (PN , TN ,W
−
N ,W

+
N ) be

a net and M = (PM, TM,W−
M,W+

M) be a strongly connected state ma-
chine disjoint from N . The rule S-add is always applicable and N ′ =
S-add(N ,M) is defined by:

7



• P ′ = PN ⊔ PM, T ′ = TN ⊔ TM;
• ∀p ∈ PN , ∀t ∈ TN , W

′−(p, t) =W−
N (p, t), W ′+(p, t) =W+

N (p, t);
• ∀p ∈ PM, ∀t ∈ TM, W ′−(p, t) =W−

M(p, t), W ′+(p, t) =W+
M(p, t);

• All other entries of W ′− and W ′+ are null.

The second rule consists in substituting to a complex c the complex c+λp.
However in order to be applicable some conditions must be fulfilled. The
first condition requires that c(p) + λ is non-negative. The second condition
ensures that the substitution does not modify the reaction graph. The third
condition preserves deficiency zero. Observe that the third condition can be
checked in polynomial time, indeed it amounts to solving a system of linear
equations in Q for every complex.

Definition 3.2 (Complex update). Let N = (P, T,W−,W+) be a Π2-net,
c be a complex of N , p ∈ P , λ ∈ Z∗. The rule C-update is applicable when:

1. λ+ c(p) ≥ 0;
2. c+ λp is not a complex of N ;
3. For every complex c′ there exists a witness wit(c′) s.t. wit(c′)(p) = 0.

The resulting net N ′ = C-update(N , c, p, λ) is defined by:
• P ′ = P , T ′ = T ;
• ∀t ∈ T s.t. W−(t) 6= c, W ′−(t) = W−(t), ∀t ∈ T s.t. W−(t) = c, W ′−(t) =

c+ λp

• ∀t ∈ T s.t. W+(t) 6= c, W ′+(t) = W−(t), ∀t ∈ T s.t. W+(t) = c, W ′+(t) =

c+ λp.

The last rule “cleans” the net by deleting an isolated place. We call this
operation P-delete.

Definition 3.3 (Place deletion). Let N = (P, T,W−,W+) be a net and
let p be an isolated place of N , i.e. W−(p) = W+(p) = 0. Then the rule
P-delete is applicable and N ′ = P-delete(N , p) is defined by:

• P ′ = P \ {p}, T ′ = T ;
• ∀q ∈ P ′, W ′−(q) =W−(q), W ′+(q) =W+(q).

Proposition 3.4 shows the interest of the rules for synthesis of Π2-nets.

Proposition 3.4 (Soundness and Completeness). Let N be a Π2-net.
• If a rule S-add, C-update or P-delete is applicable on N then the
resulting net is still a Π2-net.

• The net N can be obtained by successive applications of the rules
S-add, C-update, P-delete starting from the empty net.

Proof. Completeness. Let N = (P, T,W−,W+) be a Π2-net. We proceed
as follows to generate N via our rules. At any stage of the generation, Ncur

denotes the current net. Initially Ncur is the empty net.

First step. Let A1, . . . ,An be the strongly connected state machines cor-
responding to the components of the reaction net of N . Given a complex c
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of N , the corresponding place in the state machine is denoted qc. We apply
the rules S-add(Ncur,Ai) for i from 1 to n. At this stage, Ncur has T for
set of transitions and a place qc for every complex c of N . Furthermore, qc
has for input (resp. output) transitions the input (resp. output) transitions
of c in N . The complexes of Ncur are the places qc and they are their own
witnesses.

Second step. It consists in adding the places of P in such a way that the
net Ncur restricted to the places of P is N . At every stage of this step,
given a complex c =

∑
p∈P c(p)p of N , there is a corresponding complex

c′ = qc +
∑

p∈P∩Pcur
c(p)p in Ncur. For every place p ∈ P , we add p to

Ncur by rule S-add (an isolated place is a strongly connected state ma-
chine) and for every complex c of N such that c(p) > 0, we apply the rule
C-update(Ncur, c

′, p, c(p)). Let us check that this rule is applicable. First,
c′(p)+ c(p) = c(p) is positive. Second, c′+ c(p)p is not a complex of Ncur by
construction. Third, for every complex c′ of Ncur, there is a witness consist-
ing in the single place qc which is in a state machine Ai (thus different from
p). At the end of this step, Ncur is the net N enlarged with the places of
the state machines Ai. Otherwise stated, every complex c′ of Ncur is equal
to c+ qc.

Third step. This step consists in deleting the places of the state machines.
We observe that the place qc only occurs in the complex c+ qc. The net N
being a Π2-net, every complex c′ has a witness wit(c′) in N . Then wit(c′)
is a witness for c′ + qc′ in Ncur whose support does not contain qc. Thus
the rule C-update(Ncur, c + qc, qc,−1) is applicable. After its application,
qc becomes isolated and can be deleted by the rule P-delete(Ncur, qc). At
the end, we have obtained N .

Soundness. The case of P-delete is straightforward. Since we delete
an isolated place, the reaction graph is unchanged. So the net is still WR.
Assume that we delete an isolated place p and that p occurs a witness wit(c)
of some complex c. Then wit(c) −wit(c)(p) is also a witness of c.

Let us examine the application of rule S-add(N ,M). The state machine
M constitutes a new component of the reaction graph. Since M is strongly
connected, the new net is still WR. The witness of complexes associated with
N are unchanged. Let q be a place of M; by definition of state machine
this place is self-witnessing i.e. wit(q) = q. Thus the new net has deficiency
zero.

Let us examine the application of the rule C-update(N , c, p, λ). By the
second condition of its application the reaction graph of the new net is the
same as the original one (with c+ λp instead of c). So the new net is WR.
Due to the third condition, the witness of c′ 6= c is unchanged and the
witness of c+ λ · p is the one of c.
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Figure 2: How to synthetise a Π2-net.

We illustrate the synthesis process using our rules on the net numbered 5
in Figure 2. We have also indicated on the right upper part of this figure, the
four complexes and their witnesses. Since the reaction Petri graph of this net
has two state machines, we start by creating it using twice the insertion of a
state machine (net 1). Then we add the place p1 (a particular state machine).
We update the complex c1 (the single one where p1 appears in the original
net) by adding 3p1 (net 2). The new complex cannot appear elsewhere due
to the presence of c1. Iterating this process, we obtain the net 3. Observe
that this net is a fusion (via T the set of transitions) of the original net
and its reaction Petri net. We now iteratively update the complexes. The
net 4 is the result of transforming c1 + 3p1 into 3p1. This transformation is
applicable since all the complexes are witnessed by witnesses of the original
net. For instance, c1 + 3p1 is witnessed by (1/3)p1. Once c1 is isolated, we
delete it. Iterating this process yields the original net.

