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Logarithmic stability estimates for a Robin coefficient in the

two-dimensional Stokes system

Muriel Boulakia, Anne-Claire Egloffe and Céline Grandmont.

February 6, 2012

Abstract

In this paper, we consider the Stokes equations and we are concerned with the inverse problem of
identifying a Robin coefficient on some non accessible part of the boundary from available data on the
other part of the boundary. We first study the identifiability of the Robin coefficient and then we establish
a stability estimate of logarithm type thanks to a Carleman inequality due to Bukhgeim [9].

Keywords: Inverse boundary coefficient problem, Stokes system, Robin boundary condition, Identifiability,
Carleman inequality, Logarithmic stability estimate.

1 Introduction

Let us consider some open Lipschitz bounded connected set domain Ω of Rd, d ≥ 2. We assume that the
boundary Γ = ∂Ω is composed of two parts Γ0 and Γe such that Γe ∪Γ0 = Γ and Γe ∩Γ0 = ∅ (Figure 1 gives
an example of such a geometry). We introduce the following boundary problem:

ut(t, x)−∆u(t, x) +∇p(t, x) = 0, ∀x ∈ Ω,∀ t > 0,
∇ · u(t, x) = 0, ∀x ∈ Ω,∀ t > 0,

∇u(t, x) · n(x)− p(t, x)n(x) = g(t, x), ∀x ∈ Γe,∀ t > 0,
∇u(t, x) · n(x)− p(t, x)n(x) + q(x)u(t, x) = 0, ∀x ∈ Γ0,∀ t > 0,

u(0, x) = u0(x), ∀x ∈ Ω.

(1.1)

Notice that we assume that the Robin coefficient q defined on Γ0 only depends on the space variable. Our
objective is to determine the coefficient q from the values of u and p on Γe.

Such kinds of systems naturally appear in the modeling of biological problems like, for example,
blood flow in the cardiovascular system (see [20] and [23]) or airflow in the lungs (see [3]). The part of
the boundary Γe represents a physical boundary on which measurements are available and Γ0 represents an
artificial boundary on which Robin boundary conditions or mixed boundary conditions involving the fluid
stress tensor and its flux at the outlet are prescribed.

Similar inverse problems have been widely studied for the Laplace equation [2], [4], [10], [11], [12]
and [22]. This kind of problems arises in general in corrosion detection which consists in determining a Robin
coefficient on the inaccessible portion of the boundary thanks to electrostatic measurements performed on
the accessible boundary. Most of these papers prove a logarithmic stability estimate ( [2], [4], [10] and [12]).
S. Chaabane and M. Jaoua obtained in [11] both local and monotone global Lipschitz stability for regular
Robin coefficient and under the assumption that the flux g is non negative. Relaxing this constraint, they
obtained in [2] a logarithmic stability estimate. More recently, E. Sincich has obtained in [22] a Lipschitz
stability estimate under the further a priori assumption that the Robin coefficient is piecewise constant. To
prove the stability estimates, different approaches are developped in these papers. A first approach consists
in using the harmonic functions properties (see [2], [10]). A characteristic of this method is that it is only
valid in dimension 2. Another classical approach is based on Carleman estimates (see [4] and [12]). In [4],
the authors use a result proved by K.D. Phung in [19] to obtain a logarithmic stability estimate which is
valid in any dimension for an open set Ω of class C∞. This result has been generalized in [5] and [6] to C1,1
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Figure 1: Example of an open set Ω such that Γe ∪ Γ0 = Γ and Γe ∩ Γ0 = ∅.

and Lipschitz domains. Moreover, in [4], the authors use semigroup theory to obtain a stability estimate in
long time for the heat equation from the stability estimate for the Laplace equation.

In this article, we prove an identifiability result and a logarithmic stability estimate for the Stokes equations
with Robin boundary conditions (1.1). The paper is organized as follows.

The second section contains preliminary results on the regularity of the solution. For this purpose,
we introduce Besov spaces: they appear as the natural space to which the Robin coefficient q belongs.

In the third section, we are interested in the identifiability of the Robin coefficient q. Under some
regularity hypotheses and using the theorem of unique continuation for the Stokes equations proved in [15],
we prove that if two measurements of the velocity are equal on the boundary (0, T ) × Γe, then the two
corresponding Robin coefficients are also equal.

Section 4 corresponds to the main part of our article. The results of this section are only valid
in dimension 2. We prove a logarithmic stability estimate, first for the stationary problem and then for
the evolution problem. To do this, we use a Carleman inequality due to Bukhgeim which is only valid in
dimension 2 (see [9]). The stability estimate for the unsteady problem is deduced from the stability estimate
for the stationary problem thanks to the semigroup theory. We end Section 4 by concluding remarks and
perspectives to this work.

When we are not more specific, C is a generic constant, whose value may change and which only
depends on the geometry of the open set Ω and of the boundaries Γe and Γ0.

We are going to start with some preliminary results which will be useful in the subsequent sections.

2 Preliminary results

2.1 Besov spaces

We introduce the following functional spaces:

V = {v ∈ H1(Ω)d/∇ · v = 0 on Ω},

and

H = V
L2(Ω)

.
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We also need to introduce the space to which the Robin coefficient q belongs: we are going to assume enough
regularity on q in order to give a sense in suitable spaces to the trace product qu. We refer to [16] for more
general spaces. Let s ∈ R, 1 ≤ p ≤ ∞ and:

Bs,p(R
d) = {w ∈ S ′(Rd)/(1 + |ξ|2)

s
2Fw ∈ Lp(Rξd)},

where S ′(Rd) is the space of tempered distribution on Rd and Fw is the Fourier transform of w. Equipped
with the norm

‖w‖Bs,p(Rd) = ‖(1 + |ξ|2)
s
2Fw‖Lp(Rdξ),

Bs,p(R
d) is a Banach space. We observe that Bs,2(Rd) = Hs(Rd). In the following, we will need the following

properties:

Proposition 2.1. Let s > 0. We have Bs,1(Rd) ↪→ C0(Rd).

Proof of Proposition 2.1. Let u ∈ Bs,1(Rd). We start by proving that Fu ∈ L1(Rd):∫
Rd

|Fu(ξ)|dξ =

∫
Rd

(1 + |ξ|2)
s
2 |Fu(ξ)| 1

(1 + |ξ|2)
s
2
dξ,

and from the Cauchy-Schwarz inequality, we have:∫
Rd

|Fu(ξ)|dξ ≤ ‖(1 + |ξ|2)
s
2Fu‖L1(Rd)

∥∥∥∥ 1

(1 + |ξ|2)
s
2

∥∥∥∥
L∞(Rd)

≤ C‖u‖Bs,1(Rd). (2.1)

Since for almost every x ∈ Rd,
u(x) =

1

(2π)d

∫
Rd

eix·ξFu(ξ)dξ,

we deduce the continuity of u from the Lebesgue continuity theorem and according to (2.1), we have:

‖u‖C0(Rd) ≤ C‖u‖Bs,1(Rd).

Using a local map and partition of unity, we build Bs,p(Γ) from Bs,p(R
d−1) in the same way that

Hs(Γ) is built from Hs(Rd−1) (see [17]). From the above proposition, we deduce the following corollary:

Corollary 2.2. Let s > 0. We have Bs,1(Γ) ↪→ C0(Γ) and the injection is continuous.

Proposition 2.3. Let s ∈ R+, u ∈ Hs(Γ) and v ∈ Bs,1(Γ). Then uv ∈ Hs(Γ) and

‖uv‖Hs(Γ) ≤
2
s
2

(2π)d−1
‖u‖Hs(Γ)‖v‖Bs,1(Γ).

We refer to [13] for a proof of this proposition.

2.2 Regularity of the stationary problem

First, we are interested in the stationary case:
−∆u+∇p = f, in Ω,
∇ · u = 0, in Ω,

∇u · n− pn = g, on Γe,
∇u · n− pn+ qu = 0, on Γ0.

(2.2)

Let g ∈ H− 1
2 (Γe)

d and v ∈ H 1
2 (Γe)

d, we denote < g, v >− 1
2 ,

1
2 ,Γe

the image of v by the linear form g.
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Proposition 2.4. Let α > 0, f ∈ L2(Ω)d, g ∈ H− 1
2 (Γe)

d and q ∈ L∞(Γ0) such that q ≥ α on Γ0. System
(2.2) admits a unique solution (u, p) ∈ V × L2(Ω). Moreover, there exists a constant C(α) > 0 such that

‖u‖H1(Ω)d ≤ C(α)(‖g‖
H−

1
2 (Γe)d

+ ‖f‖L2(Ω)d). (2.3)

Proof of Proposition 2.4. The variational formulation of the problem is: find u ∈ V such that for every
v ∈ V , ∫

Ω

∇u : ∇v +

∫
Γ0

qu · v =< g,1Γev >− 1
2 ,

1
2 ,Γe

+

∫
Ω

f · v.

We note ∀(u, v) ∈ V d,

aq(u, v) =

∫
Ω

∇u : ∇v +

∫
Γ0

qu · v, (2.4)

and ∀v ∈ V ,

L1(v) =< g,1Γev >− 1
2 ,

1
2 ,Γe

+

∫
Ω

f · v.

