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Adaptive Delta Modulation in Networked

Controlled Systems with bounded disturbances

Fabio Gmez-Estern, Carlos Canudas-de-Wit, and Francisco R.oRubi

Abstract

This paper investigates the closed-loop properties of iffiereintial coding scheme known as Delta
Modulation (A-M ) when used in feedback loops within the context of lineateays controlled through
a communication network. We propose a new adaptive schemmevaiiable quantization stef, by
defining an adaptation law exclusively in terms of inforroatiavailable at both the transmitter and
receiver. With this approach, global asymptotic stabitifythe networked control system is achieved
for a class of controllable (possible unstable) linear {gaiMoreover, thanks to the globally defined
switching policy, this architecture enjoys a disturbanegction property that allows the system to

recover from any finite—time unbounded disturbance or comoation loss.

Index Terms

Differential Coding, Delta Modulation, stabilization ofefvorked Control Systems.

. INTRODUCTION

ELTA Modulation (A-M) is a well-known differential coding technique used forueithg
D the data rate required for voice communication, see [1]. §thadard technique is based
on synchronizing a state predictor on emitter and receindrjast sending a one-bit error signal
corresponding to the innovation of the sampled data witheetsto the predictor. The prediction
is then updated by adding a positive or negative quantitye(dened by the bit that has been

transmitted) of absolute valuk, a known parameter shared between emitter and receivecetHen
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A can be regarded as the quantization step. This paper ppnadaptiveextension a ofixed-
gaindifferential coding scheme previously introduced by thmsauthors (see [2]) in the context
of linear systems interconnected through some transmissabwork.

The selection ofA is a crucial issue on the quality of the decoded signals. Wwa known
in digital communications framework that large valuesofwvill result in a high granular noise,
while too small values oA will result in slope—overload distortion. In closed-loapndigurations,
as in the scenarios considered here, the choicé& a§ even more important because it may
cause instability. The closed—loop stability properti€Pelta Modulation coding witHixed or
scheduledyains, has been studied in [2], [3], [4].

Delta modulation A-M) algorithm can also be understood as the coarsest two-(@vel
bit) quantizer. Thus, this technique is a simple altermat approaches concerning the use of
guantizers in the context of NCS, i.e. [5], [6], [7], [8], [9]LO], [11] among others.

For a Delta Modulation scheme with constant quantizatiep &t it was shown in [2] that
only a limited domain of attraction was obtained. In additithe state was only guaranteed to
converge asymptotically to a finite ball, being its size teflato the parameters of the open-loop
plant, and to the user-defined parameter

By makingA an adaptive quantity, more effective schemeaeanodulation have been already
proposed in the communications community [1]. The idea islésign an update law fof,
defined exclusively in terms of the information availablgtbat the receiver and transmitter,
aiming at improving the resolution of the differential codiby reducing the gaid for slowly
varying signals, while enlarging in case of rapid change of the input, and hence allowing for
faster signal tracking and higher bandwidth of the tranedisignals. So far in the communi-
cations field, adaptation laws fak have been proposed under somewhat heuristic criteria, as
little information is supposed to be available on the dyre@nof the signal source. However,
when dealing with feedback systems, the dynamical praedf the plant become very useful
in designing the adaptive law. This problem, to which thipgras devoted. is framed as shown
in Figure 1.

The main paper contribution is the introduction of an ad@mtamechanism consisting of
varying the quantization interval in terms of a minimal amount of information available
at the transmitter and the receiver. This type of adaptai@on although well known in the

communications field, is used and analyzed for the first tinfeeglback configuration shown
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Fig. 1. Block diagram of the problem set up studied in thisquap

in Figure 1. It is also shown that this adaptive coding striest modified as proposed in [2],
is proven to yield closed-loop global asymptotic stability a class of open-loop unstable
linear systems. We provide also a comparison between oupagp and existing ones, in order
highlight the main advantage: a disturbance recovery ptppleat guarantees that if the system
state is driven temporarily away from the origin, due to samattended unbounded finite—time
disturbance, or possibly loss of communication, the systdhultimately stabilize the estimation
error, and drive the state back to the origin. This is due éogtbbally definedswitching policy
(and not only in one time sense as happens in most of the nefedlepapers), and also allows
a free initialization of the encoder without any previoukbmmation of the state.

