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A New Statistical Similarity Measure for Change

Detection in Multitemporal SAR Images and its

Extension to Multiscale Change Analysis
Jordi INGLADA, Grégoire MERCIER

Abstract— In this paper, we present a new similarity measure
for automatic change detection in multitemporal SAR images.
This measure is based on the evolution of the local statistics of
the image between two dates. The local statistics are estimated by
using a cumulant-based series expansion which approximates the
probability density functions in the neighborhood of each pixel
in the image. The degree of evolution of the local statistics is
measured using the Kullback-Leibler divergence. An analytical
expression for this detector is given, allowing a simple compu-
tation which depends on the 4 first statistical moments of the
pixels inside the analysis window only.

The proposed change indicator is compared to the classical
mean ratio detector and also to other model-based approaches.
Tests on simulated and real data show that our detector outper-
forms all the others.

The fast computation of the proposed detector allows a
multiscale approach in change detection for operational use.
The so-called multiscale change profile (MCP) is introduced
to yield change information on a wide range of scales and to
better characterize the appropriate scale. Two simple yet useful
examples of applications show that the MCP allows the design of
change indicators which provide better results than a monoscale
analysis.

Index Terms— Change detection; multitemporal SAR images;
Kullback-Leibler divergence; Edgeworth series expansion; mul-
tiscale change profile (MCP).

I. INTRODUCTION

REMOTE sensing imagery is a precious tool for rapid

mapping applications. In this context, one of the main

uses of remote sensing is the detection of changes occurring

after a natural or anthropic disaster. Since they are abrupt

and seldom predictable, these events cannot be well temporaly

sampled – in the Shannon sense – by the polar orbit satellites

which provide the medium, high and very high resolution

imagery needed for an accurate analysis of the land cover.

Therefore, rapid mapping is often produced by detecting the

changes between an acquisition after the event and available

archive data.

This change detection procedure is made difficult due to the

time constraints imposed by the emergency context. Indeed,

the first available acquisition after the event has to be used

whatever its modality which is more likely to be a radar image

due to weather and daylight constraints.

The kind of changes produced by the event of interest are

often difficult to model. The same kind of event – a flood –

can have different signatures depending on where it happens –

high density built-up areas, agricultural areas, etc. – and on the

characteristics of the sensor. Also, the changes of interest are

all mixed up with normal changes, which can be the majority

if the time gap between the two acquisitions is too long.

All these issues present us with a very difficult problem:

detecting abrupt unmodeled transitions in a temporal series

with only two dates1.

From this position of the problem, one can make the

straightforward deduction that pixel-wise comparison between

the two images will not be robust enough.

In the case of radar acquisitions, the standard detector is

based on the ratio of local means [3]. This detector is robust to

speckle noise, but it is limited to the comparison of first order

statistics. The classical model for SAR intensity introduced

by Ulaby et al. [4] assumes that the texture is a zero-mean

multiplicative contribution. Therefore, changes taking place at

the texture level which preserve the mean value will not be

detected by the mean ratio detector. One can thus assume a

miss-detection behavior of the detectors using only the mean

pixel values. This remark invites a more accurate analysis of

the local statistics of the images to be compared. Bujor et

al. [5] did very interesting work by analyzing the interest of

higher order statistics for change detection in SAR images.

They concluded that the ratio of means was useful for step

changes and that the second and third order log-cumulants

were useful for progressive changes appearing in consecutive

images in multi-temporal series. Since higher order statistics

seem to be helpful, one may want to compare the local

probability density functions (pdfs) of the neighborhood of the

homologous pixels of the pair of images used for the change

detection.

Of course, this assumes that the pdfs are known, and that

there exists a robust way to compare them. The estimation of

pdfs can be made with different approaches, but the straight-

forward histogram method should be avoided due to the need

a high number of samples for the estimation. Indeed, small

analysis window sizes are required to yield high resolution

change maps. In this paper, we will present several approaches

for this estimation by using only a small number of samples

for the local statistics estimation, up to order 4.

Once the pdfs are estimated, their comparison can also be

performed using different criteria. Information theory shows

that a good measure is the Kullback-Leibler divergence, also

called information gain. We will use a symmetrical version

of this measure and show that it is superior to the classical

1In the case where a sequence of several images is to be processed, the
approaches presented in [1], [2] may be applied.
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detector when the pdfs are correctly estimated.

Therefore, these measures will be based on the comparison

of local neighborhoods where an analysis window for the

computation of the local estimation of probabilities is used.

The problem which arises here is the one of choice of window

size. Since we are facing unmodeled changes, we cannot

choose the window size to fit the size of the expected changes.

An inappropriate window size can produce miss- and over-

detections:

• when using a small window for a correlation analysis,

no detection will be performed in a homogeneous area,

which was globally changed to another homogeneous

area;

• on the contrary, when using a larger window size, change

areas have to be of larger size or strong in intensity

(relatively to the measure) to be detected. In these cases,

it will produce a coarse resolution change map.

One way to overcome this problem is by applying a multiscale

change detection analysis.

Scale is to be understood in its geographic meaning, which

is the spatial extent of the study area. It does not refer to the

cartographic meaning of scale (the larger the scale the more

detailed the information) [6]. For an interesting discussion on

scale issues in remote sensing see [7].