We easily verify that aq is a continuous symmetric bilinear form. Since q ≥ α > 0, according to the
generalized Poincaré inequality, the bilinear form aq is coercive. On the other hand, L1 is a continuous
linear form on V . Thus we prove the existence and uniqueness of u ∈ V solution of equations (2.2) using the
Lax-Milgram Theorem. We obtain simultaneously estimate (2.3). We prove the existence and uniqueness of
p ∈ L2(Ω) in a classical way, using De Rham Theorem (we refer to [7] for the case of Neumann boundary
condition).

Let us recall existence and regularity results for the Stokes problem with Neumann boundary
condition proved in [7].

Proposition 2.5. Let k ∈ N. Assume that Ω is a bounded and connected open set in Rd of class Ck+1,1.
We assume that:

(f, h) ∈ Hk(Ω)d ×Hk+ 1
2 (Γ)d.

Then the solution (u, p) of the problem: −∆u+∇p = f in Ω,
∇ · u = 0 in Ω,

∇u · n− pn = h on Γ.

belongs to Hk+2(Ω)d ×Hk+1(Ω) and there exists a constant C > 0 such that:

‖u‖Hk+2(Ω)d + ‖p‖Hk+1(Ω) ≤ C(‖h‖
H

1
2

+k(Γ)d
+ ‖f‖Hk(Ω)d).

From the previous proposition we deduce the following result:

Proposition 2.6. Let k ∈ N. Assume that Ω is a bounded and connected open set in Rd of class Ck+1,1.
Let α > 0, M > 0, f ∈ Hk(Ω)d, g ∈ H 1

2 +k(Γe)
d and q ∈ B 1

2 +k,1(Γ0) such that q ≥ α on Γ0. Then the

solution (u, p) of system (2.2) belongs to Hk+2(Ω)d×Hk+1(Ω). Moreover, if ‖q‖B 1
2

+k,1
(Γ0) ≤M , there exists

a constant C(α,M) > 0 such that

‖u‖Hk+2(Ω)d + ‖p‖Hk+1(Ω) ≤ C(α,M)(‖g‖
Hk+ 1

2 (Γe)d
+ ‖f‖Hk(Ω)d).

Proof of Proposition 2.6. Let us prove the result for k = 0. Let h = −qu1Γ0 + g1Γe . According to Propo-

sition 2.4, u belongs to H1(Ω)d. Thus, we obtain from Proposition 2.3 that qu ∈ H 1
2 (Γe)

d , which implies,

since g ∈ H 1
2 (Γe)

d and Γe ∩ Γ0 = ∅, that h ∈ H 1
2 (Γ)d. Using Proposition 2.5 with k = 0 we obtain that

(u, p) ∈ H2(Ω)d ×H1(Ω) and:

‖u‖H2(Ω)d + ‖p‖H1(Ω) ≤ C(‖h‖
H

1
2 (Γ)d

+ ‖f‖L2(Ω)d).
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But, we have from Proposition 2.4, that:

‖h‖
H

1
2 (Γ)d

≤ C(‖u‖
H

1
2 (Γ)d

‖q‖B 1
2
,1

(Γ0) + ‖g‖
H

1
2 (Γe)d

),

and since by hypothesis, ‖q‖B 1
2
,1

(Γ0) ≤M , we obtain:

‖u‖H2(Ω)d + ‖p‖H1(Ω) ≤ C(M)(‖g‖
H

1
2 (Γe)d

+ ‖u‖H1(Ω)d + ‖f‖Ld(Ω)d).

Thus we obtain the result for k = 0 using the inequality of Proposition 2.4. We then proceed by induction
to prove the result for any k ∈ N. We emphasize that the key argument is that if u ∈ H1+k(Ω)d, then

u ∈ Hk+ 1
2 (Γ0)d which implies that qu|Γ0

∈ H 1
2 +k(Γ0)d thanks to Proposition 2.3. Thus, we can apply the

regularity result given by Proposition 2.5 and conclude.

2.3 Regularity of the evolution problem.

Concerning the initial problem (1.1), we can prove, using Galerkin method, the following regularity results.
For completeness, the proof of Theorem 2.7 is given in the appendix.

Theorem 2.7. Assume that Ω is a bounded and connected open set in Rd of class C1,1. Let T > 0, M > 0,
α > 0 and u0 ∈ V . We assume that g ∈ H1(0, T ;H

1
2 (Γe)

d), q ∈ B 1
2 ,1

(Γ0) such that ‖q‖B 1
2
,1

(Γ0) ≤ M and

q ≥ α on Γ0. Then problem (1.1) admits a unique solution (u, p) ∈ L2(0, T ;H2(Ω)d) ∩H1(0, T ;L2(Ω)d) ∩
L∞(0, T ;V )× L2(0, T ;H1(Ω)).

The following corollary will be useful when we will prove logarithmic stability estimate for the
evolution problem (1.1).

Corollary 2.8. Assume that Ω is a bounded and connected open set in Rd of class C2,1. Let M > 0,
T > 0, α > 0 and u0 ∈ H3(Ω)d ∩ H. We assume that g ∈ H2(0, T ;H

3
2 (Γe)

d), q ∈ B 3
2 ,1

(Γ0) such that

‖q‖B 3
2
,1

(Γ0) ≤M and q ≥ α on Γ0. Then, problem (1.1) admits a unique solution (u, p) ∈ L∞(0, T ;H3(Ω)d)∩
H1(0, T ;H2(Ω)d) ∩H2(0, T ;L2(Ω)d)× L∞(0, T ;H2(Ω)) ∩H1(0, T ;H1(Ω)).

The proof of the previous corollary consists in applying Theorem 2.7 to ut. Let us prove it.

Proof of Corollary 2.8. Let (u, p) the solution of (1.1). Let us consider the following system:
vt −∆v +∇τ = 0, in (0, T )× Ω,
∇ · v = 0, in (0, T )× Ω,

∇v · n− τn = gt, on (0, T )× Γe,
∇v · n− τn+ qv = 0, on (0, T )× Γ0,

v(0) = ∆u0 −∇p(0), in Ω,

(2.5)

where p(0) ∈ H2(Ω)d is defined as the solution of the following elliptic boundary problem: ∆p(0) = 0, in Ω,
p(0) = (∇u0 · n) · n− g(0) · n, on Γe,
p(0) = (∇u0 · n) · n+ q(0)u0 · n, on Γ0.

According to Theorem 2.7, we obtain that (v, τ) belongs to L2(0, T ;H2(Ω)d) ∩ H1(0, T ;L2(Ω)d) ∩
L∞(0, T ;V ) × L2(0, T ;H1(Ω)). Remark that (ut, pt) is solution of equations (2.5) in the distribution sense
on (0, T ). Thus, by uniqueness, (v, τ) = (ut, pt). Then, since q ∈ B 3

2 ,1
(Γe), we deduce from Proposition 2.6

that the linear map:
H1(Ω)d ×H 3

2 (Γe)
d → H3(Ω)d ×H2(Ω)

(ut(t), g(t)) → (u(t), p(t))

is continuous. Since (ut, g) ∈ L∞(0, T ;V )×L∞(0, T ;H
3
2 (Γe)

d), we deduce that (u, p) ∈ L∞(0, T ;H3(Ω)d)×
L∞(0, T ;H2(Ω)).

5



3 Identifiability

3.1 Unique continuation

We start by recalling a unique continuation result for the Stokes equations proved in [15].

Theorem 3.1. Let Ω be an open connected set in Rd, d ≥ 1. We note Q = (0, T )×Ω and let O be an open
set in Q. The horizontal component of O is

C(O) = {(t, x) ∈ Q,∃x0 ∈ Ω, (t, x0) ∈ O}.

Let (u, p) ∈ L2(0, T ;H1
loc(Ω))d × L2

loc(Q) be a weak solution of{
ut −∆u+∇p = 0, in (0, T )× Ω,

∇ · u = 0, in (0, T )× Ω,

satisfying u = 0 in O then u = 0 and p is constant in C(O).

We easily deduce the following result from the previous result. It will be very useful in the next
subsection.

Corollary 3.2. Let δ > 0, x0 ∈ Γ and r > 0 such that γ = (t0 − δ, t0 + δ)× (B(x0, r) ∩ Γ) is an open set in
(0, T )× Γ. Let (u, p) ∈ L2(0, T ;H2(Ω)d)× L2(0, T ;H1(Ω)) be solution of:{

ut −∆u+∇p = 0, in (0, T )× Ω,
∇ · u = 0, in (0, T )× Ω,

satisfying u = 0 and ∇u · n− pn = 0 on γ. Then u = 0 and p = 0 in (t0 − δ, t0 + δ)× Ω.

Proof of Corollary 3.2. We extend u and p by 0 on (t0 − δ, t0 + δ)× (B(x0, r) ∩ Ωc):

ũ (resp p̃) =

{
u (resp p) in (t0 − δ, t0 + δ)× Ω
0 in (t0 − δ, t0 + δ)× (B(x0, r) ∩ Ωc)

and we denote Ω̃ = Ω ∪ B(x0, r). Let us verify that (ũ, p̃) ∈ L2(0, T ;H1(Ω)d) × L2(0, T ;L2(Ω)) is still a
solution of the Stokes equations in Ω̃. Let v ∈ D(Ω̃)d. We check by integration by parts in space that almost
everywhere in t ∈ (t0 − δ, t0 + δ): ∫

Ω̃

ũt · v +

∫
Ω̃

∇ũ · ∇v −
∫

Ω̃

p̃∇ · v = 0.