For modelling purposes, we could define more general rules like the re-
finement of a place by a strongly connected state machine. Here the goal
was to design a minimal set of rules.

3.2 From non Π
2-nets to Π

2-nets

Below we propose a procedure which takes as input any Petri net and re-
turns a Π2-net. The important disclaimer is that the resulting net, although
related to the original one, has a different structural and timed behaviour.
So it is up to the modeller to decide if the resulting net satisfies the desired
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specifications. In case of a positive answer, the clear gain is that all the
associated Markovian Petri nets have a product form.

Consider a Petri net N = (P, T,W−,W+,m0) with set of complexes C.
Assume that N is not WR. For each transition t, add a reverse transition t−

such that •t− = t• and (t−)• = •t (unless such a transition already exists).
The resulting net is WR. In the Markovian Petri net, the added reverse
transitions can be given very small rates, to approximate more closely the
original net.

Now, to enforce deficiency 0, the idea is to compose a general Petri net
with its reaction graph as in the illustration of Proposition 3.4.

Definition 3.5. Consider a Petri net N = (P, T,W−,W+,m0). Let m0

be an initial marking for the reaction Petri net A. The regulated Petri net
associated with N is defined as follows:

A⊙N =
(
P⊔C, T, W̃−, W̃+, (m0,m0)

)
, W̃− =

[
W−

W
−

]
, W̃+ =

[
W+

W
+

]
.

Proposition 3.6. The regulated Petri net A⊙N is WR iff N is WR. The
regulated Petri net A⊙N has deficiency 0.

p1

p2

“p1”

“p2”

“2p1”

“2p2”

t1 t2 t3 t4

2

2

2

2

Figure 3: Regulated Petri net associated with the Petri net of Fig 1.

The behaviours of the original and regulated Petri nets are different.
In particular, the regulated Petri net is bounded, even if the original Petri
net is unbounded. Roughly, the regulation imposes some control on the
firing sequences. Consider the example of Figures 1 (original net) and 3
(regulated net). The transitions t1 and t4 belong to the same simple circuit
in the reaction graph. Let w be an arbitrary firing sequence. The quantity
|w|t1−|w|t4 is unbounded for the original net, and bounded for the regulated
net.
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4 Complexity analysis of Π2-nets

All the nets that we build in this section are symmetric hence WR. For every
depicted transition t, the reverse transition exists (sometimes implicitly)
and is denoted t−. It is well known that reachability and liveness of safe
Petri nets are PSPACE-complete [5]. In [9], it is proved that reachability
and liveness are PSPACE-hard for safe Π-nets and NP-hard for safe Π2-nets.
Next theorem and its corollary improve on these results by showing that the
problem is not easier for safe Π2-nets than for general safe Petri nets.

Theorem 4.1. The reachability problem for safe Π2-nets is PSPACE-complete.

Proof. Our proof of PSPACE-hardness is based on a reduction from the
QSAT problem [17]. QSAT consists in deciding whether the following formula
is true

ϕ ≡ ∀xn∃yn∀xn−1∃yn−1 . . . ∀x1∃y1ψ
where ψ is a propositional formula over {x1, y1 . . . , xn, yn} in conjunctive
normal form with at most three literals per clause.

Observe that in order to check the truth of ϕ, one must check the truth of
ψ w.r.t. the 2n interpretations of x1, . . . , xn while the corresponding inter-
pretation of any yi must only depend of the interpretation of {xn, . . . , xi}.

Counters modelling. First we design a Π2-net Ncnt that “counts” from 0
to 2k − 1. This net is defined by:

• P = {p0, . . . , pk−1, q0, . . . , qk−1};
• T = {t0, . . . , tk−1};
• For every 0 ≤ i < k, •ti = pi +

∑
j<i qj and t•i = qi +

∑
j<i pj;

• For every 0 ≤ i < k, m0(pi) = 1 and m0(qi) = 0.

Figure 4: A 3-bit counter (without the reverse transitions).

Observe that for every reachable marking m and every index i, we have
m(pi) + m(qi) = 1. Therefore m can be coded by the binary word ω =
ωk−1 . . . ω0 in which ωi = m(qi). The word ω is interpreted as the binary
expansion of an integer between 0 and 2k−1. We denote by val(ω) the inte-
ger value associated with w. Consider w 6∈ {0k, 1k}, there are two markings
reachable from w which are w+ and w− such that val(w−) = val(w) − 1
and val(w+) = val(w) + 1.
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The figure below represents the reachability graph of the 3-bit counter. For
a k-bit counter, the shortest firing sequence from 0k to 1k is σk defined
inductively by: σ1 = t0 and σi+1 = σitiσi.

For every complex c ≡ pi +
∑

j<i qj (resp. c ≡ qi +
∑

j<i pj), a possible

witness is wit(c) ≡ pi +
∑

j>i 2
j−i−1pj (resp. wit(c) ≡ qi +

∑
j>i 2

j−i−1qj).
Thus this subnet has deficiency 0.

To manage transition firings between the update of counters, we duplicate
the counter subnet and we synchronize the two subnets as indicated in the
figure below. For a duplicated k-bit counter, the shortest firing sequence
from the marking with the two counters set to 0k and place go marked to
the marking with the two counters set to 1k and place go marked is obtained
by: σ1 = t0 and σn+1 = σntnσn where ti = tit

′
i.

This net has still deficiency 0 since the complexes are just enlarged by the
places go or go′ and their witnesses remain the same.

Variable modelling. For reasons that will become clear later on, the two
counter subnets contain n+3 bits indexed from 0 to n+2. The bits 1, . . . , n
of counter cnt correspond to the value of variables x1, . . . , xn. Managing the
value of variables y1, . . . , yn is done as follows. For every variable yi, we add
the subnet described below on the left (observe that si = r−1

i ) and modify
the two counter subnets as described on the right.