Image processing techniques for multiscale analysis often

use the cartographic meaning and apply low-pass filtering

and possibly sub-sampling. For change detection analysis, this

filtering and sub-sampling can be justified in the case where

the images are not perfectly registered [8]. In other cases we

think that it is better to use all the available information,

that is, maximizing the number of available samples by using

increasing window sizes. Nevertheless, pyramidal multiscale

decompositions can also be useful in the case of phenomena

characterizations (see [9] for example).

Therefore, the main point of the problem is how to choose

the largest window size which robustly detects the changes but

which is small enough to preserve the resolution of the final

map without miss-detections.

We propose to use multiscale change profiles, which are

defined as the change indicator for each pixel in the image as

a function of the analyzing window size. The computation of

the change detection for each window size can be very time

consuming. We present here a method for the computation of

these profiles which allows the change indicator at scale n

to be computed from the value obtained at scale n− 1 plus

a correction term which takes into account the addition of

new samples only. Analytical expressions are given for three

different change indicators.

This paper proposes three main contributions:

1) an Information Theory-based similarity measure which

uses full local statistics;

2) the use of cumulant-based series expansions of similarity

measures, which allow a robust and fast computation by

using a small number of samples;

3) the concept of multiscale change profile and its fast

implementation using recurrence evaluations.

The paper is organized as follows: section II presents the

problem formulation; section III introduces the measures used

for the production of a change image; in section IV we intro-

duce the concept of multiscale change profile and present the

mathematical formulation allowing its optimized computation;

sections V and VI present the results obtained on simulated

and real data respectively, and section VII concludes the paper

and proposes some directions for future work.

II. PROBLEM FORMULATION

Let us consider two co-registered SAR intensity images IX

and IY acquired at two different dates tX and tY respectively.

Our objective is to produce a map representing the changes

occurring in the scene between tX and tY . The final goal

of a change detection analysis is to produce a binary map

corresponding to the two classes: change and no change. The

problem can be decomposed into two steps: the generation

of a change image and the thresholding of the change image

in order to produce the binary change map. Figure 1 shows

a block diagram describing a classical change detection pro-

cessing chain.

Window
Size

Window
Size

Ix Iy

Thresholding

Change/No change

Change
Indicator

Sliding
Window (i,j)

Sliding
Window (i,j)

Fig. 1. Block diagram for a classical change detection processing chain.

The overall performance of the detection system will depend

on both the quality of the change image and the quality of

the thresholding. In this work, we choose to focus on the

generation of an indicator of change for each pixel in the

image. For interesting approaches in the field of unsupervised

change image thresholding, the reader can refer to the works

of Bruzzone and Fernández Prieto [10], [11], Bruzzone and

Serpico [12] and Bazi et al. [13]. The reader may note that

some of these approaches need a statistical modelling of the

detectors’ response, which is not presented here.

The change indicator can also be useful by itself. Indeed,

often the end user of a change map wants not only the binary

information, given after thresholding, but also an indicator of

the intensity of the change and eventually a confidence level. In

order to evaluate the quality of a change image independently

of the choice of the thresholding algorithm, the evolution of

the detection probability, Pdet as a function of the false alarm
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probability, Pfa, may be evaluated in the case where a set of

constant thresholds are applied to the whole image. These are

the so-called Receiver Operating Characteristics (ROC) and

the plots of Pdet(Pfa) are called the ROC plots.

III. DISTANCE BETWEEN PROBABILITY DENSITIES

The main difficulty in the multitemporal analysis of SAR

images is the presence of speckle noise. When moving away

from interferometric configurations, the speckle is different

from one image to the other and it can induce a high number

of false alarms in the change detection procedure. Because

of the multiplicative nature of speckle, the classical approach

in SAR remote sensing involves using the ratio of the local

means in the neighborhood of each pair of co-located pixels.

The Mean Ratio Detector, MRD, is usually implemented as

the following normalized quantity:

rMRD = 1−min

{

µX

µY

,
µY

µX

}

, (1)

where µX and µY stand for the local mean values of the images

before and after the event of interest. The logarithm of eq. (1)

may also be used. Nevertheless, this operation does not modify

the performance of the detector in terms of ROC even if

the contrast of the image of change indicator is modified.

However, the logarithm is used since it modifies the initial

pdf of the image of change indicator and then facilitates the

development of Bayesian thresholding approaches [13].

This detector assumes that a change in the scene will appear

as a modification of the local mean value of the image. If the

change preserves the mean value but modifies the local texture,

it will not be detected.

The change detection algorithm proposed in this paper ex-

tends the MRD by analyzing the modification of the statistics

of each pixel’s neighborhood between the two acquisition

dates. A pixel will be considered as having changed if its

statistical distribution changes from one image to the other.

In order to quantify this change, a measure, which maps the

two estimated statistical distributions (one for each date at a

co-located area) into a scalar change index is required. Several

approaches could be taken into consideration: the mean square

error between the two distributions, the norm of a vector of

moments, etc. We have chosen to use a measure derived from

Information Theory called the Kullback-Leibler divergence

[14].

A. Kullback-Leibler divergence

Let PX and PY be two probability laws of the random

variables X and Y . The Kullback-Leibler divergence from Y

to X , in the case where these two laws have the densities fX

and fY , is given by :

K(Y |X) =
Z

log
fX (x)

fY (x)
fX (x)dx. (2)

The measure log
fX (x)
fY (x) can be thought of as the information

on x for discrimination between hypothesis HX and HY if

hypothesis HX is associated with pdf fX (x), and HY with

fY (x). Therefore, the Kullback-Leibler divergence K(Y |X) can

be understood as the mean information for discrimination

between HX and HY per observation. This divergence appears

to be an appropriate tool to detect changes when we consider

that changes on the ground induce different shapes of the local

pdf.