The results are presented in scalar form. The extensionsgteelhhdimension are easy to
develop in the case of diagonalizable system matrices, alhthavspared for the sake of space.
However, for non—diagonalizable systems, the analysisvisived, and the technical details have
been presented in [12] for tHexed Delta Modulation algorithm, while the adaptive version is

part of an ongoing research work.

[I. ADAPTIVE A-M CODING SCHEME

The problem setup will be initially presented, and the fixsdp Delta Modulation networked
controller [2] will be briefly recalled for the sake of commdeess. Then we propose /&
adaptation law resulting in a global asymptotic convergeaot the state estimation error and
system states to zero. This is a significant achievement mggpect to the fixed-gain scheme

presented in [2].
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A. Assumptions

In the following, we will assume that the transmitted infation is binaryd, € {—1,1},
that only sensor—to—controller transmission is allowdat ia 100% reliable noiseless channel
without transmission delays is used, and that the data it aten fixed rate (we select the

sampling frequency in order to transmit only ofjeat a time).

B. Problem Setup

Consider first the following one-dimensional discrete tisystem, together with the control

law, and the fixed—step differential coding law:

Open-loop system, and encoder: Control law and decoder:
Tp+1 = QAT+ buk (1) i‘kJrl = [CL - bK]i‘k +A- 6k (3)
To = 0, O é Sgr’(:ck — .fl'k) o = 0

In that structurey € IR is the state of the plant, and a standard Delta Modulator esl i
encode it. This structure uses a prediction of the statgenerated by a model of trdosed—
loop dynamics (2) synchronized at both communication ends. Wthaew sample of the state
xyp arrives at the encoder, it is compared to the predictipnand its difference is coded on a
binary basis, i.e. the value of sgn — 7)) is coded and transmitted as a binary digit.

Stability of this system has been analyzed in [2]. Althoughhas interesting disturbance
rejection properties, the main limitation of this approasthihe fact that stability is semiglobal,
in the sense that the quantization step must be chosen as@ofunf an upper bound of the
initial state. This is a quite frequent fact in the liter&usee [7]), and has been tackled (in
that paper) by devising open—loop initialization mecharsgor estimating that bound. Another
issue (also shown in [2]) is that using fixed—step Delta Matlah, the state does not converge
strictly to zero, but to a finite ball around the origin, whaselius is proportional ta\ (there
is chattering in steady state). As a consequence, when the/gé#s fixed, there is an inherent
trade—off between stability and precision. This motivaias search for other coding strategies

with variant gains, as shown next.

April 1, 2011 DRAFT



C. Adaptation law design

Adaptive A—modulation in Digital Communications aims at improving tresolution of the
differential coding scheme according to the size of the @gno be transmitted. In our case
this signal is the system state, hence a reasonable appi&zlenlargeA for large values of
the estimated states, and decrease it for smaller valuegh@&nrequisite is the Equi-Memory
property described in [13], which suggests that the quatitim step must be the same at the
transmitter and the receiver at any time. Hence, the adaptiw must be defined exclusively
in terms of the shared information, i.e. ¢6,,01,...,d;}. Another condition is to keep the
adaptation law as simple as possible, and also minimize @ony usage. With that aim we
will propose a very heuristic and simple approach, and wiltifer provide a detailed analysis to
prove that it guarantees global asymptotic stability. Idevrto design am\—adaptive mechanism
to achieve global asymptotic stability two opposite bebesimust be observed in the analysis
of [2]. For large values of the estimation errprthere is probably slope overload, 8¢ should
grow at a higher rate than the plant escape veloclyhen the state is trapped into a domain of
attraction for the presenk,, the step size must decrease (for improving resolutarg slower
rate than the state convergence in order to prevent it from getoo small relative to the state.

From this intuition, an adaptive scheme with minimal steragmd computation requirements

is proposed as follows:

1) If 6, = J,_1 then the state is assumed to be escaping, thusust be increased.
2) If 6, # d,_1 then the state is assumed to converge (oscillations closert) andA, must

be decreased.

