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For any matrix

where

satisfies a differential condition.

I -Introduction.

In this work we study the asymptotic behaviour with respect to x of the solution u(•) of the following equation

1 -T r A(x)D 2 u = f (x), x ∈ R N , N 3 lim ||x||→+∞ u(x) = 0, u(x) > 0, ∀x ∈ R N
where f (•) is a bounded positive function with a compact support. The matrix A(x) = a ij (x) ij is bounded symmetric and uniformly elliptic that is to say : for any x ∈ R N α||y|| 2 A(x)y, y) β||y|| 2 ∀y ∈ R N

where α and β are real constant such that 0 < α < β, D 2 u stands for Hessian matrix of u(•), T r(B) stands for the trace of the matrix B and x → ||x|| stands for the euclidian norme of R N . The result depends to the behaviour of the function [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] ∧(x) := ∧ A (x) := T r A(x)

2 ||x|| 2 A(x).x, x
as ||x|| goes to infinity. Without hypotheses concerning the matrix A(•) we prove the following result : for any ε > 0 there exist three real positive constants c 1 := c 1 (ε), c 2 := c 2 (ε) and R := R(ε) such that for any x ∈ R N , ||x|| R, we have where

c 1 ||x|| 2(θ-1-ε) u(x) c 2 ||x|| 2(θ-1-ε)
∧(A, B)(x) = T r √ B -1 .A( √ B.x). √ B -1 2 ||x|| 2 √ B -1 .A( √ B.x). √ B -1 x, x .
Let us remark that θ > 1. This function ∧(•) plays a central role in our work. It is called the function of the spectral dispersion of the matrix A(•), in short the spectral dispersion of A. This name is justified by the following inequalities :

1 < N 2 . α β N 2 λ 1 (A) λ N (A) ∧(x) N 2 λ N (A) λ 1 (A) N 2 . β α .
These inequalities give an idea of the distribution of the spectrum of the matrix A(•) :

oscillation (∧) N 2 sup x λ N A(x) λ 1 A(x) -inf x λ 1 A(x) λ N A(x) β 2 -α 2 α.β . N 2
where the ordered real numbers 0 < λ 1 (A) • • • λ N (A) stand for the eigenvalues of A(•).

In some sens the previous result is optimal. Indeed in the case A is the identity matrix (or equivalently a constant matrix) we have θ = θ = N 2 > 1 and we obtain the classical optimal result : u(x) ∼ c ||x|| N -2 as ||x|| goes to infinity. Let us specify that there is no evident link between the asymptotic behaviour of ∧(•) and the asymptotic behaviour of A(•), as ||x|| goes to infinity. Indeed, for instance, there exist matrices A(•) such that, for any x, A(x) belongs to Q(α, β) = {M symmetric matrix / αI M βI} and has oscillating coefficients and for which the associated function ∧(•) goes to some constant as ||x|| goes to infinity. And there exist matrices A(•) having a function ∧(•) of spectral dispersion which is oscillating as ||x|| goes to infinity i.e. which satisfies :

lim R→+∞ sup ||x|| R ∧ A(x) -inf ||x|| R ∧ A(x) > 0,
with the notation ∧ A(x) := ∧(x). These two examples are explained by the fact that there are many matrices belonging to Q(α, β) and having the same function ∧(•) satisfying :

N 2 . α β ∧(x) N 2 . β α ∀x.
In section II we will give theses results with some details. To give a classification of this problem, we introduce the function which follows :

B ∈ Q(α, β) -→ J ∞ (B) = lim R→+∞ J R (B)
where

J R (B) = sup ||x|| R λ N B -1 .A(x) -inf ||x|| R λ 1 B -1 .

A(x) .

There exists

B ∞ belonging to Q(α, β) such that 0 J ∞ (B ∞ ) J ∞ (B) ∀B ∈ Q(α, β). If J ∞ (B ∞
) = 0, the matrix A(•) goes to a constant matrix as ||x|| goes to infinity and after a change of variables by a suitable transformation in [START_REF] Crandall | Lions User's guide to viscosity solutions of second order partial differential equation Bull[END_REF] we find that ∧(x) goes to the constant N 2 as ||x|| goes to infinty. And roughly speeking the asymptotic behaviour of u(•) is given by [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] : u(x) ∼ c ||x|| N -2 This result is also given by [START_REF] Meyyers | The exterior Dirichlet problem for second order elliptic partial differential equations[END_REF] in the exterior problem with f = 0 i.e. u(x) = 1 ||x|| N -2 . If J ∞ (B ∞ ) = 0, we have two cases to study. i) after a change of variable in (1) by a suitable transformation, if necessary, the behaviour of ∧(•) is radially oscillating as ||x|| goes to infinity. Let us suppose that this behaviour is given by, for instance, γ(||x|| 2 ). Then, under some hypothesis, the work in [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] give the result :

u(x) ∼ c.v(||x|| 2 ) ∀x, ||x|| R,
for R > 0 large enough and where

v(||x|| 2 ) = +∞ ||x|| 2 exp - s R 2 γ(σ) σ dσ ds
-( cf remark 4.1 section III ) -.

ii) the function ∧(•) is oscillating anisotropically in a neighborhood of the infinity. This case is the aim of our study. Under a suitable hypothesis called (H) and satisfied by ∧(•) in a neighborhood of the infinity, we prove the following result :

u(x) ∼ c(x) ||x|| 2 ∧(x)-1 , 0 < c 0 c(x) c 1 , ∀x, ||x|| R ,
where R > 0 is large enough.