Since the Kullback-Leibler divergence can be understood as

the entropy of PX relative to PY , it is also called information

gain. It can easily be proved that K(Y |X) > 0; K(Y |X) vanishes

only when the two laws are identical. K(Y |X) can be used as a

measure of the divergence from PY to PX . This measure is not

symmetric as it stands: K(Y |X) 6= K(X |Y ), but a symmetric

version may be defined by writing:

D(X ,Y ) = D(Y,X) = K(Y |X)+K(X |Y ) (3)

that will be called the Kullback-Leibler distance (KLD).

In order to estimate the KLD, the pdfs of the two variables to

be compared have to be known. As stated in the introduction,

the processing of high resolution change maps requires anal-

ysis windows of small size, which makes impossible the use

of local histogram estimations. In the following sections, we

will introduce several approaches which allow the estimation

of the pdfs by using a limited number of samples only. This

requires some a priori information on the data which can be

introduced by using models of local statistics.

B. Gaussian KLD

As seen in section III, the classical detector of eq. (1) uses

first order statistics only. Yet, second order statistics are often

used for SAR image processing. For instance, many speckle

reduction filters [15], [16], [17] are based on the contrast

coefficient σ2
X/µ2

X , that is, the ratio between the variance and

the square of the mean value. If the local statistics have to be

compared up to the second order, the local random variables,

X and Y may be assumed to be normally distributed (i.e. of

Gaussian law). Then, the pdf of PX can be written as:

fX (x) = G(x;µX ,σX ) =
1

√

2πσ2
X

e

−
(x−µX )2

2σ2
X . (4)

An analogous expression holds for fY (x).
Fig. 2(b) shows the Gaussian approximation of the prob-

ability distribution of a small region of interest (Fig. 2(a))

extracted from a SAR image.

If this Gaussian model is used in eq. (3), it yields the

Gaussian Kullback-Leibler detector (GKLD):

rGKLD =
σ4

X +σ4
Y +(µX −µY )2(σ2

X +σ2
Y )

2σ2
X σ2

Y

−1. (5)

It can be seen that even in the case of identical mean values,

this detector is able to underline the shading of textures which

is linked to the local variance evolution.

Nevertheless, the reader should note that the Gaussian

model should not be used since SAR intensity values are

always positive. However, this example has been given as

a simple case of a parametric model which takes into ac-

count second order statistics. Since some Gaussianity may

be introduced into the data when resampling and filtering the
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images during the pre-processing step, the Gaussian model

may nevertheless be justified.

C. KLD using the Pearson system

The drawback of the GKLD is that SAR intensity statistics

are not normally distributed, and the use of a bad model can

induce bad performance of the detector, whatever the accuracy

of the parameter estimation. In the absence of texture, the radar

intensity follows a Gamma distribution:

fX (x) =
1

Γ(L)

(

L

σX

)L

e
−

Lx

σX xL−1. (6)

The Gamma distribution is characterized by the following

parameters: L is the number of looks and σX , the square-root

of the intensity SAR image. Γ(·) is the Gamma function.

In the presence of texture, the local statistics can deviate

from the Gamma distribution. For instance, if the texture is

modeled by a Gamma distribution with a shape parameter ν,

the resulting intensity distribution follows a K-law [18]:

fX (x) =
2

x

(

Lνx

µX

)L+ν
1

Γ(L)Γ(ν)
Kν−L

(

2

(

Lνx

µX

)1/2
)

, (7)

where K(·) is the modified Bessel function of the second kind

and µX is the mean of X .

More generally, it is now accepted that the statistics of

SAR images can be well modeled by the family of probability

distributions known as the Pearson system [19]. It is composed

of eight types of distributions among which the Gaussian and

the Gamma distributions may be found. The Pearson system is

very easy to use since the type of distribution can be inferred

from the following parameters:

βX ;1 =
µ2

X ;3

µ3
X ;2

and βX ;2 =
µX ;4

µ2
X ;2

,

where µX ;i is the centered moment of order i of variable X .

That means that any distribution from the Pearson system can

be assessed from a given set of samples by computing the

first 4 statistical moments. Any distribution can therefore be

represented by a point on the (βX ;1,βX ;2) plane. For instance,

the Gaussian distribution is located at (βX ;1,βX ;2) = (0,3),
and the Gamma distributions lie on the βX ;2 = 3

2
βX ;1 +3 line.

Details about the theory of the Pearson system can be found

in [20].

Figure 2(c) shows an example of distribution estimation.

The Pearson approximation fits the data better than the Gaus-

sian one (Fig. 2(b)). The example shown corresponds to a Beta

distribution of the first type with parameters β1 = 2.51×10−6,

β2 = 1.87.

The Pearson-based Kullback-Leibler Detector (PKLD) was

originally introduced in [21]. It does not have a unique analytic

expression, since 8 different types of distribution may be hold.

Therefore, 64 different possibilities for the couples of pdf exist.

Once the couple of pdfs is identified, the detection can be

performed by numerical integration:

rPKLD(X ,Y ) =
Z

[

log

(

fX (x;βX ;1,βX ;2)

fY (x;βY ;1,βY ;2)

)

fX (x;βX ;1,βX ;2)

+ log

(

fY (x;βY ;1,βY ;2)

fX (x;βX ;1,βX ;2)

)

fY (x;βY ;1,βY ;2)

]

dx.