13



When place yi (resp. nyi) is marked, this corresponds to interpreting vari-
able yi as true (resp. false). Changes of the interpretation are possible
when place ui is marked. This is the role of the modification done on the
counter subnet: between a firing of ti and t′i places {uj}j≤i are marked.
With this construction, we get the expected behaviour: the interpretation
of a variable yi can only be modified when the interpretation of a variable
xj with j ≥ i is modified. The complexes of the counter subnet are enlarged
with places ui and their witnesses remain the same since places in the sup-
port of these witnesses are not modified by transitions si and ri. The new
complex yi+ui (resp. nyi+ui) has for witness yi (resp. nyi). Thus the new
net has still deficiency 0.

Modelling the checking of the propositional formula. We now de-
scribe the subnet associated with the checking of propositional formula ψ ≡∧

j≤mCj where we assume w.l.o.g.: (1) that every clause Cj ≡ lj,1∨ lj,2∨ lj,3
has exactly three literals (i.e. variables or negated variables); and (2) that
every variable or negated variable occurs at least in one clause. The left
upper part of Figure 5 shows the Petri net which describes clause Cj of the
formula ψ. Places ℓj,k(k = 1, 2, 3) represent the literals while places nℓj,k
represent the literal used as a proof of the clause, the place mutexj avoids to
choose several proofs of the clause (and thus ensuring safeness), and finally
place successj can be marked if and only if the evaluation of the clause
yields true for the current interpretation and one of its true literal is used
as a proof.

The complexes of this subnet are mutexj + ℓj,k (resp. successj +nℓj,k) with
witness −nℓj,k (resp. nℓj,k). So the subnet has deficiency 0.

We now synchronise the clause subnets with the previous subnet in order to
obtain the final net. Observe that in the previous subnet, transition t0 (and
t′0) must occur after every interpretation change. This is in fact the role of
bit 0 of the counter. Thus we constrain its firing by requiring the places
successj to be marked as presented in the right upper part of Figure 5.
Adding loops simply enlarges the complexes associated with t0 and does not
modify the incidence matrix. So the net has still deficiency 0.

It remains to synchronise the value of the variables and the values of the
literals where the variables occur either positively or negatively. This is done
in two steps. First ℓj,k is initially marked if the interpretation of the initial
marking satisfies ℓj,k. Then we synchronize the value changes as illustrated
in the lower part of Figure 5. Once again the complexes are enlarged and
the witnesses are still valid since the places ℓj,k do not belong to the support
of any witness.

Choice of the initial and final marking for the net. Let us develop a
bit the sequence σn+3 in the two counter subnet in order to explain the choice
of initial marking for this subnet: σn+3 = σn+1tn+1t

′
n+1σn+1tn+2t

′
n+2σn+1tn+1t

′
n+1σn+1

14



Figure 5: Clause Cj (left), synchronisation with t0 (right) and with variables
(below)

We want to check all the interpretations of xi’s guessing the appropriate
values of yi’s (if they exist). We have already seen that changing from one
interpretation to another one (i.e. a counter incrementation or decrementa-
tion) allows to perform the allowed updates of yi. However given the initial
interpretation of the xi’s we need to make an initial guess of all the yi’s.
So our initial marking restricted to the counter subnet will correspond to
the marking reached after σn+1tn+1, i.e. corresponding to cnt = 2n+1 (i.e.
word 010 . . . 0), cnt′ = 2n+1 − 1 (i.e. word 001 . . . 1) with in addition places
go′, ui’s, mutexj ’s and yi’s 1-marked; places ℓj,k are marked according to
the initial marking of places xi’s and yi’s as explained before. All the other
places are unmarked. This explains the role of bit n+ 1.

Furthermore, if we have successfully checked all the interpretations of the
xi’s, the counters will have reached the value 2n+2 − 1 (corresponding to a
firing sequence obtained from t′n+1σn+1 with possible updates of yi during
change of interpretations). However we do not know what is the final guess
for the yi’s. So firing transition tn+2 allows to set the yi’s in such a way
that the final marking will correspond to cnt = 2n+2 (i.e. word 10 . . . 0),
cnt′ = 2n+2−1 (i.e. word 01 . . . 1) with in addition places go′, ui’s mutexj ’s
and yi’s 1-marked; places ℓj,k are marked accordingly. All the other places
are unmarked. This explains the role of bit n+ 2.

By construction, the net reaches the final marking iff the formula is satisfied.
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Observe that the checking of clauses can be partially done concurrently with
the change of interpretation. However as long as, in the net, a clause Cj

is “certified” by a literal ℓj,k (i.e. marking place successj and unmarking
place ℓj,k) the value of the variable associated with the literal cannot change,
ensuring that when t0 is fired, the marking of any place successj corresponds
to the evaluation of clause Cj with the current interpretation.

Corollary 4.2. The liveness problem for safe Π2-nets is PSPACE-complete.

Proof. Observe that the transitions of the net of the previous proof are
fireable at least once (and so live by weak reversibility) iff ϕ is true.

Let us now consider general (non-safe) Petri nets. Reachability and cov-
erability of symmetric nets is EXPSPACE-complete [16]. In [9], it is proved
that both problems are EXPSPACE-complete for WR nets (which include
symmetric Petri nets). Next proposition establishes the same result for the
coverability of Π2-nets.

Proposition 4.3. The coverability problem for Π2-nets is EXPSPACE-complete.

Proof. Since we already know that coverability for Π-nets belongs to EXPSPACE[9],
it remains to prove that coverability for Π2-nets is EXPSPACE-hard. In or-
der to establish this result, we slightly adapt the reduction given in [16]
of the termination problem for a three counter machine where the values
of counters are bounded by en ≡ 22

n

with n the size of (a representation
of) the machine. Thus we first depict the original reduction and then we
describe our modifications and explain why the reduction is still valid.

For a uniform presentation of the proof we assume w.l.o.g. that the machine
has four counters (these more powerful machines include the original ones).
The key ingredient is the concise management of counters and more precisely
the zero test. Indeed one models a counter ci with i ∈ {1, 2, 3, 4} by two
complementary places Ai,n and Bi,n. When the counter has value x, place
Ai,n contains x tokens and place Bi,n contains en − x tokens. Testing (and
decrementing) that the counter ci is greater than 0 is done as usual by an
arc with weight 1 starting from Ai,n. However this approach does not work
for the zero test as it would require a (double) arc from Bi,n with weight en
thus implying a net representation of size at least 2n which would not be
valid.