Moreover ∇ · ũ = 0 in (t0 − δ, t0 + δ)× Ω̃. Therefore, we can apply Theorem 3.1 to (ũ, p̃): (ũ, p̃) = (0, 0) in
(t0 − δ, t0 + δ)× Ω̃ which implies that u = 0 and p is constant in (t0 − δ, t0 + δ)× Ω. At last, the fact that
∇u · n− pn = 0 over γ implies that p = 0 in (t0 − δ, t0 + δ)× Ω.

3.2 Application

Proposition 3.3. Let T > 0, α > 0, xe ∈ Γe, r > 0, g ∈ H1(0, T ;H
1
2 (Γe)

d) non identically zero, u0 ∈ V
and qj ∈ B 1

2 ,1
(Γ0) such that qj ≥ α on Γ0 for j = 1, 2. Let (uj , pj) be the weak solutions of (1.1) with q = qj

for j = 1, 2. We assume that u1 = u2 on (0, T )× (B(xe, r) ∩ Γe). Then q1 = q2 on Γ0.

Proof of Proposition 3.3. We are going to prove Proposition 3.3 by contradiction: we assume that q1 is not
identically equal to q2.
We have (uj , pj) ∈ L2(0, T ;H2(Ω)d) × L2(0, T ;H1(Ω)) for j = 1, 2 thanks to Theorem 2.7. We define
u = u1 − u2 and p = p1 − p2. Let us notice that (u, p) is the solution of the following problem:

ut −∆u+∇p = 0, in (0, T )× Ω,
∇ · u = 0, in (0, T )× Ω,

∇u · n− pn = 0, on (0, T )× Γe,
∇u · n− pn+ q1u1 − q2u2 = 0, on (0, T )× Γ0.
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By hypothesis, u = 0 and ∇u · n − pn = 0 on (0, T ) × (B(xe, r) ∩ Γe). Thus, according to Corollary 3.2,
u1 = u2 and p1 = p2 in (0, T )× Ω. Consequently, we deduce from

∇u1 · n− p1n+ q1u1 = 0, on (0, T )× Γ0,
∇u1 · n− p1n+ q2u1 = 0, on (0, T )× Γ0,

that
u1(q1 − q2) = 0 on (0, T )× Γ0. (3.1)

By hypothesis, q1 is not identically equal to q2. Thanks to Corollary 2.2, q1 and q2 are continuous. Then,
we can find an open set κ ⊂ Γ0 with a positive measure such that:

(q1 − q2)(x) 6= 0, ∀x ∈ κ.

Equation (3.1) implies that u1 ≡ 0 on (0, T )× κ and then u1 is the solution of
u1t −∆u1 +∇p1 = 0, in (0, T )× Ω,

∇ · u1 = 0, in (0, T )× Ω,
u1 = 0, on (0, T )× κ,

∇u1 · n− p1n = 0, on (0, T )× κ.

Applying again Corollary 3.2, we obtain that u1 = 0 and p1 = 0 in (0, T )×Ω. This is in contradiction with
the assumption that g is non identically zero.

4 Logarithmic stability estimates

In this section, we assume that d = 2 and that the open set Ω ⊂ R2 is of class C3,1 in order to obtain regular
solutions of problem (2.2) from Proposition 2.6. We are going to prove logarithmic stability estimates using
a Carleman inequality which is stated in Lemma 4.1. First, in Theorem 4.3, we state a logarithmic stability
estimate for the stationary problem. Then we deduce from this Theorem two logarithmic stability estimates
for the evolution problem using the analytic semigroup theory. These estimates are given in Theorem 4.16
when the flux g is stationary and in Theorem 4.18 when g depends on time.

4.1 Carleman inequality

Let us first state a Carleman inequality proved by Bukhgeim [9]:

Lemma 4.1. Let Ψ ∈ C2(Ω). We have:∫
Ω

(∆Ψ|u|2 + (∆Ψ− 1)|∇u|2)eΨ ≤
∫

Ω

|∆u|2eΨ +

∫
Γ

∇Ψ · n(|u|2 + |∇u|2 + 2|∂τ |∇u|2|)eΨ (4.1)

for all u ∈ C2(Ω).

The proof of this result, which is only valid in dimension 2, uses computational properties of
function defined on C (in particular, the fact that 4∂z∂z = ∆).

Remark 4.2. The result is still true for u ∈ H3(Ω). Indeed, for all u ∈ H3(Ω), there exists (un)n∈N ∈
C2(Ω)N such that

un → u in H3(Ω). (4.2)

We can apply Lemma 4.1 to un, for all n ∈ N. Let us prove that:

lim
n→∞

∫
Γ

∇Ψ · n|∂τ |∇un|2|eΨ =

∫
Γ

∇Ψ · n|∂τ |∇u|2|eΨ. (4.3)

Note first that
∫

Γ
∇Ψ · n|∂τ |∇u|2|eΨ has a meaning for u ∈ H3(Ω):∫
Γ

∇Ψ · n|∂τ |∇u|2|eΨ ≤ 2‖Ψ‖C1(Ω)‖e
Ψ‖C0(Ω)

(
2∑
i=1

∫
Γ

|∇u| · |∇∂iu|

)
<∞.
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We have:∫
Γ

|∇Ψ · n|
∣∣|∂τ |∇un|2| − |∂τ |∇u|2|∣∣ eΨ

≤ C‖Ψ‖C1(Ω)‖e
Ψ‖C0(Ω)

 2∑
i,j=1

(∫
Γ

|∂ju|2
) 1

2
(∫

Γ

|∂ijun − ∂iju|2
) 1

2

+

(∫
Γ

|∂ijun|2
) 1

2
(∫

Γ

|∂jun − ∂ju|2
) 1

2

 .

According to (4.2), the sequence (∂ijun)n∈N converges in L2(Γ) towards ∂iju and ‖∂ijun‖L2(Γ) is bounded by
a constant independent of n. Then, equality (4.3) follows from (4.2).

4.2 The stationary case

For the stationary problem: 
−∆u+∇p = 0, in Ω,
∇ · u = 0, in Ω,

∇u · n− pn = g, on Γe,
∇u · n− pn+ qu = 0, on Γ0.

(4.4)

we have the following stability estimate.

Theorem 4.3. Let α > 0, M1 > 0, M2 > 0, (g, qj) ∈ H
5
2 (Γe)

2 × B 5
2 ,1

(Γ0) for j = 1, 2 such that g is not

identically zero, ‖g‖
H

5
2 (Γe)

≤ M1, qj ≥ α on Γ0 and ‖qj‖B 5
2
,1

(Γ0) ≤ M2. We note (uj , pj) the solution of

(4.4) associated to qj for j = 1, 2. Let K be a compact subset of {x ∈ Γ0 u1 6= 0} and let m > 0 be a constant
such that |u1| ≥ m on K. Then there exist positive constants C(m,M1,M2, α) and C1 such that

‖q1 − q2‖L2(K) ≤
C(m,M1,M2, α)(

ln
(

C1

‖u1−u2‖L2(Γe)2+‖∇(u1−u2)·n‖L2(Γe)2+‖p1−p2‖L2(Γe)+‖∇(p1−p2)·n‖L2(Γe)

)) 1
2

.

Remark 4.4. Note that, thanks to Corollary 3.2, we ensures that {x ∈ Γ0 u1 6= 0} is not empty. Then,
thanks to the continuity of u1, we obtain the existence of a compact K and a constant m as in Theorem 4.3.

Remark 4.5. In [12], the same kind of inequality is proved for the Laplacian problem with Robin boundary
conditions under the hypothesis that the measurements are small enough. Here, we free ourselves from this
smallness assumption on the measurements.

Remark 4.6. Remark that, thanks to the boundary condition on Γe, inequality in Theorem 4.3 can be reduced
to:

‖q1 − q2‖L2(K) ≤
C(m,M1,M2, α)(

ln
(

C1

‖u1−u2‖L2(Γe)2+‖p1−p2‖L2(Γe)+‖∇(p1−p2)·n‖L2(Γe)

)) 1
2

.

Remark 4.7. Comparing this result with Proposition 3.3, we can emphasize some differences. In Proposi-
tion 3.3, we only need that u1 = u2 on γ where γ is a part of the boundary included in Γe in order to recover
the Robin coefficient everywhere on Γ0. However, the proof uses the fact that the constraints are equal on
γ. Here, we need to have measurements on the whole part of the boundary Γe, and the constraint is divided
into two terms: ‖∇(u1 − u2) · n‖L2(Γe)2 in one hand and ‖p1 − p2‖L2(Γe)

in the other hand. Moreover, we

have an additional term: ‖∇(p1 − p2) · n‖L2(Γe)
.

Let us begin by proving this intermediate result which gives us a logarithmic estimate of the traces
of u, ∇u, p, ∇p over Γ0 with respect to the ones over Γe.

Lemma 4.8. Let (u, p) ∈ H4(Ω)2 ×H3(Ω) be the solution in Ω of{
−∆u+∇p = 0,
∇ · u = 0.

We assume that there exists A > 0 such that

‖u‖H4(Ω)2 + ‖p‖H3(Ω) ≤ A. (4.5)
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Then there exist C(A) and C1 such that:

‖u‖L2(Γ0)2+‖∇u‖L2(Γ0)4+‖p‖L2(Γ0)+‖∇p‖L2(Γ0)2 ≤ C(A)(
ln
(

C1

‖u‖L2(Γe)2+‖∇u·n‖L2(Γe)2+‖p‖L2(Γe)+‖∇p·n‖L2(Γe)

)) 1
2

.