The following update law is proposed:

Apr1 = Op1ly (5)
MTif 6, = 6,

Gy = S (6)
A f 5k 7é 5]9,1

where0 < A~ < 1 is the exponential decay rate Af,, and\* > 1 is the exponential growth rate.
The proposed algorithm is shown in Fig.2. This adaptationdan be seen as a generalization

of Jayant’'s adaptation rule (1970) (see [1]).
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Fig. 2. Adaptive coding scheme. The figure shows the case efdimensional systems. The selection gain block togglkes th

value of ¢, according to Equation (6).

D. Error equations

The complete feedback system with the adaptive delta Detidul&tion coding scheme is then:

Open-loop system (7), and encoder (8)-(10):Decoder (11)-(13) and control law (14):
Tp+1 = ATk + buk (7) .fj‘kJrl = [CL - bK].’i’k + Ak . 5k (11)
.fl'kJrl = [CL — bK]i‘k + Ak . 5k (8) Ak-{-l = ¢k+1Ak (12)

+ _
Aps1 = Gps1ly (9) bors = >\_ ?f Ok = Op—1 (13)
) N 6 = 85 10 AT O 7 O
k+1  — —  _ K4
! A= i Oy £ Oy u = —Ki (14)
o = 0, Ay >0 freely assigned 9 = 0, Ap>0 same as encoder

With the above definitions, the closed—loop error dynamssoime
Tpp1 = alp — Ap - O
Apr1 = k18, Ao >0 (15)
Prr1 = A+ %(/\+ — A7) [0k1 + Ok
The causality of the system is guaranteed because the cangoudf 7., is only based orx,,
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and older values. The following Theorem states the stgholitthe closed—loop system.

E. Main result (stability analysis)

Theorem 1:The error trajectorie; of system (15), resulting from the adaptixemodulation
coding scheme (7)-(14), globally asymptotically convetgezero ask — oo if there exist

parameters\™ > 1, A~ € (0, 1) satisfying the following inequalities:

AT > a (16)
A< (A*)*g, (17)
where  f(a, A" \") £ 1+ log, (1 + _(i_)>§p - U) and 2

Moreover,A; and hencer; also converge to zero regardless the initial conditions A).

Proof: The claim will be proved in two steps. First, a new variablé e defined in order to
capture the ratio between, and A, namelyy;. = Zr /Ay, and boundedness of that variable will
be proved. Secondly, it will be shown that, asymptotically converges to zero. Consequently,
the convergence of, towards the origin is directly implied. Along the trajeats of (15), the

variabley, evolves along the dynamics

Ykt1 = Qﬁi (aye — sgNYk)) - (18)
k

Fact 1. Trajectories ofy, cross the zero axis in finite time.

This means that starting from any initial conditioh, and A, and thusy,, there must be a
future timek, < oo such thatyy,_1 - yx, < 0. This is easily shown by imagining a trajectory
with no zero crossings o, (hence ont, as4 is always positive). Assuming initially positive

7, i.e. starting fromy, > 0, we havey,,; = 1/\" (ayx — 1) and hence
1 a 1 1
yk+1_yk:)\_+(ayk_1)_yk: </\_+_1>yk_/\_+ <—/\—+
for the given choice of\. Then, starting fromy, > 0, we havey, < yo — k/A* and hence

there is some constaif < yoA\™ such thaty,, ; > 0 andy,, < 0. Due to the symmetry of the

system equations, a similar argument applies if the trajgcitarts fromy, < 0.
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Fact 2. Trajectories ofj, are bounded after finite time.

Immediately after a zero crossing of the system (assuming -twithout loss of generality),

Yk, IS bounded as follows

1 1

Yko = 3T (ayry—1 — 1) > e (19)

hencely,,| < s+, asyx, < 0. Now if we search for bounds on subsequent samples we must
update the growth factor oh to A\~ and computey,, .1 = 1/A~ (ayx, + 1), which is positive,

as from the bound > y,, > —1/\" we have
1 a
Ykot1 > e <—)\—+ + 1> > 0.
Moreover, |y, +1| < 1/A™. These observations are summarized in Fig. 3, where thessiecef
two zero crossings after a set of positive values is illusttaas well as the upper bounds inferred
by the switching dynamics. Now as the switching policy isssetorder, the analysis is concluded

by taking one further step. Using < yy,.1 < 1/A~, we haveyy,.o = 1/~ (ayg,+1 — 1), and

hence

1 1 a
3 <ma< 3= (1)

As illustrated in Fig. 3 (left), two situations (a) and (beahen identified,

(@) —A% < Yko+2 < 0. This situation (including the norm bound) is exactly theedound at
instantk, + 1, then it has been already considered

(b) yr,+2 > 0. Then, we have two subsequent positive samples, i.e. thatisih of y;,_; IS
recovered. In that case, the dynamic equation turns intpgdd along it the map, — yx1

is contracting, hence the norm will decrease until a futuge shange.