(8)

The correct way to proceed to use the Pearson system is to

choose a pdf using the estimated moments and then estimate

the parameters of the distribution by maximum likelihood.

While this can improve the results of the pdf estimation, the

effect is not noticeable in terms of the estimation of the change

indicator. This approach was not used in the experiments in

order to reduce the computation cost.

The reader should note that in the case of single-look high

resolution SAR data (better than 10 m) other statistical models

may be more appropriate, mainly on urban areas. Nicolas et

al. have proposed a new model based on the log-statistics and

a set of pdfs coming from the Fisher system of distributions

[22], [23]. It has been applied to high resolution SAR images

on dense urban areas with promizing results [24], [25].

D. Cumulant-based KL approximation

Instead of considering a parameterization of a given density,

or set of densities, it may be of interest to describe the shape

of the distribution. Such a description is based on quantitative

terms that may approximate the pdf itself. The cumulants

themselves do not provide such a pdf estimation directly but

are necessary to describe its shape: for example, third order

(κ3) is linked to the symmetry (i.e. skewness), while the

fourth (κ4) is linked to the flatness (i.e. kurtosis). The density

is then estimated through a series expansion. In fact, the

cumulant generating function is used for such an estimation.

By definition, the cumulant generating function KX (·) of a

random variable X is defined by:

KX (ω) = lnMX (ω) = ∑
n

κX ;n
ωn

n!

with MX (·) being the moment generating function defined by:

MX (ω) =
Z

eωx fX (x)dx =
Z

(

1+ωx+ ω2

2
x2 + · · ·

)

fX (x)dx.

For the case of the four first order cumulants, the following

expressions hold [26, p.8]:

κX ;1 = µX ;1

κX ;2 = µX ;2 −µ2
X ;1

κX ;3 = µX ;3 −3µX ;2µX ;1 +2µ3
X ;1

κX ;4 = µX ;4 −4µX ;3µX ;1 −3µ2
X ;2 +12µX ;2µ2

X ;1 −6µ4
X ;1.

(9)

Let us assume that the density to be approximated is not too

far [27] from a Gaussian pdf (denoted as GX to underline the

fact that it has the same mean and variance as X), that is, with

a shape similar to the Gaussian distribution. The difference

between KX (·) and KGX
(·), can be written in terms of the
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difference of the cumulants κX ;n − κGX ;n. By inversion, the

density may be expressed by a formal Taylor-like series:

fX (x) = GX (x)+ c1
dGX

dx
+ c2

d2GX

dx2
+ · · ·

Since a Gaussian density is used, it yields

fX (x) =
∞

∑
r=0

crHr(x)GX (x),

with Hr(x) known as the Chebyshev-Hermite polynomial of

order r [27]. When choosing a Gaussian law so that its first

and second cumulants agree with those of X , the number of

terms of the series expansion is greatly reduced. This is the

so-called Edgeworth series expansion. Its expression, when

truncated to order 6, is the following:

fX (x) =
(

1+
κX ′;3

6
H3(x)+

κX ′;4

24
H4(x)+

κX ′;5

120
H5(x)

+
κX ′;6 +10κ2

X ′;3

720
H6(x)

)

GX (x).
(10)

It can be thought of as a model of the form X = XG + X ′

where XG is a random variable with Gaussian density with

same mean and variance as X , and X ′, a standardized version

of X [28] with:

X ′ = (X −κX ;1)κ
−1/2

X ;2 .

Fig. 2(d) shows an example of such an approximation of a

histogram.

The Edgeworth series expansion of the two pdfs fX and

fY may be introduced into the Kullback-Leibler divergence

(eq. (2)). It yields an approximation of the Kullback-Leibler

divergence by Edgeworth series, truncated at a given order.

In [29], such an approximation has been truncated to order 4

by using the equality
fX
fY

= fX
GX

GX

GY

GY

fY
, where GX (resp. GY ) is

a Gaussian density of same mean and variance as fX (resp.

fY ). Then,

KLEdgeworth(X ,Y ) =

1

12

κ2
X ′;3

κ2
X ;2

+
1

2

(

log
κY ;2

κX ;2
−1+

1

κY ;2

(

κX ;1 −κY ;1 +κ
1/2

X ;2

)2
)

−
(

κY ′;3

a1

6
+κY ′;4

a2

24
+κ2

Y ′;3

a3

72

)

−
1

2

κ2
Y ′;3

36

(

c6 −6
c4

κX ;2
+9

c2

κ2
Y ;2

)

−10
κX ′;3κY ′;3 (κX ;1 −κY ;1)(κX ;2 −κY ;2)

κ6
Y ;2

(11)

where

a1 = c3 −3
α

κY ;2

a2 = c4 −6
c2

κY ;2
+

3

κ2
Y ;2

a3 = c6 −15
c4

κY ;2
+45

c2

κ2
Y ;2

−
15

κ3
Y ;2

c2 = α2 +β2

c3 = α3 +3αβ2

c4 = α4 +6α2β2 +3β4

c6 = α6 +15α4β2 +45α2β4 +15β6

α =
κX ;1 −κY ;1

κY ;2

β =
κ

1/2

X ;2

κY ;2
.