Proof of Lemma 4.8. The proof is based on the Carleman inequality of Lemma 4.1 for an appropriate
choice of Ψ. Note that we will use (4.1) twice: one time for the velocity u and one time for the pres-
sure p. The weight function Ψ is chosen in order to estimate the traces over Γ0 with respect to the ones on Γe.

Step 1: choice of Ψ.

We choose Ψ as in [13]. There exists Ψ0 ∈ C2(Ω) non identically zero such that:

∆Ψ0 = 0 in Ω, Ψ0 = 0 on Γ0, Ψ0 ≥ 0 on Γe, ∇Ψ0 · n < 0 on Γ0.

Indeed, let χ ∈ C2(Γ) such that

χ = 0 on Γ0, χ ≥ 0 on Γe,

and χ non identically zero on Γe.The boundary value problem :{
∆Ψ0 = 0, in Ω,

Ψ0 = χ, on Γ,

has a unique solution Ψ0 ∈ C2(Ω). Note that Ψ0 is not constant because χ is non identically zero. So, from
the strong maximum principle, Ψ0 > 0 in Ω. According to Hopf Lemma, we have ∇Ψ0 · n < 0 on Γ0.

Let λ > 0. Denote Ψ1 ∈ C2(Ω) the unique solution of the boundary value problem:{
∆Ψ1 = λ, in Ω,

Ψ1 = 0, on Γ.

From the comparison principle and the strong maximum principle, we have Ψ1 < 0 in Ω. Moreover,
according to the Hopf Lemma, we have ∇Ψ1 · n > 0 on Γ.

Let us consider Ψ = Ψ1 + sΨ0 for s > 0. To summarize, the function Ψ has the following proper-
ties:

∆Ψ = λ in Ω, Ψ = 0 on Γ0, Ψ ≥ 0 on Γe, and s∇Ψ0 · n ≤ ∇Ψ · n ≤ ∇Ψ1 · n on Γ0.

Step 2: We first apply Lemma 4.1 to u. Using the fact that ∆u = ∇p, we have:∫
Ω

(∆Ψ|u|2 + (∆Ψ− 1)|∇u|2)eΨ ≤
∫

Ω

|∇p|2eΨ +

∫
Γ

∇Ψ · n(|u|2 + |∇u|2 + 2|∂τ |∇u|2|)eΨ. (4.6)

We then apply once again Lemma 4.1 to p, it yields:∫
Ω

(∆Ψ|p|2 + (∆Ψ− 1)|∇p|2)eΨ ≤
∫

Ω

|∆p|2eΨ +

∫
Γ

∇Ψ · n(|p|2 + |∇p|2 + 2|∂τ |∇p|2|)eΨ. (4.7)

We have ∆p = div(∆u) = 0 hence
∫

Ω
|∆p|2eΨ = 0. We now choose λ ≥ 2. By summing up inequalities (4.6)

and (4.7) and eliminating the integrals over Ω in the left hand side which are positive terms, we obtain:

∫
Γ

∇Ψ · n(|u|2 + |∇u|2 + 2|∂τ |∇u|2|)eΨ +

∫
Γ

∇Ψ · n(|p|2 + |∇p|2 + 2|∂τ |∇p|2|)eΨ ≥ 0.
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We now specify the dependence with respect to s. We denote θ = minΓ0
|∇Ψ0 · n|. We note that on Γ0,

eΨ = 1. Consequently:

− sθ
∫

Γ0

(|u|2 + |∇u|2 + |p|2 + |∇p|2) +

∫
Γ0

∇Ψ1 · n(|u|2 + |∇u|2 + |p|2 + |∇p|2)

+ 2

∫
Γ0

∇Ψ · n(|∂τ |∇p|2|+ |∂τ |∇u|2|) + 2

∫
Γe

∇Ψ · n(|∂τ |∇p|2|+ |∂τ |∇u|2|)eΨ

+

∫
Γe

∇Ψ · n(|u|2 + |∇u|2 + |p|2 + |∇p|2)eΨ ≥ 0. (4.8)

Let us study each of the terms. We have:∫
Γ0

∇Ψ1 · n(|u|2 + |∇u|2 + |p|2 + |∇p|2) ≤ C(‖u‖2H3(Ω)2 + ‖p‖2H3(Ω)).

Moreover, since ∇Ψ · n ≤ ∇Ψ1 · n on Γ0 and using hypothesis (4.5), we obtain:

2

∫
Γ0

∇Ψ · n(|∂τ |∇p|2|+ |∂τ |∇u|2|) ≤ C(A)(‖u‖2H3(Ω)2 + ‖p‖2H3(Ω)).

Since, on Γe, |∇Ψ · n| ≤ sC for s ≥ 1 , using hypothesis (4.5) and Cauchy-Schwarz inequality, we obtain:

2

∫
Γe

∇Ψ · n(|∂τ |∇p|2|+ |∂τ |∇u|2|)eΨ ≤ sC(A)

(∫
Γe

(|∇p|2 + |∇u|2)e2Ψ

) 1
2

.

Similarly, for s ≥ 1 we have:∫
Γe

∇Ψ · n(|u|2 + |∇u|2 + |p|2 + |∇p|2)eΨ ≤ Cs
∫

Γe

(|u|2 + |∇u|2 + |p|2 + |∇p|2)eΨ.

Note that eΨ depends on s over Γe. Hence, reassembling these inequalities, inequality (4.8) becomes:

θ

∫
Γ0

(|u|2 + |∇u|2 + |p|2 + |∇p|2) ≤ C(A)Ks +
1

s
(‖u‖2H3(Ω)2 + ‖p‖2H3(Ω)),

where Ks =
∫

Γe
(|u|2 + |∇u|2 + |p|2 + |∇p|2)eΨ +

(∫
Γe

(|∇p|2 + |∇u|2)e2Ψ
) 1

2

. Remark that, thanks to classical

interpolation inequalities (see [1]), there exists C > 0 such that for all f ∈ H2(Γe):

‖∇f · τ‖L2(Γe) ≤ ‖f‖H1(Γe) ≤ C‖f‖
1
2

L2(Γe)
‖f‖

1
2

H2(Γe)
.

Applying the previous inequality and the assumption (4.5), there exists C(A) > 0 such that:∫
Γe
|∇u · τ |2 ≤ C(A)‖u‖L2(Γe)2 , and

∫
Γe
|∇p · τ |2 ≤ C(A)‖p‖L2(Γe). (4.9)

In order to precise the dependence with respect to s of Ks, we denote:

δ =

∫
Γe

|u|2 + |p|2 + |∇u · n|2 + |∇p · n|2. (4.10)

We obtain, using the fact that ∇u = ∇u · n+∇u · τ on Γe and inequality (4.9), that there exists C(A) > 0
such that:

Ks ≤ eks
(∫

Γe

|u|2 + |∇u|2 + |p|2 + |∇p|2 +

(∫
Γe

|∇p|2 + |∇u|2
) 1

2

)
≤ C(A)eks(δ + δ

1
2 + δ

1
4 ),

where k = maxΓe Ψ0. To summarize, using again assumption (4.5), we have that there exists C(A) > 0 such
that:

Ks ≤ C(A)eksδ
1
4 . (4.11)
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Hence we get for all s ≥ 1:∫
Γ0

(|u|2 + |∇u|2 + |p|2 + |∇p|2) ≤ C(A)eksδ
1
4 +

C

s
(‖u‖2H3(Ω)2 + ‖p‖2H3(Ω)).

Remark that this inequality is trivially verified for 0 < s ≤ 1 by continuity of the trace mapping. To
summarize, we have proved:∫

Γ0

(|u|2 + |∇u|2 + |p|2 + |∇p|2) ≤ C(A)

(
eksδ

1
4 +

1

s

)
, ∀s > 0.

We now optimize the upper bound with respect to s. We denote f(s) = eksδ
1
4 + 1

s . Let us study the function
f in R∗+. We have: {

lims→0 f(s) = +∞,
lims→∞ f(s) = +∞.

So since f is continuous on R+
∗ , f reaches its minimum at a point s0 > 0. In this point,

f ′(s0) = 0⇔ δ
1
4 =

e−ks0

ks0
2
, thus f(s0) =

1

ks2
0

+
1

s0
.

Hence: ∫
Γ0

(|u|2 + |∇u|2 + |p|2 + |∇p|2) ≤ C(A)

sβ0

(
1

k
+ 1

)
,

where β = 1 if s0 ≥ 1 and β = 2 otherwise. But:

1

δ
1
4

= ks0
2eks0 ≤ ke(k+2)s0 ,

that is to say:
1

s0
≤ k + 2

ln
(

1

kδ
1
4

) .
In the same way, when s0 < 1 , we obtain:

1

s2
0

≤ k + 1

ln
(

1

kekδ
1
4

) .
Using the fact that ln

(
x

1
2

)
= 1

2 ln(x) for all x > 0 and remembering the definition (4.10) of δ, the desired

result follows.

Let us now prove Theorem 4.3.

Proof of Theorem 4.3. We have on Γ0:

(q2 − q1)u1 = q2(u1 − u2) +∇(u1 − u2) · n− (p1 − p2)n,

which leads to

‖q1 − q2‖L2(K) ≤ C(m,M2)
(
‖u1 − u2‖L2(Γ0)2 + ‖∇(u1 − u2) · n‖L2(Γ0)2 + ‖p1 − p2‖L2(Γ0)

)
.