The previous analysis yields that after the first sign chattye statey,, remains bounded as

1 a

Y| < = ()\—_ - 1> (20)

With the above facts, the proof of the proposition reduceshtmv asymptotic convergence to
zero of A, and hence concluding convergence of the stat@Vith this objective we will use
the following definition,

Definition 2.1: Given a sequence of positive (negative) samplegofthe fly—timeis the
number of sampling instants elapsed between the two zeryssiags that enclose the signal. For

its computation, the first and the last positive (negatiahgles are considered.
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Fig. 3. Left: Behavior ofy; at zero crossings. Right: Definition of fly—time.

This magnitude is viewed in Fig. 3 (right). We will compute anrconservative upper bound

on it. Indeed, considering, as the first positive sample (i.e. resetting the time cownt) have

b
e = p* <yo—l<p — 1)) (21)
a\p—1

then, the zero crossing occurs at the next sampling instaartthe time the right hand side of

along the dynamics (19),

this equation vanishes. Therefore, the fly—tikfeis bounded as

(=2 =D\ _ 4\

for which we have used the finite—time bound @n(and hencej,) computed in (20). On the

k< 1+log,(1+yoa(p—1)) < 1+log, <1 + 2

other hand, the duration of a full flying period equals the bhamof times theA factor is
increased ag\,,; = \"A;, then the net value of\ after the flying period, starting from\, is
A = (AT)FA,.

Hence a condition for asymptotic convergence\qfto zero is that, on zero crossings, the net
decrease iM\ compensates the net amount increase over the flying pertod.ig guaranteed

by choosing\~ such that, (considering, as the first negative sample, again as in Fig. 3)
Ak0+2 = (/\_)2Ak0 < (A_)2()\+)BA0

where the power ifA~)? has been introduced using the fact that after a flying petied,
consecutive zero crossings must occur (see argument ofZyadthis gives a less restrictive

condition on\~. Hence, the condition for a net reduction Afafter a flying period is
Agosa < Do <= (AP <1,
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10

or, equivalenty A\~ < (A*)~2

which is the condition (17) stated at the Proposition. Friw t
net convergence of\; to zero and the boundednessigf we conclude thatim;_,., 7, = 0.
This completes the proof. [ |

In the related literature, some authors have dealt withynsystems with limited data rates,
such as [11]. In that paper, variable length coding is usedtfachastic stabilization in the mean
square sense. Our approach can also handle the presencseimthe system dynamics if a
minor change in the switching policy is introduced.

Corollary 1: If system (1) is perturbed with a state noisg such thatw,| < W, as in
Tpy1 = aTy + buy + wy
and the same coding-control strategy is applied, with theduction of a lower bound ony,,
i.e., substituting the\-switching policy by

Apwy = G Ay if (kar.lAk > Apin (22)
A,.in Otherwise

whereA,,;, > W, then, the errort, is ultimately bounded as

_ + kx \_92 W
3 < (V)" Bpa(r) (HAmm)

1 Ayo
k* = log
log (1 - Am>

Some details of the proof will be skipped for the sake of spaue reported elsewhere. The

where

main argument stems from observing that the evolution,of no longer (18), but

1

_ b _ W,
Ykt1 = o <ayk: sgnyx) + Ak> (23)

whose solution along a flying period startingigt(without sign change ofj,) becomes
a \"* 1 [(E 7 a N
= (5) w5 (3 () ) e
whereuvy, 2 Xf — 1. The zero crossings af, are still guaranteed thanks to the new lower bound
on A, and the flying period is limited by*.
Finally, an analysis similar to the noiseless case leadsetdound orx;. given in the corollary.
Moreover, the closed loop system with nonzero efobecomes a stable system with a bounded

input disturbance perturbation, hence giving a steady sabr that is proportional tol’.
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I1l. DATA RATE LIMITS

Theorem 1 solves the stabilization problem in networkedrobsystems using adaptive Delta
Modulation with no restriction on the data rates, appayeinticontradiction with the theoretical
limits of [13]. In fact, conditions (16)-(17) establish ihnptly a constraint between the required
data—rate for stabilization and the maximum open-loopreigieie of the system.