Finally, the cumulant-based Kullback-Leibler detector

(CKLD) between two observations X and Y is written as:

rCKLD = KLEdgeworth(X ,Y )+KLEdgeworth(Y,X). (12)

The reader should note the fact that, like for the Pearson-based

detector, despite the apparent complexity of the formulas, and

thanks to eq. (9), only the moments up to order 4 have to be

computed.

IV. MULTISCALE CHANGE PROFILE

Scale plays a strategic role in image analysis and more

especially in change detection applications. In section I, it has

been shown how an inappropriate scale of analysis can produce

miss- or over-detections. In [30], Bovolo and Bruzzone, stress

the fact that the scale of analysis is a key parameter for better

discrimination between change and no change areas. Such a

point of view is implemented by a wavelet transform of the

log-ratio estimated with a window of a user-defined size.

Instead of applying a multiscale analysis of the change

image, the purpose here is to produce a set of change indicators

estimated at various scales. We will call it multiscale change

profile (MCP).

As stated in the introduction, the multiscale term refers

here to the size of the analyzing window. The MCP will

therefore involve computing the change indicator for a pixel by

using neighborhoods of increasing sizes. The so-called profile

corresponds to the sequence of change measures as a function

of scale. We will restrict our formulation to the case of the

CKLD. Given the fact that this detector needs the estimation

of the statistical moments of the samples inside the analyzing

window, we are interested in finding an approach which avoids

the computation from scratch of the moments at every scale.

A. Optimized computation of the MCP

Let us consider the following problem: how to update the

moments when an N +1th observation xN+1 is added to a set

of N observations {x1,x2, . . . ,xN} already processed. When
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(a) ROI extracted from a SAR image
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(b) Gaussian fitting
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Fig. 2. Approximation of a histogram, coming from a 50×50 Region of Interest (ROI), using three different strategies. The Pearson fitting yields a Beta
distribution of the first type.

considering raw moments of order r, the formulation comes

easily as:

µ̃r,[N+1] =
N

N +1
µ̃r,[N] +

1

N +1
xr

N+1.

µ̃r,[N] (resp. µ̃r,[N+1]) stands for the raw moment of order r

estimated with N samples (resp. N + 1 samples). Since the

analyzing window may contain textured areas, the mean value

itself may be modified by the increase in the number of

samples. Therefore, by using simple binomial properties, it

can be shown that central moments may be characterized by:

µ1,[N] =
1

N
s1,[N] (13)

µr,[N] =
1

N

r

∑
ℓ=0

(

r

ℓ

)

(

−µ1,[N]

)r−ℓ
sℓ,[N],

where the notation sr,[N] = ∑N
i=1 xr

i has been used.

Hence, when considering a new sample xN+1, each moment

may be updated directly by using updates of s1,[N+1] and then

sr,[N+1] for increasing values of order r. The Edgeworth series

is also updated by transforming moments to cumulants (by

using eq. (9)) to be introduced in eq. (10) and then in eq. (11).

Fig. 3 shows an example of a pdf estimation on a homo-

geneous area (shown in fig. 2(a)) when the window increases

from 9×9 to 17×17. In fact, the availability of updating the

estimation of the distance between distributions from windows

of any size without re-processing the overall data is the most
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Fig. 3. Example of pdf estimation update by increasing sample set from a
window of size 9× 9 to 17× 17. The histogram has been estimated with a
17×17 window.

interesting point for multiscale change detection purposes.

This on-line multiscale moment estimation is the key for the

operational use of the MCP concept.

For example, the computation of rCKLD with windows of

size ranging from 5×5 pixels to 51×51 pixels (22 different

window sizes) takes only 42% additional time with respect to

the computation of a single detection with a window of median

size of 29× 29 pixels (300 s. versus 210 s. for a 800× 400

pixel image).
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B. MCP exploitation

The MCP computation produces a multichannel image (one

scale per channel) whose pixels have to be transformed into

scalar values in order to provide a change indicator. In order to

exploit the information available at all scales, two approaches

may be investigated. The first one consists in choosing the best

scale for each image pixel. The second one consists in fusing

the information available at all scales in order to provide a

single change value.

The development of an optimal approach for the exploitation

of the MCP may be application dependent. Indeed, multiscale

fusion approaches could be tuned to a particular type of change

– shape, nature, etc. In this section, two simple yet useful

choices will be proposed which yield an improvement in

comparison to the performance of a single scale detection.

1) In order to choose the best scale, we will choose the one

which produces the highest KLD value. This assumes

that this scale is the one that is associated with the largest

window inside a homogeneous area with respect to the

classes change and no change.

2) The fusion of the multiscale information will be per-

formed by using Principal Component Analysis (PCA).

The first principal component of the MCP multichannel

image will be considered as the change indicator. This

corresponds to a linear combination of all scales which

maximizes the contrast of the final image.

V. EXPERIMENTS WITH SIMULATED DATA

A. Data set description

Simualtions have been performed to better understand the

behavior of the detectors relatively to a given kind of change

and a given size of the change area. Since this study focuses

on change detection on radar images, a speckle simulation is

performed from a map of ground reflectivity. The simulated

changes are applied on a small area, drawn as a circle, located

in the center of the initial image.

The simulation procedure is based on the radar image

formation mechanism. Each pixel is simulated with a given

amplitude (coming from a SPOT, NIR band image, normalized

to [0,1]) and thousands phases coming from independent

uniform generations in [0,2π[ to characterize elementary wave

scatterers. Taking the square of the modulus of each pixel

yields a 1-look intensity image. A 4-look instensity image is

obtained by averaging and subsampling two adjacent pixels

along lines and rows.