Let j = 1, 2. According to Proposition 2.6 the solution (uj , pj) of problem (4.4) associated to qj belongs to
H4(Ω)2 ×H3(Ω) and moreover there exists C(α,M1,M2) > 0 such that

‖u1 − u2‖H4(Ω)2 ≤ C(α,M1,M2) and ‖p1 − p2‖H3(Ω) ≤ C(α,M1,M2).

Consequently, we can apply Lemma 4.8 and we obtain:

‖q1 − q2‖L2(K) ≤
C(α,m,M1,M2)(

ln
(

C1

‖u1−u2‖L2(Γe)2+‖∇(u1−u2)·n‖L2(Γe)2+‖p1−p2‖L2(Γe)+‖∇(p1−p2)·n‖L2(Γe)

)) 1
2

.
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4.3 Evolution problem

In order to use semigroup properties, we begin by introducing the Stokes operator associated with the Robin
boundary conditions on Γ0.

4.3.1 Properties of the Stokes operator

We recall that the bilinear form aq is defined by (2.4).

Definition 4.9. We define the set D(Aq) as follows:

D(Aq) = {u ∈ V/∃C > 0,∀v ∈ V, |aq(u, v)| ≤ C‖v‖L2(Ω)2},

and the operator Aq : D(Aq) ⊂ H → H by:

∀u ∈ D(Aq), aq(u, v) = (Aqu, v)L2(Ω)2 ,∀v ∈ V.

Proposition 4.10. Let α > 0 and q ∈ L∞(Γ0) such that q ≥ α almost everywhere on Γ0. The operator Aq
has the following properties:

1. Aq ∈ L(D(Aq), H) is invertible and its inverse is compact on H.

2. Aq is selfadjoint.

As a consequence, Aq admits a family of eigenvalues φlq

Aqφ
l
q = λlqφ

l
q with 0 < λ1

q ≤ λ2
q ≤ ... ≤ λjq and lim

j→∞
λjq = +∞,

which is complete and orthogonal both in H and V .

Proof of Proposition 4.10. It relies on classical arguments for which we refer to [8] or [21].

Corollary 4.11. The operator A
1
2
q is an isometry from (V, ‖ ‖H1(Ω)) to (H, ‖ ‖L2(Ω)).

According to the min-max Theorem, since aq(u, u) ≥ aα(u, u) for all u ∈ V , we have the following
lower bound: there exists µ > 0 such that for all l ≥ 1

λlq ≥ µ. (4.12)

Proposition 4.12. Let α > 0 and q ∈ L∞(Γ0) such that q ≥ α almost everywhere on Γ0. The operator
−Aq generates an analytic semigroup on H. This analytic semigroup is explicitly given by:

e−tAqf =
∑
l≥1

e−tλ
l
q (φlq, f)L2(Ω)2φlq, (4.13)

for all f ∈ H.

Proof of Proposition 4.12. It follows from the construction of the operator Aq. We refer to [18] and [14] for
details.

Proposition 4.13. Let k ∈ N. We assume that q ∈ B 1
2 +k,1(Γ0) is such that on Γ0, q ≥ α. Then for each

f ∈ H ∩ Hk(Ω)2, there exists u ∈ Hk+2(Ω)2 solution of Aqu = f if and only if there exists p ∈ Hk+1(Ω)
such that (u, p) is solution of the following problem:

−∆u+∇p = f in Ω
∇ · u = 0 in Ω

∇u · n− pn = 0 on Γe
∇u · n− pn+ qu = 0 on Γ0

(4.14)

Moreover, if we assume that there exists M > 0, ‖q‖B 1
2

+k,1
(Γ0) ≤ M , then there exists C(α,M) > 0 such

that ‖u‖H2+k(Ω)2 ≤ C(α,M)‖f‖Hk(Ω)2 .
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Proof of Proposition 4.13. It follows from the construction of the operator Aq and from Proposition 2.6.

Corollary 4.14. Let k ∈ N∗ and q ∈ B 1
2 +2(k−1),1(Γ0) such that q ≥ α on Γ0. Then D(Akq ) ↪→ H2k(Ω)2∩H.

Proof of Corollary 4.14. For k = 1, it is clear. Take now k = 2. Let u ∈ D(A2
q). We have

A2
qu = f ⇔

{
Aqu = v
Aqv = f

But v ∈ D(Aq) ⊂ H2(Ω)2 ∩H by assumption, so u ∈ H4(Ω)2 ∩H thanks to the regularity properties of the
solution of the Stokes problem summarize in Proposition 2.6. We conclude by induction on k.

Remark 4.15. Let us remark that D(Aq) is not equal to H2(Ω)2∩H: it comes from the boundary conditions.

4.3.2 The flux g does not depend on t

In this paragraph, we consider the evolution problem (1.1) given in the introduction. We assume in this part
that g does not depend on time. Let α > 0, M1 > 0 and M2 > 0. In the following, we assume that

g ∈ H 5
2 (Γe)

2 is non identically zero and ‖g‖
H

5
2 (Γe)2

≤M1, (4.15)

q ∈ B 5
2 ,1

(Γ0) is such that ‖q‖B 5
2
,1

(Γ0) ≤M2 and , q ≥ α on Γ0. (4.16)

Let us prove the following theorem:

Theorem 4.16. Let α > 0, M1 > 0, M2 > 0 and u0 ∈ H ∩H3(Ω)2. We assume that g satisfies (4.15) and
for j = 1, 2, qj satisfies (4.16). We note (uj , pj) the solution of (1.1) associated to qj. Let K be a compact
subset of {x ∈ Γ0 v1 6= 0} where (v1, τ1) is the solution of (4.4) with q = q1 and let m > 0 be a constant
such that |v1| ≥ m on K. Then there exist C(α,m,M1,M2) > 0 and C1 > 0 such that

‖q1 − q2‖L2(K)

≤ C(α,m,M1,M2)(
ln
(

C1

‖u1−u2‖L∞(0,+∞;L2(Γe)2)+‖∇(u1−u2)·n‖L∞(0,+∞;L2(Γe)2)+‖p1−p2‖L∞(0,+∞;L2(Γe))+‖∇(p1−p2)·n‖L∞(0,+∞;L2(Γe))

)) 1
2

.

Remark 4.17. Due the method which relies on semigroup theory, we need measurements during an infinite
time.

Proof of Theorem 4.16. Let j = 1, 2 and (vj , τj) be the solution of the stationary problem (2.2) with q = qj .
According to Proposition 2.6, (vj , τj) belongs to H4(Ω)2×H3(Ω) and moreover, thanks to assumptions (4.15)
and (4.16), there exists a constant C(α,M1,M2) > 0 such that

‖vj‖H4(Ω)2 + ‖τj‖H3(Ω) ≤ C(α,M1,M2). (4.17)

We denote (wj , πj) = (uj − vj , pj − τj). Thanks to Theorem 4.3, we are able to estimate ‖q1 − q2‖L2(K)

with respect to an increasing function of (v1 − v2)|Γe and (τ1 − τ2)|Γe and their respective gradients in L2

norm. Our objective is now to compare the asymptotic behavior of u1 − u2 and p1 − p2 to the solution of
the stationary problem v1 − v2 and τ1 − τ2. More precisely, we are going to prove that:

‖wj(t, .)‖H3(Ω)2 + ‖πj(t, .)‖H2(Ω) ≤ g(t),

where g is a function which tends to 0 when t goes to +∞. This inequality, combined with Theorem 4.3,
will allow us to conclude the proof of Theorem 4.16.

We have that (wj , πj) is the solution of the following problem: for t > 0
∂tw −∆w +∇π = 0, in Ω,

∇ · w = 0, in Ω,
∇w · n− πn = 0, on Γe,

∇w · n− πn+ qjw = 0, on Γ0.
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completed with the initial condition w(0) = u0 − vj . Let t > 0. We have from the theory of analytic
semigroup that:

wj(t, .) = e−tAqjwj(0, .). (4.18)

Let η > 0. There exists a constant C > 0 independent of qj such that:

‖Aηqje
−tAqj ‖ ≤ C e

−µt

tη
, t > 0, η > 0, (4.19)

where µ is given by (4.12) and where ‖ ‖ is the norm operator. We obtain from Proposition 4.13, that:

‖wj(t, .)‖H3(Ω)2 ≤ C(α,M2)‖Aqwj(t, .)‖H1(Ω)2 .

Then, since wj(t, .) is given by (4.18), and using Corollary 4.11 plus estimates (4.19) with η = 3
2 and (4.17),

it follows:

‖wj(t, .)‖H3(Ω)2 ≤ C(α,M2)‖A
3
2
q e
−tAqjwj(0, .)‖L2(Ω)2 ≤ C(α,M2) e

−µt

t
3
2

(‖u0‖L2(Ω)2 + ‖vj‖L2(Ω)2)

≤ C(α, u0,M1,M2) e
−µt

t
3
2
.

(4.20)

Using the regularity result for the stationary case given in Proposition 2.6, we have that:

‖πj(t, .)‖H2(Ω) ≤ C(α,M2)‖∂twj(t, .)‖L2(Ω)2 . (4.21)

Note that, thanks to Proposition 4.13 we have:

‖∂twj(t, .)‖L2(Ω)2 = ‖Aqjwj(t, .)‖L2(Ω)2 .