Actually both parameters are embedded in the congtant

This value, proceeding from the sampling of a continuousesysn the formi = A\...x +
BeontUeont, takes the formu = e*onts In a one-bit per sample modulation scheme, which is
the case of Delta Modulation we hawe= e*-»t/% whereR is the data rate in b.p.s. Now, as an
upper bound ir: will result in an upper bound in the ratin.,,;/ R, we will investigate what is
the maximum value,,,, such that for alla < a,,., there exist valid choices of parameters
and A~ fulfilling (16)-(17).

A detailed numerical analysis of that inequality yieldstthar « < 1.2 there are values of
At and A~ that solve the equation. Conversely, for values:0f 1.3226 no solution has been
found numerically. Moreover, as the right hand side of (1&¢rdases witl, there will be no

more solutions for greater. An analytical result supporting these facts is presented.n

A. Conditions for solving the parameter tuning equation)(17

The following proposition states the limits of Theorem 1 e@rms of the minimum data—
rate required for stabilizing a system given its continudiinse open—loop eigenvalues, using
Adaptive Delta Modulation. Moreover, as the tuning pararet~ and \™ must be obtained by
solving (numerically) the implicit equation (17), finitetarvals are provided for scanning those
solutions.

Proposition 1: Consider (7) as a result of sampling a continuous—time syste= \.,.;z +
Beonttcont, With sample timel; = 1/R and Adaptive Delta Modulation one—bit state coding as
(14). Then, a sufficient (possibly conservative) condifionclosed—loop stability with feedback
u = Kz where z is the output of the decoder iB > \.,:/log(1.3226) bits per second.
Moreover, a less conservative search for the tuning paemset and A\~ satisfying (17) is to

be carried out numerically scanning the finite interval

1+,/14+ 1=
A~ € (0,1)] x [v S (a,a ala 1’)] (24)

2
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Proof: (Sufficient condition)Me are concerned with the existence of solutions satisfying

inequality (17), i.e. ™ < ()\+)—§ within the range of validity of the constants, i.p~ €
log A ™

(0,1)] x [\* € (a,00)]. Using the property\~ = (A\+)\=27) "'we can rewrite (17) as

log A~ 1 (1 log(l%—%))'

log At ) log(p)

Now a sufficient condition for its solution is obtained by itak limit* asp — 1%, which gives

log\™ < _1o§a <1 + %) , & (M) log\™ < _loga (()\*)2 +a® — a)\’)) :

The left hand side of the last expression is minimized to889at\~ = 0.6070. Substituting this
value in the right hand side, we have the inequality183 < —(loga)/2 (a* — 0.6070a + 0.60702)
that is fulfilled by values of: below 1.3226. This means thatdfis below that value, then we
can find tuning parameters = 0.6070 and A" close enough ta (from the limit asp — 17)
such that (17) holds and the coding scheme can be implemeéw@dfrom the relation between
the discrete and continuous—time formulation, the retaf®o> \..,;/ log(1.3226) is implied.
(Parameter search intervalj the sufficient condition on the data rate (for which thegraeter
tuning procedure is given above) is not satisfied, (17) mioghsolved numerically. To this end,
a finite interval for the tuning parameters will be obtaingdamalyzing necessary conditions for

(17), also rewritten as

2102(7) <10g(p) + log (1 + ala _a_))(f — 1)>> :

log\™ < —=

for which, as\™ > p, it is necessary that

log A\~ < —% (log(p) + log (1 + ala _(/;_))(2'0 - 1)>> : (25)

and the right hand side of this expression is upper bounded by

rh.s. of (25)< —% <log(p) +log (“(“ _(AU()’; - ”)) - —% log <p (“(“ _(AU()’; - 1)>> .