Each simulation of change is applied to the initial image by

using a change circle of given size taken from {5,10,15,20}.

Once the speckle simulation is performed (independently

from one image to another), the speckled-changed images are

mosaiked on a 2×2 grid as shown on fig. 4(b).

B. Simulation of changes

Three kinds of change were considered:

1) Offset change: fig. 4(c). The initial image is modified by

applying an offset value (i.e. a shift) to the inital data. This is

a very simple type of change which seldom occurs in reality,

but is useful to characterize the behavior of the detectors.

(a) Before (b) Mask

(c) After Offset (d) After Gaussian

(e) After Deterministic

Fig. 4. Simulated data set.

2) Gaussian change: fig. 4(d). The initial image is modified

by applying a zero mean gaussian additive noise to the initial

data. This corresponds to a change in the state of the surface

– field, vegetation. This is the main type of change that one

can encounter in medium resolution SAR images.

3) Deteministic change: fig. 4(e). The initial image is

modified by pasting values copied from another area of the

image itself. This type of change can occur when there is a

land-use change, anthropic activities, etc.

C. Results

1) Mono-scale detection: the results of the different detec-

tors for a fixed analysis window size are analyzed.

Figure 5 shows the ROC plots for the case where the change

consists in a shift of the reflectivity value (fig. 4(c)). In this

case, all 4 detectors are able to detect the changes with high

accuracy. There is a slight difference in performance between

the pair CKLD - GKLD and the pair PKLD - MRD, but

it is difficult to infer general behavior from this result. To

draw a preliminary conclusion, for a simple change such as a

reflectivity shift, the mean value criterion is efficient enough

for good discrimination in the changes, even on speckled

images.

Figure 6 shows the ROC plots in the case of a Gaussian

change. The change is simulated by the addition of a Gaussian

noise to the reflectivity (before speckle simulation). In this
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Fig. 5. ROC plot comparison of the 4 detectors for a simulated change
consisting in an offset on reflectivity.

case, the mean value of the observed pixels remains approx-

imately the same. It is difficult for this kind of change to be

observed by a human operator. However, it is more likely to

occur when modifications affect the surface without changing

its nature. In this case, even if all the detectors show bad

performance, in comparison to the offset case, the MRD and

the PKLD are far below the GKLD and CKLD. The bad

performance of the MRD is easy to understand, since the zero-

mean Gaussian noise added to the reflectivity slightly changes

the observed mean value. For the PKLD, it can be argued that

the type of law in the Pearson system is not very different

from the initial case and the main difference is seen through

the mean value, thus obtaining the same performance as the

MRD. On the contrary, the GKLD assumes a simpler model

than the PKLD and is able to take into account the mean and

the variance modifications together. Finally, the ability of the

CKLD to fit many different types of densities, allows better

detection for this difficult type of change.
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Fig. 6. ROC plot comparison of the 4 detectors for a simulated change
consisting in a Gaussian random modification of the reflectivity.

The third type of change is that of a texture change which

can occur when there is a land use change, anthropic activities,

etc. In this case, as can be infered from figure 7, the mean

value of the regions may or may not change and it is therefore

interesting to analyze the shape of the density. The Pearson

detector can be even worse than the MRD when the model

does not fit the data, which is the case in presence of mixtures.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.1  0.2  0.3  0.4  0.5

P
de

t

Pfa

ROC plots - Texture

CKLD 7x7
Mean Ratio 7x7

Pearson 7x7
GKLD 7x7

Fig. 7. ROC plot comparison of the 4 detectors for a simulated change
consisting in a deterministic modification of the reflectivity.

2) Analysis of the MCPs: some collected multiscale change

profiles, obtained by applying rCKLD of eq. (12) to our data

set are analyzed. Four different profiles are presented. They

are extracted from a change area of the simulated data set for

the case of a deterministic texture change and a radius of 10

pixels. These profiles are labeled as follows: Far for the case

where the analysis window is located 30 pixels from the center

of the change area; Outside border for a distance of 15 pixels;

Inside border for a distance of 7 pixels and Inside centered for

a distance of 0 pixel. Fig. 8(a) presents a diagram explaining

how the profiles are extracted with respect to the change area

and fig. 8(b) presents the profiles themselves.

The Far profile shows low values for small window sizes,

and these values increase as the window size increases and

it begins to include pixels from the change area. The values

decrease for large window sizes, since the window stops

including new change pixels while including no change pixels

present in all directions. The Outside border profile has a

similar behaviour, but the CKLD values are high for small

scales since the pixel is nearer to the change area. The Inside

border profile shows higher values for the change indicator for

small window sizes. Finally, the Inside centered profile shows

very high values of the detector for a large interval of window

sizes. It is worth noting that the CKLD values are nearly the

same for all detectors for the largest window sizes, since, at

this scale, all detectors include the same proportion of change

and no change pixels.

3) MCP exploitation: in this section, the interest of the use

of the MCP is illustrated with respect to the selection of a

fixed scale of analysis, (i.e. a fixed window size). The MCP

allows the best scale to be selected for each pixel location

in the images. Here the maximum of the profile is used as a

means to select the appropriate scale.