Thus, since wj(t, .) is given by (4.18), we deduce from estimates (4.19) with η = 1 and (4.17) that:

‖πj(t, .)‖H2(Ω) ≤ C(α, u0,M1,M2)
e−µt

t
. (4.22)

Remark that (uj , pj) ∈ L∞(0,+∞;H3(Ω)2) × L∞(0,+∞;H2(Ω)). Let ν > 0. In fact, thanks to equa-
tions (4.20) and (4.22), we obtain that (wj , πj) ∈ L∞(ν,+∞;H3(Ω)2) × L∞(ν,+∞;H2(Ω)) and since
uj = wj + vj and pj = πj + τj , we deduce that (uj , pj) ∈ L∞(ν,+∞;H3(Ω)2) × L∞(ν,+∞;H2(Ω)).
Moreover, thanks to Corollary 2.8, we have (uj , pj) ∈ L∞(0, ν;H3(Ω)2)× L∞(0, ν;H2(Ω)).

We are now able to prove Theorem 4.16. We have from (4.20):

‖v1 − v2‖L2(Γe)2 ≤ C(α, u0,M1,M2)
e−µt

t
3
2

+ ‖u1 − u2‖L∞(0,+∞;L2(Γe)2).

Then, passing to the limit when t goes to infinity, we get:

‖v1 − v2‖L2(Γe)2 ≤ ‖u1 − u2‖L∞(0,+∞;L2(Γe)2).

We prove similarly:
‖∇(v1 − v2) · n‖L2(Γe)2 ≤ ‖∇(u1 − u2) · n‖L∞(0,+∞;L2(Γe)2).

In the same way, but using now (4.22), we obtain:

‖τ1 − τ2‖L2(Γe) ≤ ‖p1 − p2‖L∞(0,+∞;L2(Γe)),

and
‖∇(τ1 − τ2) · n‖L2(Γe) ≤ ‖∇(p1 − p2) · n‖L∞(0,+∞;L2(Γe)).

To summarize, we have obtained:

‖v1 − v2‖L2(Γe)2 + ‖∇(v1 − v2) · n‖L2(Γe)2 + ‖τ1 − τ2‖L2(Γe) + ‖∇(τ1 − τ2) · n‖L2(Γe)

≤ ‖u1−u2‖L∞(0,+∞;L2(Γe)2)+‖∇(u1−u2)·n‖L∞(0,+∞;L2(Γe)2)+‖p1−p2‖L∞(0,+∞;L2(Γe))+‖∇(p1−p2)·n‖L∞(0,+∞;L2(Γe)).

Applying Theorem 4.3 to (vj , τj) for j = 1, 2, we obtain the existence of positive constants C(m,M1,M2, α)
and C1 such that

‖q1 − q2‖L2(K) ≤
C(m,M1,M2, α)(

ln
(

C1

‖v1−v2‖L2(Γe)2+‖∇(v1−v2)·n‖L2(Γe)2+‖τ1−τ2‖L2(Γe)+‖∇(τ1−τ2)·n‖L2(Γe)

)) 1
2

.

We conclude by using the fact that the function x→ 1
ln( 1

x )
increases on R∗+.
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4.3.3 The flux g depends on t

We restrict our study to the case where g is colinear to the outgoing normal n: g = κ n.
Let α > 0, M1 > 0 and M2 > 0. We assume that:

κ ∈ H2
loc(0,+∞;H

3
2 (Γe)), (4.23)

and
q ∈ B 5

2 ,1
(Γ0) is such that ‖q‖B 5

2
,1

(Γ0) ≤M2 and , q ≥ α on Γ0. (4.24)

Let us introduce h such that:

h ∈ H 5
2 (Γe) is non identically zero and ‖h‖H 5

2
(Γ0) ≤M1. (4.25)

We suppose that:

lim
t→∞

(
‖κ(t, .)− h‖

H
3
2 (Γe)

+

{∫ t

0

e−µ(t−s)‖∂tκ(s, .)‖2
H

3
2 (Γe)

ds

} 1
2

)
= 0, (4.26)

where µ is given by equation (4.12).

Theorem 4.18. Let α > 0, M1 > 0, M2 > 0 and u0 ∈ H3(Ω)2 ∩ H. We assume that h and κ satisfy
respectively (4.25) and (4.23) and for j = 1, 2, qj satisfies (4.24). We denote by (uj , pj) the solution of (1.1)
associated to qj. Let K be a compact subset of {x ∈ Γ0 v1 6= 0} where (v1, τ1) is the solution of

−∆v +∇τ = 0, in Ω,
∇ · v = 0, in Ω,

∇v · n− τn = hn, on Γe,
∇v · n− τn+ q1v = 0, on Γ0.

We assume that (4.26) is verified. Then there exist C(α,m,M1,M2) > 0 and C1 > 0 such that

‖q1 − q2‖L2(K)

≤ C(α,m,M1,M2)(
ln
(

C1

‖u1−u2‖L∞(0,+∞;L2(Γe)2)+‖∇(u1−u2)·n‖L∞(0,+∞;L2(Γe)2)+‖p1−p2‖L∞(0,+∞;L2(Γe))+‖∇(p1−p2)·n‖L∞(0,+∞;L2(Γe))

)) 1
2

.

Proof of Theorem 4.18. For j = 1, 2, we decompose uj into uj = vj + wj where (vj , τj) ∈ H4(Ω)2 ×H3(Ω)
is the solution of the stationary problem:

−∆v +∇τ = 0, in Ω,
∇ · v = 0, in Ω,

∇v · n− τn = hn, on Γe,
∇v · n− τn+ qjv = 0, on Γ0.

and (wj , πj) is solution of the following problem:
∂tw −∆w +∇π = 0, in (0,+∞)× Ω,

∇ · w = 0, in (0,+∞)× Ω,
∇w · n− πn = (κ− h)n, on (0,+∞)× Γe,

∇w · n− πn+ qjw = 0, on (0,+∞)× Γi,
w(0, x) = u0(x)− vj(x), in Ω.

We would like to perform the same reasoning as in Theorem 4.16. That is to say, using the fact that we are
able to estimate ‖q1 − q2‖L2(K) with respect to an increasing function of (v1 − v2)|Γe and (τ1 − τ2)|Γe in H1

norm, we want to compare the asymptotic behavior of u1 − u2 and p1 − p2 to the solution of the stationary
problem v1 − v2 and τ1 − τ2. More precisely, we are going to prove that:

‖wj(t, .)‖H3(Ω)2 + ‖∇πj(t, .)‖H1(Ω)2 ≤ g(t),
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where g is a function which tends to 0 when t goes to +∞. Since the function κ depends on t, there will be
one more step than in Theorem 4.16 and that is why we assume (4.26).

We divide (wj , πj) into two terms: wj = u0
j + w̃j and πj = p0

j + p̃j , where (u0
j , p

0
j ) is solution of

∂tu
0 −∆u0 +∇p0 = 0, in (0,+∞)× Ω,
∇ · u0 = 0, in (0,+∞)× Ω,

∇u0 · n− p0n = (κ− h)n, on (0,+∞)× Γe,
∇u0 · n− p0n+ qju

0 = 0, on (0,+∞)× Γi,
u0(0, x) = 0, in Ω,

and (w̃j , p̃j) is solution of
∂tw̃ −∆w̃ +∇p̃ = 0, in (0,+∞)× Ω,

∇ · w̃ = 0, in (0,+∞)× Ω,
∇w̃ · n− p̃n = 0, on (0,+∞)× Γe,

∇w̃ · n− p̃n+ qjw̃ = 0, on (0,+∞)× Γi,
w̃(0, x) = u0(x)− vj(x), in Ω.

Let t > 0. Using the same arguments as in the previous subsection, we prove that:

‖w̃j(t, .)‖H3(Ω)2 ≤ C(α, u0,M1,M2)
e−µt

t2
, (4.27)

and

‖p̃j(t, .)‖H2(Ω) ≤ C(α, u0,M1,M2)
e−µt

t
. (4.28)

It remains for us to bound ‖u0
j (t, .)‖H3(Ω)2 and ‖∇p0

j (t, .)‖H1(Ω)2 . Let t > 0. We are going to prove that
there exists a constant C(α,M2) such that:

‖u0
j (t, .)‖H3(Ω)2 + ‖∇p0

j (t, .)‖H1(Ω)2

≤ C(α,M2)

(
‖κ(t, .)− h‖

H
3
2 (Γe)

+ e−µt‖κ(0, .)− h‖
H

3
2 (Γe)

+

{∫ t

0

e−µ(t−s)‖∂tκ(s, .)‖2
H

3
2 (Γe)

ds

} 1
2

)
.

(4.29)

If inequality (4.29) is satisfied, we can end the proof of Theorem 4.18:

‖w1(t, .)− w2(t, .)‖H3(Ω)2 ≤ ‖u0
1(t, .)− u0

2(t, .)‖H3(Ω)2 + ‖w̃1(t, .)− w̃2(t, .)‖H3(Ω)2 ,

‖∇π1(t, .)−∇π1(t, .)‖H1(Ω)2 ≤ ‖∇p0
1(t, .)−∇p0

2(t, .)‖H1(Ω)2 + ‖∇p̃1(t, .)−∇p̃2(t, .)‖H1(Ω)2 ,

and in the following two estimates, the right hand side tends to 0 when t goes to infinity thanks to inequal-
ities (4.27), (4.28) and assumption (4.26).