Hence the necessary condition for the existence of solsiti®n

o)

ntuitively, the best choice foh™ is to be close taz, as this would reduce the flying period and impose a less ceatie

constraint on\~ for a net reduction ofA,.
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i.e.pa(a—1)(p—1) <1 and hencep(p — 1) < 1/(a(a — 1)). Therefore, the valid choices of

4 4
L= \/ L+ a(a—1) L4/ 1+ a(a—1)

<p<
2 p

are such that

But, as\™ > a, the search interval becomes (24). [

IV. RECOVERY AND PERSISTENCE ISSUES

In previous papers presented in this field, such as [14] ahdr&xplicit bound on the initial
statez(ty) is required in order to initialize the encoder. The propobggass is to execute
an initial uncontrolledstage (with undesired transient effects) to estimate tbah@ (See [7],
Section Ill), but it is not stated how to switch back and fdrdtween stages in case a disturbance
drives away the state (it is a known fact that the switchinicgas crucial in stability analysis).
On the other hand, [15] proposes a zoom—out and then zoomeamamism (in that particular
ordering), and it deals only with continuous—time quarnita(and hence unlimited data rate).

Our claim is that our algorithm does not distinguish betweifierent stages, i.e. the mathemat-
ical definition is unique, and it does not require any boundheninitial state. As a consequence,
the algorithm allows the state to escape momentarily at emg tue to unattendednbounded
finite—time disturbances, and after them it will recovembsity.

It must be acknowledged, however, that a temporary loss ofnwonication could have a
side effect: the equi-memory property may be lost, g. may differ between receiver and
transmitter. In that case, a recovery procedure for symshirgy both ends is proposed as follows.
Consideringk* as the maximum flying period (see proof of 1), we propose thieviing re-

synchronization algorithm:

Initialization Sequence Coding operation
1) Ny=0,20=0,40 = A" 1) If 6,=6,_1 SetN, = N, +1; else setN, =0
2) Wait until 6, # 61 2) If Ny =Fk*+1 go to Initialization Seq.

3) Go to Coding operation 3) Apply (8)-(10) (enc.), or (11)-(13) and (14) (dec.)

Here,A* > 0 is the freely—chosen (but shared) initial value of the quatibn step. Thanks to
the global stability of the system with unconstrained erecanditialization, this algorithm at both
the emitter and receiver guarantees that, in the case oft@myploss of communication provokes

instability of the error dynamics (loss of synchronizationequi—memory), both communication
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Fig. 4. System (7)-(14) has been simulated for the set ofegalu= 1.1, b = 1, K = 0.2, z4(0) = —0.5, 24x(0) = 0, with
Ao =5, =0.4, AT = 1.21, according to conditions (16) and (17). The simulation carep the fixed-gairh coding scheme
(left figure) [2], with the proposed adaptive scheme (rigguffe). In the first case, the value 4f is changed at pre-specified
time instants whereas the adaptive law farallows for better granularity which is adapted as a funcidrthe closed—loop

error signal improving the system performance while entayghe domain of attraction.

ends will reset their Delta Modulators and recover stabdiiter a transient. The validity of this
procedure relies in the fact that, in normal operation, nearibank* consecutive samples with
the same value of, can occur. Step 3 in the initialization sequence is requibedause the

flying period is bounded only after the first zero crossing eéh®r signal.

V. SIMULATIONS

Simulations are illustrated in Fig. 4. The upper plots shgwz andr,. The lower figures
show the time evolution of\, for both; fixed and adaptive cases. As expected, the addpiive
performs over the fixe case as the tracking error decrease aip arbitrarily small value dictate
by the minimum saturation fad,,,;, = 0.05. Without this saturation\, would decrease to zero

indefinitely annulling the system capacity to recover framufe perturbations.

VI. CONCLUSIONS

In this paper we have investigated the stability propeniethe Delta-modulation coding rule,
when used as a transmission means in networked controfiedrlisystems. It was first shown

that the standard form of thA-M algorithm can be modified, including information about the
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system and the controller. These results were extendecetoabe of adaptivé,. An explicit
adaptation rule was proposed and the range of parametees deeived to ensure asymptotic
stability. These results displayed a limit on the maximunstahle eigenvalues of the system

that are compatible with the ones given in [13].
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