The maximum of the MCP and 2 different scales, 5× 5

and 17×17 are compared. The small window size is used in

order to detect small changes, but its main drawback is that the

false alarms may increase in the presence of noise. The larger

window size gives a lower false alarm rate since the noise is

averaged, and therefore its effect is reduced. But small changes

can also be averaged and therefore the detection probability



INGLADA AND MERCIER: THE MULTISCALE CHANGE PROFILE: A STATISTICAL SIMILARITY MEASURE FOR CHANGE DETECTION 9

Far

Outside 
Border

Inside
CenteredInside

Border

Area
Change

(a) Positions of the profiles
 0

 0.5

 1

 1.5

 2

 10  20  30  40  50

C
K

LD

Scale-1

Far
Outside border

Inside border
Inside centered

(b) Gaussian fitting

Fig. 8. Typical examples of multiscale change profiles obtained from the Edgeworth approximation of the KL distance

may be lowered. Also, false alarms may be increased in the

neighborhood of the change areas.

The results of the comparison are presented in figures 9,

10 and 11. As expected, small windows are able to give high

detection rates. In the case of radiometric shift, the false alarm

rates are low, for a given detection probability, since the type

of change is easily detected by computing the mean value

over a few pixels only. However, when more complex changes

occur (figures 10 and 11), the false alarm rate is very high at

a given detection probability. Another interesting effect can

be observed in figures 9 and 11, where for the large window

sizes, the false alarm rate increases without an increase in the

detection probability. This is due to the fact that when the

window is too large for the small changes and not as large

as the larger changes (see the mask in fig. 4(b)), the new

detections induce false alarms only in the neighborhood of

the small changes.

In addition, the MCP gives results which do not suffer from

these drawbacks without the constraint of choosing a window

size without prior information on the size of the changes in

the images.
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VI. EXPERIMENTS WITH REAL DATA

This section shows an example of applications of these

algorithms to a real case. A pair of Radarsat images, acquired
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Fig. 10. ROC plot comparison between MRD – 2 scales – CKLD – 2 scales
– and MCP – maximum of the profile – for a simulated change consisting in
a Gaussian random modification of the reflectivity.
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Fig. 11. ROC plot comparison between MRD – 2 scales – CKLD – 2 scales
– and MCP – maximum of the profile – for a simulated change consisting in
a deterministic modification of the reflectivity.

before and after the eruption of the Nyiragongo volcano (D.R.

of Congo) which occurred in January 2002, were used. Fig.

12 shows the two images to be compared and a change

map produced using ground measures. The images have a

ground resolution of 10 m and cover an area of 4 km by

8 km. The images were ortho-rectified by IGN-F, the French

National Geographic Institute, to a UTM35S projection, which

was the same as the one used for the reference map. No

filtering or calibartion was applied to the data. The 16 to
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8 bit conversion was performed using a 3σ thresholding

followed by a linear intensity rescaling. It is worth noting

that the image resampling applied in the ortho-registration step

modifies the local statistics of the image. Indeed, the image

resampling implies local image interpolation which is based

on approximate interpolators. A bicubic interpolation was used

in this case. This type of filter has a smoothing effect which

depends on the local shift [31]. Because of these radiometric

artifacts introduced during the geometric pre-processing, the

theoretical models for SAR statistics may not hold locally.

The area at the bottom right hand corner of the ground truth

mask corresponds to an area where a severe mis-registration

exists due to the lack of a proper digital terrain model. Finally,

one has to take into account the fact that the ground truth is

not perfect and that all results presented in this section should

be analyzed rather in a relative manner – one detector with

respect to another – rather than in an absolute one – absolute

value of detection probabilities.

A. Change indicator

The comparisons between the result coming from the clas-

sical image intensity ratio and the method proposed in this

paper are shown in fig. 13. Fig. 14 gives the ROC plots using

the ground truth of fig. 12(c). It shows that the use of KL

approximation by the Edgeworth series outperforms any other

methods such as model-based (Gaussian-based or Pearson-

based) KL distance, or the ratio measure. As stated in the

introduction, a miss-detection behaviour of this detector can

be observed because it uses the mean pixel values only. It is

interesting to underline the fact that the ratio criterion is not

always worse than pdf-based criteria. In fact, a density model

has to fit the data in order to yield pertinent results.

For a detection probability below 0.3, it is more interesting

to use the ratio criterion instead of a model-based one (by

using Gaussian or Pearson assumption) in this example, even

if a better change detection could have been expected by using

Gaussian or Gamma laws coming from local analysis of the

two Radarsat images.

This point confirms that it is more interesting, for oper-

ational use, to consider a more flexible pdf approximation

by using the Edgeworth series instead of a pdf parameteriza-

tion. The cumulant-based approximation may give equivalent

results to the Pearson-based approximation if the estimated

cumulants correspond to a pdf belonging to the Pearson system

of distributions, even though it may be less appropriate in

the case of heavy tailed distributions (single look data). If

cumulants of orders 3 and 4 vanish, the Edgeworth series is

equivalent to a Gaussian model. If the variance of X and Y

are equivalent, the Edgeworth series yields the same behavior

as the ratio measure. However, when the local observations

X and Y to be compared do not fit an a priori model, the

Edgeworth series becomes a more suitable tool.

Fig. 15 draws the minimum distance of ROC curves to the

point (Pd = 1,Pf a = 0). It is an interesting point of view to

evaluate the threshold to be applied to obtain the best trade-

off between detection and false alarms. The best value of the

threshold is to be found at the minimum of the curves.

(a) Before (b) After

(c) Mask

Fig. 12. Data and ground truth for the Nyiragongo volcanic eruption of
January 2002.