We introduce (yj , ρj) the solution of
−∆y +∇ρ = 0, in Ω,
∇ · y = 0, in Ω,

∇y · n− ρn = (κ− h)n, on Γe,
∇y · n− ρn+ qjy = 0, on Γi,

for all t > 0. We know that (yj(t, .), ρj(t, .)) ∈ H3(Ω)2 ×H2(Ω) and satisfies, thanks to Proposition 2.6:

‖yj(t, .)‖H3(Ω)2 + ‖ρj(t, .)‖H2(Ω) ≤ C(α,M2)‖κ(t, .)− h‖
H

3
2 (Γe)

. (4.30)

Remark that yj(t, .) belongs to D(A
3
2
qj ). Indeed, there exists a unique p̃(t, .) ∈ H3(Ω) solution of ∆p̃ = 0, in Ω,

p̃ = κ− h, on Γe,
p̃ = 0, on Γi,

(4.31)
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for all t > 0 and there exists a constant C > 0 such that

‖p̃(t, .)‖H3(Ω) ≤ C‖κ(t, .)− h‖
H

3
2 (Γe)

. (4.32)

Then (yj , ρj + p̃) is solution of
−∆y +∇(ρ+ p̃) = ∇p̃, in Ω,

∇ · y = 0, in Ω,
∇y · n− (ρ+ p̃)n = 0, on Γe,

∇y · n− (ρ+ p̃)n+ qjy = 0, on Γ0,

for all t > 0. Remark that, since ∇p̃ ∈ L2(Ω), we have that yj(t) ∈ D(Aqj ) by definition of D(Aqj ). Notice
that the fact that g is colinear to n is important here to do the change of variable in the pressure. We

deduce from Aqjyj(t) = ∇p̃(t) ∈ V = D(A
1
2
qj ) that yj(t) ∈ D(A

3
2
qj ). Moreover, using Corollary 4.11 and

inequality (4.32), there exists a constant C > 0 such that:

‖A
3
2
qjyj(t, .)‖L2(Ω)2 = ‖Aqjyj(t, .)‖H1(Ω)2 = ‖∇p̃(t)‖H1(Ω)2 ≤ C‖κ(t, .)− h‖

H
3
2 (Γe)

, (4.33)

that is to say, using moreover (4.30):

‖yj(t, .)‖
D(A

3
2
qj

)
≤ C(α,M2)‖κ(t, .)− h‖

H
3
2 (Γe)

. (4.34)

We can use the same argument, replacing κ− h by ∂tκ, to prove that ∂tyj(t, .) ∈ D(A
3
2
qj ) together

with the estimate
‖∂tyj(t, .)‖

D(A
3
2
qj

)
≤ C(α,M2)‖∂tκ(t, .)‖

H
3
2 (Γe)

. (4.35)

Let us consider wj = u0
j − yj and pj = p0

j − ρj . The couple (wj , pj) is solution of
∂tw −∆w +∇p = −∂tyj , in (0,+∞)× Ω,

∇ · w = 0, in (0,+∞)× Ω,
∇w · n− pn = 0, on (0,+∞)× Γe,

∇w · n− pn+ qjw = 0, on (0,+∞)× Γi,
w(0, x) = −yj(0, x), in Ω.

(4.36)

We know that wj is given by:

wj(t, .) = −e−tAqj yj(0, .)−
∫ t

0

e−(t−s)Aqj ∂tyj(s, .)ds.

Using the family (φlqj )l≥1 defined by Proposition 4.10, we have: wj(t, .) =
∑
l≥1 Cl(t)φ

l
qj , with

Cl(t) = −e−tλ
l
qj (yj(0, .), φ

l
qj )L2(Ω)2 −

∫ t

0

e
−(t−s)λlqj (∂tyj(s, .), φ

l
qj )L2(Ω)2ds.

Thus, recalling that (λlqj )l≥1 satisfies (4.12), there exists C > 0 such that:

Cl(t)
2 ≤ 2e−2tµ(yj(0, .), φ

l
qj )

2

L2(Ω)2
+ C

∫ t

0

e−(t−s)µ(∂tyj(s, .), φ
l
qj )

2

L2(Ω)2
ds.

We obtain from estimates (4.34) and (4.35):

‖wj(t, .)‖
D(A

3
2
qj

)
≤ C(α,M2)

(
e−µt‖κ(0, .)− h‖

H
3
2 (Γe)

+

{∫ t

0

e−µ(t−s)‖∂tκ(s, .)‖2
H

3
2 (Γe)

ds

} 1
2

)
. (4.37)

Remark that, thanks to Proposition 4.13 and Corollary 4.11, we have:

‖wj(t, .)‖H3(Ω)2 ≤ C(α,M2)‖Awj(t, .)‖H1(Ω)2 = C(α,M2)‖A 3
2wj(t, .)‖L2(Ω)2 ≤ C(α,M2)‖wj(t, .)‖

D(A
3
2
qj

)
.

(4.38)

17



To summarize, using (4.38) and (4.37), we obtain the desired estimate:

‖wj(t, .)‖H3(Ω)2 ≤ C(α,M2)

(
e−µt‖κ(0, .)− h‖

H
3
2 (Γe)

+

{∫ t

0

e−µ(t−s)‖∂tκ(s, .)‖2
H

3
2 (Γe)

ds

} 1
2

)
.

Using now the regularity result for the stationary problem given in Proposition 2.6, we have:

‖∇pj(t, .)‖H1(Ω)2 ≤ C(α,M2)
(
‖∂tyj(t, .)‖H1(Ω)2 + ‖∂twj(t, .)‖H1(Ω)2

)
.

Since Aqjwj = −∂tyj − ∂twj , we obtain:

‖∇pj(t, .)‖H1(Ω)2 ≤ C(α,M2)
(
‖∂tyj(t, .)‖H1(Ω)2 + ‖Aqjwj(t, .)‖H1(Ω)2

)
.

Thanks to Corollary 4.11, we know that ‖Aqjwj(t, .)‖H1(Ω)2 = ‖A
3
2
qjwj(t, .)‖L2(Ω)2 . Therefore, using (4.35)

and (4.37), we obtain:

‖∇pj(t, .)‖H1(Ω)2 ≤ C(α,M2)

(
‖κ(t, .)− h‖

H
3
2 (Γe)

+

{∫ t

0

e−µ(t−s)‖∂tκ(s, .)‖2
H

3
2 (Γe)

ds

} 1
2

)
.

The estimate (4.29) follows from u0
j = wj + yj , p

0
j = wj + ρj and inequality (4.30).

Remark 4.19. Let l ∈ H2
loc(0,+∞;H

3
2 (Γe)) and h ∈ H 3

2 (Γe). Assume that there exists θ > 0 such that:

sup
t≥0

etθ(‖l(t, .)‖
H

3
2 (Γe)

+ ‖∂tl(t, .)‖
H

3
2 (Γe)

) <∞,

Then κ = h + l satisfies (4.26). We note that a particular case of function satisfying (4.26) is given by

l(t, x) = ω(t)ρ(x) where ω ∈ H2
loc(0,+∞) , ρ ∈ H 3

2 (Γe) and limt→∞ etθω(t) = limt→∞ etθω′(t) = 0.

4.4 Conclusion

To conclude, we have proved, under some regularity assumptions on the open set Ω and on the solution
(u, p) of system (1.1), logarithmic stability estimates for the Stokes system with mixed Neumann and Robin
boundary conditions. Due to the method which relies on the Carleman inequality proved in [9], these
estimates are valid in dimension 2 and we need measurements on the whole boundary part Γe.
Our result could be improved in many different ways. In particular, a first concern could be to prove a
logarithmic stability estimate which is valid in any dimension. It would be also interesting to know if local
measurements on a part of the boundary included in Γe still allow to get the same result. Moreover, in
our stability estimates, we need measurements on Γe of u, p, ∇u · n and ∇p · n, while the identifiability
result given by Proposition 3.3 only requires information on u and ∇u · n − pn on Γe. Therefore, it might
be interesting to know if it is possible to obtain a stability inequality with less measurement terms and in
particular, if it is possible to get rid of the gradient term ∇p · n.
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A Existence and uniqueness for the unsteady problem

We study the regularity of solutions of the unsteady problem:
ut −∆u+∇p = 0, in (0, T )× Ω,
∇ · u = 0, in (0, T )× Ω,

∇u · n− pn = g, on (0, T )× Γe,
∇u · n− pn+ qu = 0, on (0, T )× Γ0,

u(0, ·) = u0, in Ω.

We are going to prove Theorem 2.7. First of all, as a preliminary result, we prove the following existence
result:

Proposition A.1. Let T > 0, M > 0, α > 0 and u0 ∈ H. We assume that g ∈ L2(0, T ;L2(Γe)
d) and that

q ∈ L∞(Γ0) such that q ≥ α on Γ0. There exists u ∈ L2(0, T ;V ) such that for all v ∈ V in the distribution
sense on (0, T ):

d

dt

∫
Ω

u · v +

∫
Ω

∇u : ∇v +

∫
Γ0

qu · v =

∫
Γe

g · v, (A.1)

and ∀v ∈ V , ∫
Ω

u(0) · v =

∫
Ω

u0 · v. (A.2)

Proof of Proposition A.1. We begin by proving, using a Galerkin method, that there exists u ∈ L2(0, T ;V )
such that

∀v ∈ V,∀ψ ∈ C1(0, T ) such that ψ(T ) = 0

−
∫ T

0

∫
Ω

u(t, x) · v(x)ψ′(t)dxdt+

∫ T

0

∫
Ω

∇u(t, x) : ∇v(x)ψ(t)dxdt

+

∫ T

0

∫
Γ0

q(x)u(t, x) · v(x)ψ(t)dxdt− ψ(0)

∫
Ω

u0(x) · v(x)dx =

∫ T

0

∫
Γe

g(t, x) · v(x)ψ(t)dxdt. (A.3)

Let (wi)i∈N be a Hilbert basis of V which is also an orthogonal basis of H. For each n ∈ N, we define an
approximate solution as follows: we search un ∈ Vn = V ect{wi}1≤i≤n which satisfies

∫
Ω

un,t · wj +

∫
Ω

∇un · ∇wj +

∫
Γ0

qun · wj =

∫
Γe

g · wj ,∀j ∈ {1, . . . , n},

un(0) =

n∑
k=1

(u0, wk)L2(Ω)dwk.