Let us specify that our hypothesis (H) is satisfied by the constant functions. A particulary interesting case is the following : Let us suppose that ∧(•) verifies ( 2)

∧(λx) = ∧(x) ∀x, ||x|| R, R large enough ∀λ 1 .
The relation ( 2) is satisfied, for instance, in the following case : There exists R > 0 large enough such that for any x 0 , ||x 0 || R we have A(λx 0 ) = A(x 0 ) ∀λ 1. Under some conditions, the result of this example can be explained as following : ∀x, ||x|| R we have

∀ λ 1 u(λx) = c(λx) |λ| 2 ∧(x)-1
where the funtion c(•) is such that 0 < c 0 c(x) c 1 . Our assumption (H) is a differential inequality satisfied by the function ∧(•). Roughly speaking

∧(•) satisfies c(x).T r A(x)D 2 ∧ + b(x). A(x)D∧, D ∧ + a(x). A(x)D∧, x ∈ - c(c, b, a) 1 + ||x|| 2(∧(x)+δ(x)) , c(c, b, a) 1 + ||x|| 2(∧(x)+δ(x))
for any x, ||x|| R > 0, where c(•), b(•) and a(•) stands for some given functions and δ(x) δ 0 > 0 such that δ 0 > θ -θ. Finally, note that after the publication of our work in [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF], we discovered that when the matrix A(•) is constant at infinity -(i.e. there exists a constant matrix A 0 such that [START_REF] Meyyers | The exterior Dirichlet problem for second order elliptic partial differential equations[END_REF] for the exterior domain with f = 0 and ∧(•) was used. But this result [START_REF] Meyyers | The exterior Dirichlet problem for second order elliptic partial differential equations[END_REF] does not apply in the case ∧(x)

lim ||x||→+∞ A(x) = A 0 ) -,the behaviour u(x) = 1 ||x|| N -2 was established in
:= ∧(A)(x) = N 2
, ∀x, and A is an oscillating matrix -(cf proposition 3 section II)

-, where u(•) behaves like 1 ||x|| N -2 as ||x|| goes to infinity. Finally we note that the most part of the paper [START_REF] Meyyers | The exterior Dirichlet problem for second order elliptic partial differential equations[END_REF] is devoted to the question of the well_posedness of problems like [START_REF] Crandall | Lions User's guide to viscosity solutions of second order partial differential equation Bull[END_REF]. The paper is organised as follow. A wide part of this paper is devoted to justify our assumption (H). That is the goal of the preparatory part in section II. In the third section, we give a classification of asymptotic behaviour of the matrix x -→ A(x) when ||x|| tends to infinity and we shall need later. And we give a new presentation of previous results [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF]. Section IV will be devoted to establish the asymptotic behavior of the solution u(•) of (1) when the function ∧(•) oscillates anisotropically as ||x|| goes to infinity. The main result is obtained under the key hypothesis (H). The guiding idea of our method is to consider that A(•) and ∧(•) are two independant datas and to construct two functions u i (•) -(i = 1, 2)respectively solution of

(P i ) -T r(A i D 2 u i ) = f in R N u i (x) > 0, lim ||x||→+∞ u i (x) = 0, i = 1, 2 .
and having the same asymptotic behaviour as the solution u(•) of (1). The matrices A i (•) -(i = 1, 2) -are two adequates matrices satisfying : A 1 (x) = A 2 (x) = A(x) for any x, ||x|| R and for R > 0 large enough. Next we construct a super-solution H 1 (•) of (P 1 ) and a subsolution H 2 (•) of (P 2 ) . Next we establish that H 1 (•) and H 2 (•) have the same asymptotic behavior. And the final result follows from the comparison principle [START_REF] Crandall | Lions User's guide to viscosity solutions of second order partial differential equation Bull[END_REF], [START_REF] Protter | Principles in Differential Equations[END_REF].

II -Preliminary results preparing to justify the main assumption (H).

Let us give two real positive numbers α and β, 0

< α < β such that N 2 > β α . Let us set Q(α, β) = M ∈ S N ×N + / α||x|| 2 (M x, x) β||x|| 2 , ∀x ∈ R N
where S N ×N + stands for the set of symmetric definite positive matrices. For any x and y belonging to R N , (x, y) stands for the inner product of R N and ||x|| the associated norm of x. Let us give a function A : x -→ A(x) ∈ Q(α, β). In order to simplify the text we note

A(x) ∈ Q(α, β) ∀x ∈ R N or A(•) ∈ Q(α, β).
We have the following result.

Theorem 1. Let E be a subset of R N . Let ∧(•) be a function satisfying N.α 2β ∧(x) N.β 2α , ∀x ∈ E ⊆ R N \ {0}.
Then for any x ∈ E there exists an uncountable sub-set M(x) of Q(α, β) such that for any

A(x) ∈ M(x), T r A(x) 2 ||x|| 2 . A(x).x, x = ∧(x) ∀x ∈ E.

This means that ∧(•) is the spectral dispersion of A(•).

Proof . To proove this result we need two steps.

First step. For any x ∈ E let us give a partition

I 1 (x), I 2 (x), I 3 (x) of the set [1, 2, • • • , N ]. Let us set γ j (x) := i∈I j (x)
x 2 i , n j = card I j (x) , ∀j = 1, 2, 3 .

First, we look for a diagonal matrix A(•) belonging to Q(α, β) such that for any

x ∈ E a ii (x) = d j , ∀i ∈ I j (x) , ∀j ∈ [1, 2, 3] .
The unknown real numbers d j satisfies α d j β. Let us give an arbitrary function θ(•) such that αN θ(x) βN , ∀x ∈ E. The real numbers d j satisfy the following equations :

(3)

T rA := θ = 3 i=1 n i .d i , 3 i=1 λ i .d i = θ 2∧
where

∧(x) = T r A(x) 2 (A(x).x, x) ||x|| 2 and λ i (x) = γ i (x) ||x|| 2 , 3 i=1 λ i = 1
To solve the equations (3) we consider the following problem for any fixed x ∈ E :

(P) : inf J(d) = 3 i=1 d 2 i / d = (d 1 , d 2 , d 3 ) , α d i β , 3 i=1 n i d i = θ , i λ i d i = θ 2∧
This problem has a unique solution. So we found a diagonal matrix A(•) that the spectral dispersion is ∧(•).