Fig. 15 shows that this minimum is lower – and therefore,

more interesting – for the Edgeworth series than for the

Pearson measure or the ratio detector.

When no ground truth is available, the end-user has no

a priori knowledge to set the value of the threshold. In

this case the Pearson measure seems to be better since a

trivial value of zero could be used (i.e. pixels with values

greater to 0 may be considered as a change). Unfortunately,

simulations and comparisons with other sets of images have

shown that this trivial threshold is very sensitive to noise and

fluctuates. The same observations about sensitivity hold for the

ratio measure. On the contrary, the cumulant-based measure

takes its minimum for a wider range of values. Therefore, a

threshold chosen a priori from the interval [40,50] gives an

almost optimal change map for all cases.
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(a) Intensity ratio (b) Pearson Kulback-Leibler

(c) Cumulant-based Kullback-
Leibler

Fig. 13. Change detection: comparison between the different change
indicators using the same window size (35×35 pixels).

B. Multiscale change indicators

As stated in section IV-B, our goal here is not find the

optimal way of exploiting the MCP, but only show the interest

of the concept with simple examples. The results presented

here use an MCP with window sizes ranging from 29×29 to

51×51.

In order to select the appropriate analysis window for each

pixel in the image, we will choose the maximum of the

MCP. The resulting change image is shown in fig. 16(a).

Fig. 17(a) presents the histogram of the sizes of the selected

analysis windows when using the maximum of the MCP. It is

interesting to observe that there is a high variability of window

sizes, meaning that no trivial choice exists, like for instance

choosing the largest window in order to increase the number
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Fig. 14. ROC plots for the different detectors. The cumulant-based Kullback-
Leibler detector outperforms all other detectors. The Pearson-based detector
gives results identical to the classical mean ratio. The Gaussian-based detector
shows the worse behavior.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

D
is

ta
n

c
e

 t
o

 o
p

ti
m

a
lit

y

Threshold

Optimal threshold

Mean ratio
Pearson

Gaussian Kullback-Leibler
Cumulant-based Kullback-Leibler
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of samples. Nevertheless, two peaks may be observed in the

histogram. The first maximum gives the limit of the resolution

of the detector and corresponds to areas near the borders of the

change and no change classes. The second one corresponds

to homogeneous areas where the window size could continue

increasing. Fig. 17(b) shows the map of the selected scales.

The histogram bounds of fig. 17(a) are linearly mapped to the

minimum and maximum values of the image. It is interesting

to note that large windows are used inside the change and no

change areas and that small window sizes are selected near

the boundaries of these areas.

The ROC plots of fig. 18 show that this simple strategy

improves the results with respect to the case where the 35×35

window was used.

As an approach to multiscale fusion, we propose here to

use the first principal component of the stack of multiscale

detection images. The obtained change image is presented in

fig. 16(b). The ROC plot of fig. 18 shows that this approach

also provides better performance than the monoscale detector.

VII. DISCUSSION AND CONCLUSION

In this paper a new similarity measure between images

has been introduced in the context of multitemporal SAR



12 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. XX, MONTH 200X

(a) Maximum of the MCP (b) First PC of the MCP

Fig. 16. Change detection results obtained with the MCP.
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image change detection. This measure is based on the use

of the cumulant-based series expansion of the local image

statistics combined with the Kullback-Leibler divergence. The

concept of multiscale change profile has been developed and a

fast and efficient implementation has been proposed. Finally,

two simple approaches for the production of change images

containing multiscale information have been presented. The

first one is based on the selection of the scale which gives

the highest change indicator, and the second one uses the first

principal component of the multiscale change image stack.

The proposed similarity measure has been compared to the

classical ratio of local means, and also to other Kullback-

Leibler detectors which use parametric models (Gaussian- or

Pearson-based). The experiments have been carried out on

simulated and real data for which a reference change map

was available.

The proposed original cumulant-based detector has been

shown to have a more robust behaviour than other detectors

in terms of receiving operator characteristics. The two simple

yet useful schemes for the exploitation of the multiscale

change profile provide better performance than the monoscale

detector.

The main advantages of the proposed approach are the

following: our detector needs only the computation of the first

4 statistical moments and can deal with a great variety of pdfs;

the multiscale change profile provides change information over

a wide range of scales at very low computation cost.

Some improvements could be done in order to use this

approach with single-look images, where the heavy tailed

distributions may need other statistical models. The use of

Gamma distributions instead of Gaussian for the series expan-

sion seems to be a good starting point.

Some questions still remain open about the use of multiscale

change profiles. Indeed, it would be interesting to analyze if

we could establish a classification of the profiles and thereby

derive useful information, not only about the scale of the

change, but also about its type. This task could be carried

out by visual inspection, but automatic clustering techniques,

like for instance the Self Organising Map [32] could be used.

The parametric modeling of the profiles by projection on an

orthogonal basis could be envisaged.
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Another issue remaining is the automatic thresholding of the

change images. Whether it be for the case of a single scale,

or for the case of a multiscale analysis, the statistics of the

change indicators could be used in order to propose adaptive

Bayesian thresholding techniques, as done in [13].

Finally, direct classification of multiscale profiles by using

Support Vector Machines seems an appropriate choice for the

production of binary change maps in the case of supervised

analyses. This approach has successfully been applied to the

classification of hyper-spectral images [33].

All these aspects will be studied in future work.
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tat Politècnica de Catalunya and École Nationale
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