Thus the zero test is managed by an inductive construction (w.r.t. n) of
“nested” subnets Nk leading to a subnet (the union of these subnets) with
size in O(n). Let us describe this construction. The main places are: Bi,k

with i ∈ {1, 2, 3, 4}, 0 ≤ k ≤ n containing at most ek tokens and safe places
Ci,k, Fk and Sk. The inductive properties are the following ones:

• In subnet
⋃

l≤k Nl, starting from marking Sk + Ci,k one may reach
marking Fk + Ci,k + ekBi,k.
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• Furthermore any marking reachable from Sk+Ci,k+αi1Bi1,k+αi2Bi2,k+
αi3Bi3,k ({i1, i2, i3} = {1, 2, 3, 4} \ {i}) with Sk or Fk marked is either
Sk+Ci,k+αi1Bi1,k+αi2Bi2,k+αi3Bi3,k or Fk+Ci,k+ekBi,k+αi1Bi1,k+
αi2Bi2,k + αi3Bi3,k.

Basic case k = 0. This case is straightforward: N0 consists in four transi-
tions when transition corresponding to i is figured below.

Inductive case. Assume that the inductive properties holds for k. The net
corresponding to Nk+1 is described below with the following convention: S
corresponds to Sk+1 and s corresponds to Sk. The same convention applies
to all names. Furthermore for sake of readability we have duplicated some
places in the figure.

We first exhibit the firing sequence σi,k+1 from S + Ci to F + Ci + ek+1Bi:

• S + Ci

ta,i
−−→ Q1,i + s+ c1

• Q1,i + s+ c1
σ1,k
−−→ Q1,i + f + c1 + ekb1 using the inductive hypothesis
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• Q1,i + f + c1 + ekb1
tb,i
−−→ Q2,i + s+ c2 + (ek − 1)b1

We now describe a firing sequence from
Q2,i + s+ c2 + (ek − j)b1 + (j − 1)ekBi + (j − 1)b4 to
Q2,i + s+ c2 + (ek − j − 1)b1 + jekBi + jb4 for 1 ≤ j ≤ ek − 1

– Q2,i + s+ c2 + (ek − j)b1 + (j − 1)Bi + (j − 1)b4
σ2,k
−−−→ Q2,i+f+c2+(ek−j)b1+ekb2+(j−1)b4 using the inductive hypothesis

– Q2,i + f + c2 + (ek − j)b1 + ekb2 + (j − 1)b4
(tc,i)

ek

−−−−−→ Q2,i + f + c2 + (ek − j)b1 + ekb3 + (j + 1)ekBi + (j − 1)b4

– Q2,i + f + c2 + (ek − j)b1 + ekb3 + (j + 1)ekBi + (j − 1)b4
td,i
−−→ Q3,i + f + c3 + (ek − j)b1 + ekb3 + (j + 1)ekBi + (j − 1)b4

– Q3,i + f + c3 + (ek − 1)b1 + ekb3 + (j + 1)ekBi + (j − 1)b4
σ
−

3,k
−−−→ Q3,i + s+ c3 + (ek − j)b1 + (j + 1)ekBi + (j − 1)b4

– Q3,i + s+ c3 + (ek − j)b1 + (j + 1)ekBi + (j − 1)b4
te,i
−−→ Q2,i + s+ c2 + (ek − j − 1)b1 + (j + 1)ekBi + jb4

• After the previous iterations, when reachingQ2,i+s+c2+(ek−1)ekBi+
(ek −1)b4, we perform all the steps of the iteration except the last one
reaching Q3,i+ s+ c3+(ek)

2Bi+(ek − 1)b4 = Q3,i+ s+ c3+ ek+1Bi+
(ek − 1)b4.

• Q3,i + s+ c3 + ek+1Bi + (ek − 1)b4
tf,i
−−→ Q4,i + f + c4 + ek+1Bi + ekb4

• Q4,i + f + c4 + ek+1Bi + ekb4
σ−

4,k
−−→ Q4,i + s+ c4 + ek+1Bi

• Q4,i + s+ c4 + ek+1Bi

tg,i
−−→ F + Ci + ek+1Bi

Let us now prove that any marking reachable from Sk + Ci,k + αi1Bi1,k +
αi2Bi2,k + αi3Bi3,k ({i1, i2, i3} = {1, 2, 3, 4} \ {i}) with Sk or Fk marked
is either Sk + Ci,k + αi1Bi1,k + αi2Bi2,k + αi3Bi3,k or Fk + Ci,k + ekBi,k +
αi1Bi1,k + αi2Bi2,k + αi3Bi3,k. We first observe on the net above that the
tokens contained in a place Bj,k are frozen except when place Cj,k is marked.
Thus w.l.o.g. we assume that α1 = α2 = α3 = 0.

So it remains to show that when deviating from the exhibited sequence one
cannot reach a marking with Sk marked different from the initial marking or
a marking with Fk marked different from the final marking. This is proven
by a case study (see [16]). Here we just handle one case since all cases are
similar. When reaching marking Q2,i+f+c2+(e−j)b1+ekb3+(j+1)ekBi+
(j − 1)b4 with 0 ≤ e < ek, one can fire transition td,i reaching marking
Q3,i + f + c3 + (e− j)b1 + eb3 + (j + 1)ekBi + (j − 1)b4. From this marking
due to the inductive hypothesis, it is not possible to mark place s in subnet
Nk−1. Thus transitions te,i and tf,i are not fireable. So the only possible
way to “progress” in Nk consists to fire the reverse transition t−d,i coming
back to the marking Q2,i+ f + c2+(e− j)b1 + ekb3+(j+1)ekBi+(j−1)b4.
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The subnet below describes the initial behaviour of the simulating net con-
sisting in filling places Bi,n (with i ∈ {1, 2, 3, 4}) with en tokens and putting
a token in q0 the place corresponding to the initial state of the counter
machine.

The simulation of an instruction q : ifci > 0 then ci−−; goto q′ else goto q′′

is now simply performed by the following subnet. The validity of the zero
test is ensured by the assertions about the subnet

⋃
l≤nNl. Furthermore

it can be proved that reverse transitions of the ones simulating transitions
cannot help to mark place qf where qf is the final state of the counter
machine (see [16] or proposition 12 in [9] for a simple proof of this claim).