Second step. To find an unreduced form of A(•), we introduce an arbitrary orthogonal transformation whose the matrix is B(•). Let us set θ(x) := θ B -1 (x).x and ∧(x) = ∧ B -1 (x).x , where θ(•) is the arbitrary function introduced in the first step. We denote by D(x) the diagonal matrix founded in the previous step and corresponding to the two functions θ(x) and ∧(x). After some elementary computations the matrix A(x) = B -1 (x).D B(x).x .B(x) satisfies :

∧(x) = ∧ A (x) := T r A(x) 2 (A(x).x, x) ||x|| 2
∀x ∈ E and thus A(x) solve our problem. In addition

x -→ A(x) is regular in R N \ {0}.
For any A(•) ∈ Q(α, β) we denote by ∧(A)(•) the associated spectral dispersion. There is no evident link between the asymptotic behavior of A(•) and the asymptotic behavior of

∧(A)(•) = ∧(•).
The following results show this fact.

Corollary 2. For any k ∈ N α β , N β α there exists a non constant matrix A(•) belonging to Q(α, β) such that ∧(A)(x) = k, ∀ x = 0. In addition A(•) does not have a limit when ||x|| goes to infinity. In fact we can prove a more precise result. Proposition 3. There exists a matrix A(•) having oscillating coefficients and such that ∧(A)(x) = constant for any x.

Proof . First, we are going to construct a such matrix in R 3 , and next we give its extension in R N . For this let us set y := (t, x) = (t, x 1 , x 2 ) ∈ R 3 . Let us give two functions y -→ a(y) such that 0 < 1 a(y) 2, ∀ y, for instance, and x -→ δ(x) = sin x 1 . sin x 2 . Let us set

γ(x) :=    δ(x) 2 x 1 .x 2 ||x|| 2 ∀ x = (x 1 , x 2 ) ∈ R 2 , x = 0; 0 if x = 0
The searched matrix is

A 0 (y) =   a(y) + γ(x) λ(x) 0 λ(x) a(y) -γ(x) 0 0 0 a(y)   where λ(x) = - δ(x) 2 . x 2 1 -x 2 2 ||x|| 2 , ∀ x ∈ R 2 , x = 0 and λ(0) = 0. Indeed after some computations we obtain that ∧(A 0 )(y) := ∧(y) = 3 2 , ∀ y ∈ R 3 .
In the case N > 3 we chose a(y) = a 0 , ∀ y ∈ R 3 and, for instance, the searched matrix is

A =        A 0 0 • • • 0 0 0 A 0 • • • 0 0 . . . . . . . . . . . . . . . 0 0 • • • A 0 0 0 0 • • • 0 I       
where I is some identity matrix (n, n).

Proposition 4 . There exists a definite positive matrix A such that x -→ ∧(A)(x) is an oscillating function as ||x|| goes to infinity.

Proof . We can chose the following example

A(y) = A(x, t) =   k + λ 2 (x) λµ 0 λµ k + µ 2 (x) 0 0 0 k   where y = (x, t) = (x 1 , x 2 , t) ∈ R 3 , k = constant > 0, λ(x) = x 2 ||x|| cos(||x||) + 2 , µ(x) = x 1 ||x|| cos(||x||) + 2 .
We have

∧(A)(y) = ∧(y) = 3k + (cos(||x||) + 2) 2 2k
. This case of ∧(•) is interesting for the section III-B.

Approximation lemma. Let us give two regular matrices A 1 (•) and A 2 (•) belonging to Q(α, β). Then for any R 1 and R 2 , 0 < R 1 < R 2 there exists a regular matrix A(•) belonging to Q(α, β) such that :

A(x) = A 1 (x) ∀x, ||x|| R 1 , A 2 (x) ∀x, ||x|| R 2 .
In addition if d

∧ A 1 (x) c ∀x, ||x|| R, d ∧ A 2 (x) c ∀x, ||x|| R, we have d ∧ A (x) c ∀x, with R 1 < R < R 2 .
Proof. Let us give a regular increasing function Ψ : R + -→ [0, 1] such that Ψ(t) = 0, ∀t R 1 ; Ψ(t) = 1, ∀t R 2 . Let us set ϕ(x) = Ψ(||x||). Then we are going to prove that the matrix A(x) = 1 -ϕ(x) A 1 (x) + ϕ(x)A 2 (x) is the matrix that is our solution. Indead A(•) is regular and satisfies α||x|| 2 A(x).x, x β||x|| 2 and thus A(•) ∈ Q(α, β). The last result follows from the following remark : for any real numbers (a

1 , b 1 , a 2 , b 2 , c) ∈ (R +, * ) 5 such that a 1 b 1 c, a 2 b 2 c we have ta 1 +sa 2 tb 1 +sb 2 c, for any (t, s) ∈ (R + ) 2 such that tb 1 + sb 2 > 0.
The second inequality can be established in the same way.

Proposition 5. Let M be a symmetric positive definite matrix. Let us consider the halfstraight line of matrices

D(O, M ) = B/B = t.M , t > 0 . Then we have D(O, M ) ∩ Q(α, β) = ∅ if and only if β α λ N (M ) λ 1 (M )
. In addition we have

D(O, M ) ∩ Q(α, β) = B = t.M / t ∈ α λ 1 (M ) , β λ N (M )
.

If β α = λ N (M ) λ 1 (M ) we have D(O, M ) ∩ Q(α, β) = B = α λ 1 (M ) .M = B = β λ N (M ) .M .
And in this case D(O, M ) is called an extremal ray passing through the zero matrix O.