(A.4)

Note that un,t denotes ∂tun.

Let t ∈ [0, T ]. We decompose un(t, .) in the Hilbert basis:

un(t, .) =

n∑
i=1

ξi(t)wi.

We denote A=
[ ∫

Ω
wi(x)·wj(x)dx

]
1≤i,j≤n

, B=
[ ∫

Ω
∇wi(x) : ∇wj(x)+

∫
Γ0
q(x)wi(x)·wj(x)dx

]
1≤i,j≤n

, ξ(t) =

(ξi(t))1≤i≤n and L(t) = (
∫

Γe
g(t, x) · wi(x)dx)1≤i≤n. We can rewrite the system (A.4) in the form:{

Aξ′(t) +Bξ(t) = L(t),

ξ(0) = ((u0, wi)L2(Ω)d)1≤i≤n.

Since the matrix A is invertible, the system has a unique global solution ξ ∈ H1(0, T )d. We are now going
to prove that there exists a constant C > 0 independent of n ∈ N such that:

sup
0≤t≤T

∫
Ω

|un|2 +

∫ T

0

∫
Ω

|∇un|2 +

∫ T

0

∫
Ω

|un|2 ≤ C. (A.5)
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Let t ∈ [0, T ]. Multiplying the first equation of (A.4) by ξj and summing over j for j = 1, . . . , n we obtain:∫ t

0

∫
Ω

un,t · un +

∫ t

0

∫
Ω

|∇un|2 +

∫ t

0

∫
Γ0

q|un|2 =

∫ t

0

∫
Γe

g · un (A.6)

Let ε > 0. Thus:∫ t

0

∫
Γe

g · un ≤ C
∫ T

0

∫
Γe

|g|2 + ε

∫ t

0

∫
Γe

|un|2 ≤ C
∫ T

0

∫
Γe

|g|2 + ε

∫ t

0

‖un‖2H1(Ω)d .

Choosing ε small enough and using the fact that q ≥ α on Γ0, we obtain:

sup
t∈[0,T ]

∫
Ω

|un|2 +

∫ T

0

∫
Ω

|∇un|2 +

∫ T

0

∫
Ω

|un|2 ≤ C(

∫ T

0

∫
Γe

|g|2 +

∫
Ω

|u0|2). (A.7)

This gives (A.5). According to inequality (A.5), there exists u ∈ L2(0, T ;V ) such that, up to a subsequence,

un ⇀ u in L2(0, T ;V ).

Let j ∈ N. Multiplying the first equation of (A.4) by ψ ∈ C1([0, T ]) such that ψ(T ) = 0 then integrating
over (0, T ), we get, ∀n ≥ j:∫ T

0

∫
Ω

un,t(t, x) · wj(x)ψ(t)dxdt+

∫ T

0

∫
Γ0

q(x)un(t, x) · wj(x)ψ(t)dxdt

+

∫ T

0

∫
Ω

∇un(t, x) : ∇wj(x)ψ(t)dxdt =

∫ T

0

∫
Γe

g(t, x) · wj(x)ψ(t)dxdt. (A.8)

Taking into account that:∫ T

0

∫
Ω

un,t(t, x) · wj(x)ψ(t)dxdt

=−
∫ T

0

∫
Ω

un(t, x) · wj(x)ψ′(t)dxdt−
∫

Ω

un(0, x) · wj(x)ψ(0)dx,

we easily pass to the limit when n goes to infinity in (A.8). Remark that this inequality is still valid replacing
wj by any v ∈ V by continuity. This ends the proof of the existence of u ∈ L2(0, T ;V ) which satisfies (A.1)
in the distribution sense on (0, T ).

Let us finish the proof of Proposition A.1 by proving that the initial condition (A.2) is satisfied.
We deduce from equality (A.3) that d

dt (u, v)L2(Ω)d ∈ L2(0, T ). Consequently, the function t→ (u(t), v)L2(Ω)

is continuous. This gives a sense to (u(0), v)L2(Ω)d . Let ψ ∈ C1(0, T ) such that ψ(T ) = 0. Multiplying (A.1)
by ψ, we obtain:

−
∫ T

0

(u, v)L2(Ω)dψ
′(t)dt+

∫ T

0

aq(u, v)ψ(t)dt = (u(0, .), v)L2(Ω)dψ(0) +

∫ T

0

l(v)ψ(t)dt.

Comparing with equality (A.3), we obtain ψ(0)(u(0, .)− u0, v)L2(Ω)d = 0. Let ψ be such that ψ(0) 6= 0, we
have (u(0)− u0, v)L2(Ω)d = 0, ∀v ∈ V .

We are now able to prove Theorem 2.7.

Proof of Theorem 2.7. We will begin by proving that ut ∈ L2(0, T ;H), then we will conclude by using the
regularity result for the stationary problem from Proposition 2.6.
Let t ∈ [0, T ]. Multiplying the first equation of (A.4) by ξ′j and summing over j for j = 1, . . . , n we obtain:∫ t

0

∫
Ω

|un,t|2 +

∫ t

0

∫
Γ0

qunun,t +

∫ t

0

∫
Ω

∇un : ∇un,t =

∫ t

0

∫
Γe

g · un,t.
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We have: ∫ t

0

∫
Γe

g · un,t = −
∫ t

0

∫
Γe

gtun −
∫

Γe

g(0)un(0) +

∫
Γe

g(t)un(t). (A.9)

Let ε > 0. Thanks to Cauchy-Schwarz inequality and estimate (A.7), there exists C > 0:∣∣∣∣∫ t

0

∫
Γe

gtun

∣∣∣∣ ≤ C
(∫ T

0

∫
Γe

|gt|2 + sup
t∈[0,T ]

∫
Γe

|g|2 + ‖u0‖2H1(Ω)2 + ε

∫
Ω

|∇un(t)|2
)
.

Using successively integration by parts over (0, T ) we finally obtain, choosing ε small enough:

sup
t∈[0,T ]

∫
Ω

|∇un|2 +

∫ T

0

∫
Ω

|un,t|2 ≤ C

(
‖u0‖2H1(Ω)d +

∫ T

0

∫
Γe

|gt|2 + sup
t∈[0,T ]

∫
Γe

|g|2
)
. (A.10)

We deduce that (un)n∈N is bounded inH1(0, T ;H)∩L∞(0, T ;V ) and therefore u ∈ H1(0, T ;H)∩L∞(0, T ;V ).

Then we use the regularity result for the stationary problem. For all t ∈ [0, T ], we have ut(t) ∈
L2(Ω)d so by Proposition 2.6 the solution (u(t), p(t)) belongs to H2(Ω)d ×H1(Ω) since the map:

L2(Ω)d ×H 1
2 (Γe)

d → H2(Ω)d ×H1(Ω)
(ut(t), g(t)) → (u(t), p(t))

is linear and continuous. Since (ut, g) ∈ L2(0, T ;L2(Ω)d) × L2(0, T ;H
1
2 (Γe)

d), we deduce that (u, p) ∈
L2(0, T ;H2(Ω)d)× L2(0, T ;H1(Ω)).

Let us now prove its uniqueness. Assume that u1 and u2 are two solutions and let w = u1 − u2.
Then w ∈ H1(0, T ;H) ∩ L2(0, T ;V ) and we have for all v ∈ V :∫

Ω

wt(t) · v +

∫
Ω

∇w(t) : ∇v +

∫
Γ0

qw(t) · v = 0, w(0) = 0. (A.11)

Taking v = w(t) in (A.11), we find:

1

2

d

dt

∫
Ω

|w(t)|2 +

∫
Ω

|∇w(t)|2 +

∫
Γ0

q|w(t)|2 = 0,

that is to say ∫
Ω

|w(t)|2 ≤
∫

Ω

|w(0)|2 = 0, for all t ∈ [0, T ].

So u1 = u2 on (0, T )× Ω. To conclude, thanks to system (1.1), we obtain p1 = p2.
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[3] Leonardo Baffico, Céline Grandmont, and Bertrand Maury. Multiscale modeling of the respiratory tract.
Math. Models Methods Appl. Sci., 20(1):59–93, 2010.

[4] Mourad Bellassoued, Jin Cheng, and Mourad Choulli. Stability estimate for an inverse boundary
coefficient problem in thermal imaging. J. Math. Anal. Appl., 343(1):328–336, 2008.

[5] Laurent Bourgeois. About stability and regularization of ill-posed elliptic Cauchy problems: the case
of C1,1 domains. M2AN Math. Model. Numer. Anal., 44(4):715–735, 2010.
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