We are now ready to explain the modifications that we bring to the simulat-
ing net. For every pair of transitions t and t−, we add a place pt input of one
of the transitions and output of the other. Thus by construction pt and −pt
are witnesses for t and t−. More precisely pt is the witness of the transition
for which it is an output and −pt is the output of the other transition. Let
us examine how these additional places modify the behaviour of the net.
Since there is no new transition, firing sequences of the enlarged net are
firing sequences of the original one. Thus we only have to care whether the
simulation firing sequence is still a firing sequence.
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For the transitions not belonging to the subnet
⋃

l≤nNl, pt is an output of t.
As the reversed transitions of these transitions do not occur in the simulating
sequence, such places cannot disable a transition in the simulating sequence.
We now observe that the sequences σi,n and σ−i,n alternate in the simulating
sequence, always starting by σi,n. Thus in subnet Nn, place pt is the output
of the transition t. Now observe that in sequence σi,n there is an occurrence
of sequence σ1,n−1, en−1 occurrences of σ2,n−1 followed by σ−3,n−1 and then
an occurrence of σ4,n−1. Thus in subnet Nn−1, place pt is the output of
the transition t (resp. t−) when t is tu,i with u ∈ {a, b, c, d, e, f, g} and
i ∈ {1, 2} (resp. i ∈ {3, 4})using notations of the figure. The same pattern
of occurrences also happens at lower levels. So more generally, in subnet Nk

with k < n, place pt is the output of the transition t (resp. t−) when t is
tu,i with u ∈ {a, b, c, d, e, f, g} and i ∈ {1, 2} (resp. i ∈ {3, 4}). With this

choice, the simulating sequence is still a firing sequence in the enlarged net
and the marking to be covered is qf .

The complexity of reachability for Π2-nets remains an open issue (indeed
the proof of EXPSPACE-hardness does not work for reachability).

5 The subclass of Π3-nets

In this section, we introduce Π3-nets, a subclass of product-form Petri nets
for which the normalising constant can be efficiently computed. The first
subsection defines the subclass; the second one studies its structural prop-
erties and the third one is devoted to the computation of the normalising
constant.

5.1 Definition and properties

Definition 5.1 (Ordered Π-net). Consider an integer n ≥ 2. An n-level
ordered Π-net is a Π-net N = (P, T,W−,W+) such that:

1. P =
⊔

1≤i≤n

Pi , T =
⊔

1≤i≤n

Ti and Pi 6= ∅ for all 1 ≤ i ≤ n,

2. Mi = (Pi, Ti,W
−
|Pi×Ti

,W+
|Pi×Ti

) is a strongly connected state machine,

3. ∀1 ≤ i ≤ n ,∀t ∈ Ti ,∀p ∈ P , •t(p) > 0 implies p ∈ Pi or p ∈ Pi−1

(P0 = ∅),
4. ∀2 ≤ i ≤ n ,∃t ∈ Ti ,∃p ∈ Pi−1 s.t. •t(p) > 0,
5. ∀1 ≤ i ≤ n ,∀t, t′ ∈ Ti, (

•t ∩ •t′) ∩ Pi 6= ∅ implies •t = •t′.

We call Mi the level i state machine. The elements of Pi (resp. Ti) are
level i places (resp. transitions). The complexes •t with t ∈ Ti are level i
complexes.

By weak reversibility, the constraints 3, 4, and 5 also apply to the output
bags t•. An ordered Π-net is a sequence of strongly connected state machines.
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Connections can only be made between a level i transition and a level (i−1)
place (points 1, 2, 3). By construction, an ordered Π-net is connected (point
4). Each level i place belongs to one and only one level i complex (point 5).

Lemma 5.2. The reaction net of N is isomorphic to the disjoint union of
state machines Mi. So a T -semi-flow of Mi is also a T -semi-flow of N . If
a transition of Ti is enabled by a reachable marking then every transition of
Ti is live.

Proof. Consider the mapping f which maps each complex t•, t ∈ Ti, to p the
output place of t in Pi. By construction of ordered Π-nets, f is a bijection
from C to P . Moreover, each arc c1 → c2 of the reaction graph corresponds
to the transition t = f(c1)

• = •f(c2).

An ordered Π-net may be interpreted as a multi-level system. The tran-
sitions represent jobs or events while the tokens in the places represent re-
sources or constraints. A level i job requires resources from level (i− 1) and
relocates these resources upon completion. Conversely, events occurring in
level (i−1) may make some resources unavailable, hence interrupting activ-
ities in level i. The dependency of an activity on the next level is measured
by potentials, defined as follows.

Definition 5.3 (Interface, potential). A place p ∈ Pi, 1 ≤ i ≤ n− 1, is an
interface place if p ∈ t• for some t ∈ Ti+1. For a place p ∈ Pi, 2 ≤ i ≤ n,
and a place q ∈ Pi−1, set:

pot(p, q) =

{
t•(q) if p and q have a common input transition t ∈ Ti

0 otherwise.

The potential of a place p ∈ Pi, 2 ≤ i, is defined by: pot(p) =
∑

q∈Pi−1
pot(p, q) .

By convention, pot(p) = 0 for all p ∈ P1 .

By the definition of ordered Π-nets, the quantity t•(q) does not depend
on the choice of t, so the potential is well-defined.

Example. The Petri net in Figure 6 is a 3-level ordered Π-net. The po-
tentials are written in parentheses. To keep the figure readable, the arcs
between the place p1 and the level 2 transitions are omitted.

p3(2)

q3(1)

r3(0)

p2(2)

q2(2)

r2(1) p1

2

2

level 3 level 2 level 1

Figure 6: Ordered Π-net.

21



The behaviour of the state machines Mi is embedded in the behaviour
of N , in the sense that the marking stripped off of the potentials evolves
like a marking of the state machines.

Definition 5.4 (Effective marking). The effective marking of a marking m,
denoted by m̃, is defined as follows. For all i ≤ n and p ∈ Pi,

m̃(p) = m(p) +

n−i∑

j=1

(
(−1)j

∑

r1∈Pi+1
...

rj∈Pi+j

m(rj)
(j−1∏

k=1

pot(rk+1, rk)
)
pot(r1, p)

)
. (5.1)

Remark. Note that an effective marking is not necessarily non-negative.
It can be showed by induction that:
∀p ∈ Pn , m̃(p) = m(p) and ∀p ∈ Pi , i < n , m̃(p) = m(p)−

∑
r∈Pi+1

m̃(r)pot(r, p)

Lemma 5.5. Let m, m′ be two vectors such that m′ = m+W (t) for some
t ∈ Ti (1 ≤ i ≤ n). Let p1 and p2 denote the input place and the output
place of t in Pi, respectively. Then for every place p:

m̃′(p) = m̃(p)− 1 if p is p1, m̃(p) + 1 if p is p2, m̃(p) otherwise. (5.2)