Proof . It is sufficient to remark that tM belongs to Q(α, β) if and only if

α t λ 1 (M ) • • • λ N (M ) β t .
Let us consider the set P of supporting hyperplanes of Q(α, β) passing through the zero matrix O. We set :

Q c (α, β) := P ∈P P ∩ Q(α, β) = T ∈ Q(α, β) / α = λ 1 (T ) λ i λ N (T ) = β i = 2, • • • , N -1
Theorem 6. Let V be a (N, N )-symmetric matrix. Then there exists a matrix A belonging to Q(α, β) such that T r(A.V ) = 0 if and only if (4)

   βλ N (V ) -αλ 1 (V ) βλ 1 (V ) -αλ N (V ) 0 (β -α)|||V ||| 2 βλ N (V ) -αλ 1 (V ) T rV if T rV 0 (β -α)|||V ||| 2 βλ 1 (V ) -αλ N (V ) T rV if T rV 0
Proof . Let us consider the matrices plan Vect{I, V } generated by the two matrices I and V . We have Vect{I,

V } ∩ Q(α, β) ∩ Q c (α, β) = {W 1 , W 2 } ⊆ Q c (α, β) i.e. λ 1 (W i ) = α, λ N (W i ) = β i = 1, 2 and α λ j (W i ) β, ∀ i = 1, 2 ; ∀ j = 2, • • • , N -1.
We have aI + bV = W 1 with a and b belonging to R. This entails that V and W have the sames eigenspaces. We equip then R N with the basis of the eigenvectors of V . We obtain

a = αλ N (V ) -βλ 1 (V ) λ N (V ) -λ 1 (V ) , b = β -α λ N (V ) -λ 1 (V ) > 0 , α λ i (W 1 ) = a + bλ i (V ) β, i = 2, • • • , N -1. And thus T r(W 1 .V ) = aT rV + b|||V ||| 2 .
In the same way we have cW 1 + dV = W 2 . The matrices W 1 , V and W 2 have the same eigenspaces. And as previously we obtain :

d = β 2 -α 2 βλ 1 (V ) -αλ N (V ) , c = βλ N (V ) -αλ 1 (V ) αλ N (V ) -βλ 1 (V ) , α λ i (W 2 ) = cλ i (W 1 ) + dλ i (V ) β , i = 2, • • • , N -1. Since VectV Q(α, β) -Q(α, β) = ∅, we have c 0. And thus T (V.W 2 ) = acT rV + (d + bc)|||V ||| 2 i.e. after some calculations T r(V.W 2 ) = βλ N (V ) -αλ 1 (V ) λ N (V ) -λ 1 (V ) .T rV - (β -α).|||V ||| 2 λ N (V ) -λ 1 (V ) .
It is easy to see that a necessary and sufficient condition that there exists

A ∈ Q(α, β) such that T r(A.V ) = 0 is that we have (5) T r(W 1 .V ).T r(W 2 .V ) 0, and c 0.
And (5) is equivalent to (4).

Remarks 1. 4) is satisfied, where S N ×N stands for the set of symmetric matrices.

1) Let us set

X := M ∈ S N ×N / T r(M.V ) = 0 . Then any M belonging to X ∩ Q(α, β) satisfies T r(V.M ) = 0 that is to say there exist many M belonging to Q(α, β) such that T r(M.V ) = 0 if (
2) Let V and R be two (N, N )-symmetric matrices. We can prove that there exists

A ∈ Q(α, β) such that T r(AV ) = T r(AR) = 0 if we have : (6)            |||V ||| 2 .|||R||| 2 -(R : V ) 2 = 0 and 1 - 1 N |||(T rV ).R -(T rR).V ||| 2 |||V ||| 2 .|||R||| 2 -(R : V ) 2 1 N - (α + β) 2 + (N -2)(α 2 + β 2 ) 2 (α + β) 2 (α 2 + β 2 ) + (N -2)(α 2 + β 2 ) 2
The proof follows from a straightforward calculation and classical idea.

Application. Let B(O, ε) be the open ball of R N , of radius ε, centred at O. Let us give a C 2 bounded function ϕ : R N \ B(O, ε) -→ R +, * such that ϕ(x) ϕ 0 > 0 ∀ x,
where ϕ 0 is a real positive number. Let us define the following matrix

x -→ M (ϕ)(x) := D 2 ϕ -γ(x)∇ϕ(x) ⊗ ∇ϕ(x) + kH x, ∇ϕ(x)
where

H x, ∇ϕ(x) ij = ϕ(x) 2 x i ||x|| 2 . ∂ϕ ∂x j + x j ||x|| 2 . ∂ϕ ∂x i ij , k is a real number and γ(•) is a given function defined on R N \ B(O, ε).
In section IV we use the following corollary to justify our essential hypothesis (H).

Corollary 7. Suppose that the matrix M (ϕ) verify the differential inequalities (4) of the theorem 6. Then there exists

x -→ A(x) ∈ Q(α, β) such that -T r(AD 2 ϕ) -γ(x) A∇ϕ, ∇ϕ + k ||x|| 2 A∇ϕ, x = 0 ∀ x ∈ R N \ B(O, ε)
Proof . For any B 1 and B 2 belonging to Q(α, β), we have :

(B 1 V, V ) = T r(B 1 .C 1 ) ∀ V = (v 1 , • • • , v N ) ∈ R N with C 1 = V ⊗ V = (v i .v j ); and T r B 2 .H(x, ∇ϕ) = 1 ||x|| 2 B 2 ∇ϕ, x
From this we apply the theorem 6 to obtain the result.

Remark 2. If we add the additional condition that ϕ(•) is the spectral dispersion of the matrix A that we are looking for, we can use (6) instead of corollary 7, with 

V = M (ϕ) and R = I -2 ϕ(x) ||x|| 2 x ⊗ x, to conclude that there is A belonging to Q(α, β) such that T r(A.V ) = T r(A.R) = 0 if V and R satisfy (6). Remark 3. Given a matrix x -→ A(x) ∈ Q(α, β),
sup ||x|| R ϕ(x) -lim R→+∞ inf ||x|| R ϕ(x) > 0 ) -and such that we have (7) -T r(AD 2 ϕ) -γ(x) A∇ϕ, ∇ϕ + k.ϕ ||x|| 2 A∇ϕ, x = 0 for any x, ||x|| > R > 0.
Since any constant function is a solution of (7), it seems difficult to answer this question in general. However there are some encouraging examples which show that (7) has nontrivial solutions in general. A particular case of (7) is the following equation that we will encounter later -(section IV)-:

(8) -u + Log ||x|| 2 .|∇u| 2 + u x.∇u ||x|| 2 = 0, ||x|| > R.
Proposition 8. The equation ( 8) has many nontrivial solutions, for R > 0 large enough.

Proof . The result is technical, but it is straightforward. So we will give the essential steps of the proof. We construct a family of solutions u(•) in the form u(x) = ϕ Log(||x|| 2 ) .

We establish an o.d.e. satisfied by the function t -→ ϕ(t), where t plays the role of Log(||x|| 2 ) > t 0 > 1. We solve this o.d.e. by setting

ϕ(t) = f v(t) where (9) f (σ) = - 2 c Arctg σ c + d ∀ σ σ 0 > 0 with c > 0 and d > π 2 + N -1 2 . The function v(•) is solution of the following Cauchy-Lipschitz problem : (10) v (t) = G t, v(t) , ∀ t t 0 > 1 v(t 0 ) = v 0 , v 0 > σ 0 > 0 where G(t, σ) = t t 0 g(θ) dθ - N -2 2 σ + F (σ) ∀ σ t 0 and ∂G ∂σ (t, σ) N -2 2 + π 2 + d ; g(•)
is an arbitrary continuous function with compact support and F (•) is a primitive of f (•) :

F (σ) = - 2σ c Arctg σ c + d.σ + 1 c Log 1 + σ c 2 .
Thus we obtain :

(11) u(x) = - 2 c Arctg v Log(||x|| 2 ) + d is a solution of equation (8) in R N \ B(0, R)
where c,d and g are somewhat arbitrary datas.

III -Isotropic asymptotic behavior. This section gives a new presentation of the results already established in [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] and allows us to understand the classification of the behavior at infinity of matrices and associated solutions. As we have already mentioned, the asymptotic behavior of the solution u(•) of ( 12)

   -T r A(x)D 2 u = f (x) in R N , lim ||x||→+∞ u(x) = 0 , u(x) > 0 ∀ x , with f (x) 0 , supportf = compact,
depends on the behavior of the function

∧(A)(x) = T r A(x) 2 ||x|| 2 (A(x).x, x)
. From the results of section II there is no evident links between the behavior of A(•) and that of ∧(A)(•). However there are some precise situations to be distinguished.

First case. The matrix A(•) is constant. By a change of variables x = B -1 y with B = √ A -1 , the equation (12) becomes (13) -ω(y) = g(y) = f (B -1 y) u(x) = ω(Bx) , lim ||y||→+∞ ω(y) = 0 , ω(y) > 0 .
For (13) the asymptotic behavior of ω(•) is known -(cf [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] for instance) -:

ω(y) c ||y|| N -2 . And thus u(x) c ||x|| N -2 , since ∧(I)(x) = N 2 ∀ x.
Second step. The matrix A(•) is not constant. In this case we see that it suffices to examine the behavior at infinity of A(•) and ∧(A)(•) [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF]. In the following our aim is to examine the oscillations of A(•) and

∧(A)(•). The matrix A(•) belongs to Q(α, β). Let B be a constant matrix belonging to Q(α, β). For any x, B -1 A(x) has n eigenvalues λ i (x) = λ i (B -1 A) such that α β λ 1 (x) • • • λ N (x) β α
where for any x ∈ R N , any i,

1 i N , λ i (x) = λ i B -1 A(x)
stands for the i th eigenvalue of the following problem :

A(x).r = λ i (x)B.r
where r ∈ R N is an eigenvector associated to λ i (x). For any R > 0, we introduce the following function

J R : Q(α, β) -→ R + defined by J R (B) = sup ||x|| R λ N B -1 A(x) -inf ||x|| R λ 1 B -1 A(x) . Proposition 9. The set of functions J R (•) R is 2β 2 α 3 -lipschitz. Proof . It is sufficient to prove that the function B -→ sup ||x|| R λ N B -1 A(x) and B -→ inf ||x|| R λ 1 B -1 A(x)
are uniformly lipschitz. For any y = 0 we have

B 1 y, y A(x)y, y - B 2 y, y A(x)y, y |||B 1 -B 2 ||| α or again - |||B 1 -B 2 ||| α + inf y =0 B 1 y, y A(x)y, y inf y =0 B 2 y, y A(x)y, y inf y =0 B 1 y, y A(x)y, y + |||B 1 -B 2 ||| α i.e. ∀ x ∈ R N , - |||B 1 -B 2 ||| α + 1 λ N B -1 1 A(x) 1 λ N B -1 2 A(x) 1 λ N B -1 1 A(x) + |||B 1 -B 2 ||| α .
This implies

sup ||x|| R λ N B -1 1 A(x) -sup ||x|| R λ N B -1 2 A(x) β α 2 |||B 1 -B 2 ||| α
From the same way we show that

inf ||x|| R λ 1 B -1 1 A(x) -inf ||x|| R λ 1 B -1 2 A(x) β α 2 |||B 1 -B 2 ||| α
and thus the result follows : for any R > 0