Proof. Sincem andm′ have the same restriction on ∪j>iPj , we have m̃
′(p) =

m̃(p) ∀p ∈ (∪j≥iPj) \ {p1, p2}.
It follows that m̃′(p1) − m̃(p1) = m′(p1) − m(p1) = −1 and m̃′(p2) −

m̃(p2) = m′(p2)−m(p2) = 1.
For p ∈ Pi−1 ∩ t

•, we have m′(p)−m(p) = pot(p2, p)− pot(p1, p), hence

m̃′(p)− m̃(p) = m′(p)−m(p)−
[
(m̃′(p1)− m̃(p1))pot(p1, p)

+(m̃′(p2)− m̃(p2))pot(p2, p)
]

= 0

Similarly, m̃′(p)− m̃(p) = 0 for p ∈ Pi−1 ∩ •t.
For all other places, m′(p) = m(p) and m̃′(r) = m̃(r) ∀r s.t. pot(r, p) 6=

0, thus m̃′(p) = m̃(p).

The above lemma applies in particular when m and m′ are markings

such that m
t

−→ m′. Eqns (5.2) look like the equations for witnesses. Since
each level i complex contains exactly one level i place, one guesses that every
complex admits a witness, i.e. that N is a Π2-net. This is confirmed by the
next proposition.

Proposition 5.6. Let B denote the P × P integer matrix of the linear
transformation m 7→ m̃ defined by (5.1). For p ∈ Pi, the line vector B(p) is
a witness for the i-level complex containing p. In particular, N is a Π2-net.
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Proof. Denote by A ∈ Q(C × T ) the incidence matrix of the reaction graph.
From Lemma 5.5, we have:

m
t
−→ m′ =⇒ m̃′ − m̃ = A(t) .

We have to show that BW (t) = A(t) ∀t ∈ T . Indeed, let m and m′ be

two markings such that m
t
−→ m′, we have: BW (t) = B(m′−m) = m̃′−m̃ =

A(t).

Lemma 5.5 allows to derive the S-invariants of N induced by S-semi-
flows.

Corollary 5.7. Let m0 be the initial marking of N . We have:
∀m ∈ R(m0), ∀i ∈ {1, . . . , n}, m̃(Pi) = m̃0(Pi)

More generally, for all i, the vector vi =
∑

p∈Pi
B(p) is a S-semi-flow of N .

Example. Consider the ordered Π-net in Figure 6 with the initial marking
m0 = p3 + q3 + r3 +4p1. The effective marking of m0 is m̃0 = p3 + q3 + r3 −
2p2 − q2 + 10p1. Any reachable marking m satisfies the invariants:

m(P3) = 3
m(P2)− 2m(p3)−m(q3) = −3

m(p1)− 2m(p2)− 2m(q2)−m(r2) + 4m(p3) + 2m(q3) = 10
It can be shown that {vi, 1 ≤ i ≤ n} is a basis of the S-semi-flows of N .

Proposition 5.8. Let v be an S-semi-flow of N , i.e. v.W = 0. There exist
rational numbers a1, . . . , an such that v =

∑n
i=1 aivi.

Proof. The matrix B is a P ×P unit lower triangular matrix, so it is invert-
ible.

We have:

v.W = 0 =⇒ (v.B−1)(BW ) = 0 =⇒ (v.B−1)A = 0 ,

hence v.B−1 is an S-invariant of the disjoint union of the state machines
Mi. But since a state machine’s only S-invariants are a(1, . . . , 1), a ∈ Q,
there exist rational numbers a1, . . . , ak such that

v.B−1 =

n∑

i=1

aiwi , (5.3)

where wi ∈ QP are defined by wi(p) = 1Pi
(p).

Right-multiplying both sides of (5.3) by B, we get v =
∑n

i=1 aivi.

The independence of the set {vi , 1 ≤ i ≤ n} follows from the fact that
the vectors viB

−1 have non-empty disjoint supports.

We now consider only ordered Π-nets in which the interface places in
Pi have maximal potential among the places of Pi. From the technical

23



point of view, this assumption is crucial for the reachability set ananlysis
presented later. From the modelling point of view, it is a reasonable restric-
tion. Consider the multi-level model, the assumption means that during the
executions of level i jobs, the level (i − 1) is idle, therefore the amount of
available resource is maximal.

Definition 5.9 (Π3-net). An ordered Π-net N is a Π3-net if:
∀i,∀p ∈ Pi : p ∈ •Ti+1 =⇒ pot(p) = max{pot(q), q ∈ Pi} .

5.2 The reachability set

From now on, N is a n-level Π3-net with M1, . . . ,Mn its state machines.

Definition 5.10 (Minimal marked potential). Consider i ∈ {2, . . . , n}. The
level i minimal potential marked by m is:

ϕi(m) =

{
max{pot(p), p ∈ Pi} if m(Pi) = 0 ,

min{pot(p), p ∈ Pi,m(p) > 0} if m(Pi) > 0 .

Next lemma gives a necessary condition for reachability.

Lemma 5.11. If ϕi(m) ≤ m(Pi−1) then ϕi(m
′) ≤ m′(Pi−1) for all m′ ∈

R(m).

Proof. W.l.o.g., assume that m
t
−→ m′.

First, suppose that t /∈ Ti. We know that if t /∈ Ti+1 then firing t does
not modify the marking on Pi, so ϕi(m

′) = ϕi(m). If t ∈ Ti+1, firing t
either leaves the marking of Pi unchanged or moves tokens among places
of maximal potential in Pi, in both cases ϕi(m

′) = ϕi(m). Since t /∈ Ti,
m′(Pi−1) = m(Pi−1). So ϕi(m

′) ≤ m′(Pi−1) if t /∈ Ti.
Now consider t ∈ Ti, let p and q be the input and output places of t in Pi.

We have ϕi(m
′) ≤ pot(q) ≤ m(Pi−1)− pot(p) + pot(q) = m′(Pi−1).

For our purposes, we now define the partial liveness and partial reacha-
bility.

Definition 5.12 (i-reachability set, i-liveness). Let m be a marking. The
i-reachability set of m, denoted by Ri(m), is the set of all markings reachable
from m by a firing sequence consisting of transitions in

⋃
1≤j≤i Tj . We say

that m is i-live if for any transitions t in
⋃

1≤j≤i Tj , there exists a marking
in Ri(m) which enables t. By convention, R0(m) = {m} and every marking
is 0-live.

The i-live markings are characterised by the following proposition.
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Proposition 5.13. A marking m is i-live if and only if it satisfies the
following inequalities, called the i-condition:

m(Pi) > 0 ∧ ∀2 ≤ j ≤ i : m(Pj−1) ≥ ϕj(m) (5.4)

If m satisfies the i-condition then for every p, q ∈ Pi such that p 6= q,
m(p) > 0 and pot(p) ≤ m(Pi−1), there exists m′ ∈ Ri(m) such that:

m′(p) = m(p)−1 , m′(q) = m(q)+1 , ∀r ∈ Pi\{p, q}, m
′(r) = m(r) . (5.5)

A marking is live if and only if it satisfies the n-condition.

Proof. Consider a i-live marking m. For any j ≤ i, there is a marking m′ ∈
Ri(m) which enables a transition of Tj . This marking satisfies ϕj(m

′) ≤
m′(Pj−1). By weak reversibility, m ∈ R(m′), so ϕj(m) ≤ m(Pj−1) (Lemma
5.11). Since the number of tokens in Pi is the same for all the markings of
Ri(m), m(Pi) > 0 (otherwise, the transitions of Ti would be dead).

We prove the reverse direction and the second part of the proposition by
induction on i ≥ 1.

The case i = 1 is trivial.
Suppose that the claim has been proven for all j ≤ i − 1. Let m be a

marking which satisfies the i-condition. Consider two cases: pot(p) = 0 and
pot(p) > 0.

If pot(p) = 0 then the output transitions of p are enabled by m. Fire the
transitions along a path from p to q in Ti, we obtain a marking m′ satisfying
(5.5). W.l.o.g., assume pot(q) > 0. Then m′(Pi−1) ≥ pot(q) > 0. By the
induction hypothesis, m′ is (i − 1)-live. Moreover, m′ enables the output
transitions of q. Hence m′ is i-live, which implies m is i-live.

If pot(p) > 0 then m(Pi−1) > 0, hence m is (i− 1)-live by the induction
hypothesis. It remains to find a marking in Ri−1(m) which enables the
output transitions of p. If for all r ∈ Pi−1, m(r) ≥ pot(p, r) then choose
m. Otherwise, choose a marked place q of Pi−1 such that pot(q) ≤ m(Pi−2)
and a level (i − 1) interface place q′, then apply the induction hypothesis
on (5.5) to find m1 ∈ Ri−1(m) such that m1(q) = m(q) − 1, m1(q

′) =
m(q′) + 1 and m1(r) = m(r) for every other places r of Pi−1. We have
ϕi−1(m1) = max{pot(r), r ∈ Pi−1}. Now starting from m1, repeat the
following procedure:

• Step 1: Find two place r1, r2 in Pi−1 such that m̄(r1) < pot(p, r1) and
m̄(r2) > pot(p, r2), m̄ denoting the current marking.

• Step 2: Use the induction hypothesis on (5.5) to find m̄′ ∈ Ri−1(m̄)
such that m̄′(r1) = m̄(r1) + 1, m̄′(r2) = m̄(r2) − 1 and m̄′(r) = m̄(r)
for all r ∈ Pi−1 \ {r1, r2}.

All the intermediate markings are (i − 1)-live. Since m̄(Pi−1) ≥ pot(p),
if there exists r1 ∈ Pi−2 such that m̄(r1) < pot(p, r1) then there exists r2 ∈
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Pi−2 such that m̄(r2) > pot(p, r2) ≥ 0 as well. Because the interface places
have maximal potential, at the beginning of each iteration, we always have
ϕi−1(m̄) = max{pot(r), r ∈ Pi−1}, hence pot(r2) ≤ ϕi−1(m̄) ≤ m̄(Pi−2).
Each iteration strictly diminishes the number of “missing” tokens in the
places of Pi−1 synchronised with p, so the procedure eventually stops at a
marking m2 such that m2(r) ≥ pot(p, r) for every place r ∈ Pi−1. This
marking enables the output transitions of p.

Example: The ordered Π-net in Figure 6 is a Π3-net. Consider two mark-
ings: m1 = p3 + q3 + r3 + 4p1 and m2 = 3q3 + 4p1. These markings agree
on all the S-invariants, but only m1 satisfies the 3-condition. It is easy to
check that m1 is live while m2 is dead.

We conclude this subsection by showing that the reachability problem
for Π3-nets can be efficiently decided as well.

Theorem 5.14. Suppose that the initial marking m0 is live. Then the
reachability set R(m0) coincides with the set S(m0) of markings which satisfy
the n-condition and agree with m0 on the S-invariants given by Corollary
5.7.

Proof. The inclusion R(m0) ⊂ S(m0) is the combination of the results of
Corollary 5.7 and Proposition 5.13.

To prove the converse, we look for a marking which is reachable from
every marking of S(m0). Let pj , 1 ≤ j ≤ n, be a place of maximal potential
of Pj , that is, pot(pj) = max{pot(p), p ∈ Pj}. Let m′

0 denote the unique
marking in S(m0) such that m′

0(p) = 0 for every p /∈ {p1, . . . , pn}. Consider
an arbitrary marking m in S(m0). It is easy to show by induction on n and
by using the second part of Proposition 5.13 that there exists a marking
m′ ∈ R(m) such that m′(p) = 0 ∀p /∈ {p1, . . . , pn}. But since m′ is also
an element of S(m0), m

′ = m′
0. So m′

0 is reachable from every marking in
S(m0). By weak reversibility, every marking in S(m0) is reachable from m′

0.
So S(m0) ⊂ R(m′

0) = R(m0).

5.3 Computing the normalising constant

The normalising constant of a product-form Petri net (see Section 2.1) is

G =
∑

m 1m∈R(m0)

∏
p∈P u

m(p)
p . It is in general a difficult task to compute G,

as can be guessed from the complexity of the reachability problem. However,
efficient algorithms may exist for nets with a well-structured reachability set.
Such algorithms were known for Jackson networks [18] and the S-invariant
reachable Petri nets defined in [6]. We show that is is also the case for
the class of live Π3-nets which is strictly larger than the class of Jackson
networks (which correspond to 1-level ordered nets) and is not included in
the class of S-invariant reachable Petri nets.
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Suppose that m0 is a live marking. Suppose that the places of each
level are ordered by increasing potential: Pi = {pi1, . . . , piki} such that
∀1 ≤ j < ki, pot(pij) ≤ pot(pi(j+1)).