J R (B 1 ) -J R (B 2 ) 2β 2 α 3 |||B 1 -B 2 ||| Proposition 10. J R (•) converges uniformly to J ∞ (•) in Q(α, β) as R goes to infinity. In addition J ∞ (•) is 2β 2 α 3 -lipschitz and there exists B ∞ belonging to Q(α, β) such that, for any R > 0, we have 0 J ∞ (B ∞ ) J ∞ (B) J R (B) , ∀ B ∈ Q(α, β).
Proof . It is easy. We use Ascoli-Arzelà's theorem, the compactness of Q(α, β) and the fact that R -→ J R (•) is decreasing. Thus it follows that there exists

B ∞ ∈ Q(α, β) such that 0 J ∞ (B ∞ ) = inf B∈Q(α,β) J ∞ (B) J R (B) , ∀ B ∈ Q(α, β). Definition 1. The real number J ∞ (B ∞ ) = inf B∈Q(α,β) J ∞ (B)
is called the amplitude of the oscillations of the spectrum of A(•) as ||x|| goes to infinity.

Study of a classification :

We have two cases to examine.

A -First case : the amplitude J ∞ (B ∞ ) is null. We have :

0 = J ∞ (B ∞ ) J R (B ∞ ) ∀ R > 0 , (14) lim R→+∞ sup ||x|| R λ N B -1 ∞ A(x) = γ 1 ∞ lim R→+∞ inf ||x|| R λ 1 B -1 ∞ A(x) = γ 2 ∞ , since the sequences R -→ sup ||x|| R λ N B -1 ∞ A(x) and R -→ inf ||x|| R λ 1 B -1 ∞ A(x)
are monotonic and bounded. Thus we have :

lim R→+∞ J R (B ∞ ) = γ 1 ∞ -γ 2 ∞ = J ∞ (B ∞ ) = 0 , that is to say (15) γ ∞ := γ 1 ∞ = γ 2 ∞ Proposition 11. Let us assume that J ∞ (B ∞ ) = 0. Then we have 1) lim R→+∞ sup ||x|| R T r B -1 ∞ A(x) = N γ ∞ , 2) lim R→+∞ sup ||x|| R |||B -1 ∞ A(x) -γ ∞ .I||| = 0, lim R→+∞ sup ||x|| R |||A(x) -γ ∞ B ∞ ||| = 0 .
Proof . Le us prove the first result. We have :

N. inf ||x|| R λ 1 B -1 ∞ A(x) inf ||x|| R T r B -1 ∞ A(x) sup ||x|| R T r B -1 ∞ A(x) N. sup ||x|| R λ N B -1 ∞ A(x)
By definition of J R (•), we obtain :

0 sup ||x|| R T r B -1 ∞ A(x) -inf ||x|| R T r B -1 ∞ A(x) N.J R (B ∞ ) .
And from ( 14), (15) and the proposition 10, the first resultat is obtained. Let us prove the second result. By the very definition of λ i B -1 ∞ A(x) , i = 1, . . . , N , we have :

∀ y = 0 , inf ||x|| R λ 1 B -1 ∞ A(x) A(x).y, y B ∞ y, y sup ||x|| R λ N B -1 ∞ A(x) ,
and for any

i 0 ∈ [1, . . . , N ] (16) ∀ x inf ||t|| R λ 1 B -1 ∞ A(t) λ i 0 B -1 ∞ A(x) sup ||t|| R λ N B -1 ∞ A(t) .
And thus, for any y = 0 and any x, we have :

A(x).y, y -λ i 0 (x) B ∞ y, y B ∞ y, y J R (B ∞ ) , 1 β . A(x) -λ i 0 (x)B ∞ y, y ||y|| 2 J R (B ∞ ) ,
that is to say, for any x, we obtain

sup y =0 A(x) -λ i 0 (x)B ∞ y, y ||y|| 2 βJ R (B ∞ ) .
And since the matrix A(x) -λ i0 (x)B ∞ is symmetric we obtain

sup ||x|| R |||A(x) -λ i 0 (x)B ∞ ||| β.J R (B ∞ ) .
This entails

sup ||x|| R |||A(x) -γ ∞ B ∞ ||| β.J R (B ∞ ) + sup ||x|| R λ i0 (x) -γ ∞ .|||B ∞ ||| .
And from ( 16), ( 14) and (15) we obtain

(17) lim R→+∞ sup ||x|| R |||A(x) -γ ∞ B ∞ ||| = 0 .
And the second result 2) follows from

|||B -1 ∞ A(x) -γ ∞ I||| ≡ |||B -1 ∞ A(x) -γ ∞ B ∞ ||| |||B -1 ∞ |||.|||A(x) -γ ∞ B ∞ ||| .
Corollary 12. We have

lim R sup ||x|| R T r B -1 ∞ A(x) 2 ||x|| 2 . B -1 ∞ A(x).x, x = N 2 = lim R sup ||x|| R T r Â(x) 2 ||x|| 2 . Â(x).x, x where Â(x) = BA(B -1 x)B , B = B -1 ∞ .
Proof . For any x we have :

B -1 ∞ A(x).x, x = B -1 ∞ A(x) -γ ∞ I .x, x + γ ∞ I.x, x .
This entails

B -1 ∞ A(x).x, x ||x|| 2 γ ∞ -sup ||x|| R |||B -1 ∞ A(x) -γ ∞ I||| and B -1 ∞ A(x).x, x ||x|| 2 γ ∞ + sup ||x|| R |||B -1 ∞ A(x) -γ ∞ I||| .
Then it is easy to obtain

1 2 sup ||x|| R T r B -1 ∞ A(x) . γ ∞ + sup ||x|| R |||B -1 ∞ A(x) -γ ∞ I||| -1 sup ||x|| R T r B -1 ∞ A(x) 2 ||x|| 2 B -1 ∞ A(x)x,x 1 2 sup ||x|| R T r B -1 ∞ A(x) . γ ∞ -sup ||x|| R |||B -1 ∞ A(x) -γ ∞ I||| -1
.

Thanks to proposition 11 and passing to the limit as R goes to infinity the first result follows. Now let us prove the second equality. We have

BAB -B -1 ∞ A = BAB -γ ∞ I + γ ∞ I -B -1 ∞ A = B A -γ ∞ B -2 B + γ ∞ I -B -1 ∞ A = B A -γ ∞ B ∞ B + γ ∞ I -B -1 ∞ A ,
and thus

|||BAB -B -1 ∞ A||| |||B||| 2 |||A -γ ∞ B ∞ ||| + |||γ ∞ I -B -1 ∞ A||| .
From this last inequality and using the proposition 11, we prove the second equality in the same way as in the first one.

The following definition is justified by the previous result. 

u(x) ∼ c ||x|| N -2
for ||x|| large enough.

Proof . In (12) we use the following change of variables :

x = B -1 y i.e. y = Bx with B = B -1 ∞ .
We obtain the following equation

(18) -T r Â(y)D 2 ω(y) = f (B -1 y) , u(x) = ω(B.x) , lim ||y||→+∞ ω(y) = 0 , ω(y) > 0 ,
where

Â(y) = B.A B -1 y .B .
From proposition 11 and corollary 12 the matrix Â(y) satisfies

T r Â(y) 2 ||y|| 2 . Â(y).y, y = N 2 , ∀x , ||x|| R .
We conclude by the result of [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF], [START_REF] Meyyers | The exterior Dirichlet problem for second order elliptic partial differential equations[END_REF] and the fact that u(•) and ω(•) have the same asymptotic behaviour.

B -Second case : the amplitude J ∞ (B ∞ ) is positive. The matrix A(•) is not constant at infinity. We call it oscillating matrix. The amplitude of its oscillations is measured by the real number J ∞ (B ∞ ). We have two possibilities to examine.

i) the behavior of the spectral dispersion is radial that is to say there exists a radial function

x -→ γ ||x|| 2 such that R -→ ϕ(R) = sup ||x|| R ∧ (x) -γ ||x|| 2 verifies : (18.1) lim R ϕ(R) = 0
with x -→ γ ||x|| 2 is oscillating at infinity. In this case, under some hypothesis about ϕ(•), the behavior of the solution u(•) of ( 12) is known [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] : there exists a real number R > 0 large enough such that for any x, ||x||

R we have u(x) ∼ c.v(||x|| 2 ). The function v(•) is given explicitly by (18.2) v(||x|| 2 ) = +∞ ||x|| 2 exp - s R 2 γ(σ) σ dσ ds
For more details we can see Theorem 3.1 and remark 4.1 hereafter.

ii) the function of spectral dispersion x -→ ∧(x) is anisotropically oscillating at infinity. In the sequel our goal is to study this case. In the sequel we consider the constructed matrix  and the associated equation (18). To simplify the notations we denote Â(•) by A(•) and we identify (18) to (12 

) with f (B -1 •) identified to f (•).
(18.3) -T rA B (y)D 2 ω(y) = f √ B.y ω(y) > 0 , lim ||y||→+∞ ω(y) = 0 , A B (y) = √ B -1 A √ B.y . √ B -1
have the same asymptotic behaviour since u(x) = ω √ B -1 .x .

Theorem 13.1. Without any hypothesis about ∧(•), for any ε > 0, there exist R 0 := R 0 (ε) > 0,

c 1 := c 1 (ε) > 0, c 2 := c 2 (ε) > 0 such that the solution u(•) of (12) satisfies : for any x, ||x|| R 0 c 1 ||x|| 2(∧ ∞ -1+ε) u(x) c 2 ||x|| 2(∧ ∞ -1-ε)
where

∧ ∞ = inf B∈Q(α,β) lim R→+∞ sup ||x|| R ∧(A, B)(x) ∧ ∞ = sup B∈Q(α,β) lim R→+∞ inf ||x|| R ∧(A, B)(x) with ∧(A, B)(x) = T r A B (x) 2 ||x|| 2 . A B (x).x,x
where

A B (x) = √ B -1 .A √ B.x . √ B -1 .
Before to give the proof of this result, let us remark that from the very definition of ∧(A, B)

we have ∧ ∞ > 1 since N 2 > β α .
Proof . Let us prove the right hand side inequality. From the very definition of ∧ ∞ we can see that for any ε > 0 there exist B 0 = B 0 (ε) ∈ Q(α, β) and r 0 = r 0 (ε) such that : for any

x, ||x|| r 0 we have ∧ ∞ -ε ∧(A, B 0 )(x).
After the change of variables y = B -1 0 .x, we first prove our inequality for the function ω(•) defined by

u(x) = ω B -1 0 .x or ω(y) = u B 0 .y .
This function satisfies

(18.3.1) -T r A B0 (x)D 2 ω(x) = f √ B 0 .x ω(x) = ω ε (x) > 0 , ω(x) = u √ B 0 .x , lim ||x||→+∞ ω(x) = 0 ,
since problems (12) and (18.3) have the same asymptotic behaviour. For this let us set, for any x ∈ R N ,

f (x) = sup f ( √ C.x) 4(A C x, x) / C ∈ Q(α, β) .
There exists a radial positive function h(•), with compact support [0, ρ 2 0 ] such that h(||x|| 2 ) f (x) ∀x ∈ R N . Increasing r 0 if necessary, we give the following positive, continuous and increasing function :

(18.3.2) ∧(r) =    ∧ ∞ -ε , ∀ r r 2 0 , l(r) , ∧ ∞ -ε l(r) αN 2β > 1 , ∀ r < r 2 0 with l(||x|| 2 ) ∧(A, B 0 )(x) ∀ x , ||x|| r 0 ,
and let us consider ω rad (•) solution of the following differential equation