Let V denote the n × P -matrix the i-th row of which is the S-invariant
vi defined in Corollary 5.7. For 1 ≤ i ≤ n, set Ci = vim0 = m̃0(Pi).
Then the reachability set consists of all n-live markings m such that V m =
t(C1, . . . , Cn).

For 1 ≤ i ≤ n, 1 ≤ j ≤ ki and c1, . . . , ci ∈ Z, define E(i, j, c1, . . . , ci) as
the set of markings m such that





m(piν) = 0 for all ν > j

V m = t(c1, . . . , ci, 0 . . . , 0)

ϕν(m) ≤ m(Pν−1) for all 2 ≤ ν ≤ i .

The elements of E(i, j, c1 , . . . , ci) are the markings which satisfy the second
part of the i-condition and the S-invariants constraints (c1, . . . , ci, 0, . . . , 0)
and concentrate tokens in P1, . . . , Pi−1 and {pi1, . . . , pij}.

With each E(i, j, c1 , . . . , ci) associate

G(i, j, c1 , . . . , ci) = π(E(i, j, c1 , . . . , ci)) =
∑∏

p∈P u
m(p)
p

the sum being taken over all m ∈ E(i, j, c1, . . . , ci).

We propose to compute G(n, kn, C1, . . . , Cn) by dynamic programming.
It consists in breaking each G(i, j, c1, . . . , ci) into smaller sums. This corre-
sponds to a partition of the elements of E(i, j, c1, . . . , ci) by the number of
tokens in pij .

Proposition 5.15. Let be given E = E(i, j, c1, . . . , ci). If ci < 0 then E = ∅.
If ci ≥ 0 then for every non-negative integer a:

1. If a > ci then E ∩ {m|m(pij) = a} = ∅.
2. If a < ci and j = 1 then E ∩ {m|m(pij) = a} = ∅.
3. If a < ci and j ≥ 2 then E ∩ {m|m(pij) = a} = E(i, j − 1, c1 −

v1(apij), . . . , ci − vi(apij)):
4. If a = ci and i = 1 then E ∩ {m|m(pij) = a} = {c1p1j}.
5. If a = ci and i > 1 then E ∩ {m|m(pij) = a} = E(i − 1, ki−1, c1 −

v1(apij), . . . , ci−1 − vi−1(apij)):

Proof. Suppose that E 6= ∅. Letm be an element of E such thatm(pij) = a.
We have m(Pi) = ci, so a ≤ ci. Moreover, if m(pij) < m(Pi) then m must
mark some place piν with ν < j, so j ≥ 2. These prove the first and the
second cases.

The fourth case is trivial.

For the two remaining cases, we have to show that:

∀m ∈ E, (m− apij) ∈ E′ (5.6)

∀m′ ∈ E′, (m′ + apij) ∈ E (5.7)
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The constants c1 − v1(apij), . . . , ci − vi(apij) are established by the fact:

V m = t(c1, . . . , ci, 0, . . . , 0)

⇐⇒ V (m− apij) =
t(c1 − v1(apij), . . . , ci − vi(apij), 0, . . . , 0) .

Consider the case a < ci and j ≥ 2. We have to show that ϕν(m−apij) ≤
(m − apij)(Pν−1) ∀2 ≤ ν ≤ i and ϕν(m

′ + apij) ≤ (m′ + apij)(Pν−1) ∀2 ≤
ν ≤ i.

Since m and (m−apij) are the same everywhere but at pij, it suffices to
show that ϕi(m − apij) ≤ (m − apij)(Pi−1). Indeed, ϕi(m − apij) = ϕi(m)
because both markings mark some piν with ν < j, and (m − apij)(Pi−1) =
m(Pi−1) because the two markings are identical on Pi−1.

Similarly, given m′ ∈ E′, to prove (5.7), it suffices to show that ϕi(m
′ +

apij) ≤ (m′+apij)(Pi−1). Indeed, (m
′+apij)(Pi−1) = m′(Pi−1) ≤ ϕi(m

′) ≤
ϕi(m

′ + apij).

The case a = ci and i > 1 is similar. It suffices to show that ϕi−1(m −
apij) ≤ (m − apij)(Pi−2) and ϕi(m

′ + apij) ≤ (m′ + apij)(Pi−1). The
first inequality is automatic since (m − apij) is the restriction of m on⋃

1≤ν≤i−1 Pν . To prove the second one, note that (m′ + apij)(Pi−1) =
m′(Pi−1) = ci−1− vi−1(apij) = m(Pi−1) and ϕi(m

′+apij) = ϕi(m).

Proposition 5.15 induces the following relations between the sumsG(i, j, c1, . . . , ci).

Corollary 5.16. If ci < 0 then G(i, j, c1, . . . , ci) = 0. If ci ≥ 0 then:
• Case 2 ≤ i ≤ n, 2 ≤ j ≤ ki:

G(i, j, c1, . . . , ci) =

ci−1∑

ν=0

uνpij
G(i, j − 1, c1 − v1(νpij), . . . , ci − vi(νpij))

+ ucipij
G(i − 1, ki−1, c1 − v1(cipij), . . . , ci−1 − vi−1(cipij)) .

• Case 2 ≤ i ≤ n, j = 1:

G(i, 1, c1, . . . , ci) = ucipi1
G(i− 1, ki−1, c1 − v1(cipi1), . . . , ci−1 − vi−1(cipi1)) .

• Case i = 1, j ≥ 2: G(1, j, c1) =
∑c1−1

ν=0
uνp1j

G(1, j − 1, c1 − ν) + uc1p1j
.

• Case i = 1, j = 1: G(1, 1, c1) = uc1p11
.

Complexity. Since i ≤ n, j ≤ K = max{k1, . . . , kn}, the number of evalu-
ations is bounded by n×K×γ, where γ upper bounds the ci’s. Let α denote
the global maximal potential. From (5.1), we obtain γ = O(m0(P )K

nαn).
So the complexity of a dynamic programming algorithm using Cor. 5.16
is O(m0(P )nK

n+1αn), i.e. pseudo-polynomial for a fixed number of state
machines.
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6 Perspectives

This work has several perspectives. First, we are interested in extending
and applying our rules for a modular modelling of complex product-form
Petri nets. Then we want to validate the formalism of Π3-nets showing
that it allows to express standard patterns of distributed systems. Finally
we conjecture that reachability is EXPSPACE-complete for Π2-nets and we
want to establish it.
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