(18.3.3) -1 σ(r) σ(r)ω rad (r) = h(r) , ω rad (0) = 0 , ω rad (r) > 0 , lim r→+∞ ω rad (r) = 0 , with σ(r) = exp r 1 ∧(θ) θ dθ .
From the very definition of ∧(•) we have ∧(||x|| 2 ) ∧(A, B 0 )(x) ∀ x, and using the same methode as in section IV -B1 -first step or as in [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF], we can prove that ω r (x) := ω rad (||x|| 2 ) is a super-solution of (18.3) that is to say :

(18.3.4) -div A B0 D 2 ω r (x) f ( √ B 0 .x) , ω r (x) > 0 , lim ||x||→+∞ ω r (x) = 0 .
And from the comparison principle [START_REF] Crandall | Lions User's guide to viscosity solutions of second order partial differential equation Bull[END_REF], [START_REF] Protter | Principles in Differential Equations[END_REF], we obtain :

(18.3.5) ∀ x ∈ R N , 0 ω(x) ω r (x) = +∞ ||x|| 2 1 σ(θ) θ 0 σ(t)h(t) dt dθ .
But we have :

∀ θ , θ r 0 (ε) > ρ 0 , θ 0 σ(t)h(t) dt = ρ 0 0 σ(t)h(t) dt ||σ|| ∞ .||h||| ∞ .ρ 0 c 0 (h) where c 0 (h) is a constant independant of ε; ∀ θ , θ r 0 (ε) > ρ 0 , σ(θ) = exp θ 1 ∧(r) r dr = exp r 0 1 l(r) r dr . θ r 0 ∧ ∞ -ε .
And thus for any x, ||x|| r 0 we obtain :

0 ω(x) c 0 (h).r ∧ ∞ -ε 0 exp r0 1 l(r) r dr . 1 ||x|| 2(∧ ∞ -1-ε) , 0 ω(x) c ε .c 0 (h) ||x|| 2(∧ ∞ -1-ε) , ∀ x , ||x|| r 0 (ε) .
By the reverse change of variables x = B -1 0 t we have u(t) = ω B -1 0 .t ; and we obtain

u(t) c ε .c 0 (h) || B -1 0 t|| 2(∧ ∞ -1-ε)
.

And since

√ α β 2 I B -1 0 √ β α 2 I, there exists c(α, β) > 0 such that (18.3.6) u(t) c ε .c(α, β).c 0 (h) ||t|| 2(∧ ∞ -1-ε) for any t, ||t|| 2 r 2 0 . α 2 √ β .
In the same way we prove the left hand side inequality.

Let us set ∧

B (r) = inf ||x|| r ∧(A, B)(x), ∀ r 0.
Corollary 13.2 Let us suppose that the matrix A(•) is such that the decreasing function

r -→ ϕ(r) = sup B∈Q(α,β) [∧ ∞ -∧ B (r)] satisfies the following : exp +∞ 1 ϕ(r)
r dr < +∞. Then we obtain the following result : there exist some constants c 1 (α, β, h) > 0, r 0 > 0, such that

u(x) c 1 (α, β, h) ||x|| 2(∧ ∞ -1) ∀ x , ||x|| r 0 .
Proof : From our hypothesis we have, for any B ∈ Q(α, β)

∧ ∞ -ϕ(r) ∧ B (r) ∧(A, B)(x) , ∀ x , ||x|| r .
In (18.3.1) we use B instead of B 0 and in (18.3.2) we set ∧(r) := ∧ ∞ -ϕ(r) ∀ r 0. Then (18.3.5) becomes :

0 ω B (x) := ω(x) c 0 (h). +∞ ||x|| 2 dθ σ(θ) , ∀ ||x|| ρ 0 , with σ(θ) = θ ∧ ∞ .exp - θ 1 ϕ(r) r dr ,
that is to say 1) .

0 ω(x) exp +∞ 1 ϕ(r) r dr . c 0 (h) ||x|| 2(∧ ∞ -
That is to say

0 ω(x) c 1 (h) ||x|| 2(∧ ∞ -1) ,
where c 1 (h) is a constant independant on B ∈ Q(α, β). And as previously, (18.3.6) becomes

u(x) c(h).c(α, β) ||x|| 2(∧ ∞ -1) ∀ ||x|| > r 0 ,
for some r 0 > ρ 0 .

We have a similar result to estimate u(•) from below : u(x) c 2 (α, β, h) / ||x|| 2(∧∞-1) .

Remark 4.1 Contrary to what is stated in theorems 21 and 22 of [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF], the result obtained in [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] is the following : for any ε > 0 there exist r dr < +∞. And in this case the result of [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] follows from the same idea of corollary 13.2 i. e.

R 0 := R 0 (ε) > 0, c 1 (ε) > 0 and c 2 (ε) > 0 such that c 1 (ε)v 1 (||x|| 2 ) u(x) c 2 (ε)v 2 (||x|| 2 ) ∀ x , ||x|| R 0 with v 1 (||x|| 2 ) = +∞ ||x|| 2 exp - s R 2 γ(σ) + ε σ dσ ds v 2 (||x|| 2 ) = +∞ ||x|| 2 exp - s R 2 γ(σ) -ε σ dσ ds .

u(x)

∼ +∞ ||x|| 2 exp - s R 2 γ(σ) σ dσ ds
for ||x|| large enough.

IV -Anisotropic asymptotic behavior.

In the sequel we denote again by A(x) the matrix

Â(x) = B -1 ∞ .A √ B ∞ .x . B -1 ∞
, where B ∞ is given by proposition 10. From the very definition of A(•), the amplitude of its spectrum is positive. Let us set :

(18.4)        ∧ = lim R sup ||x|| R T r A(x) 2 ||x|| 2 A(x).x,x ∧ = lim R inf ||x|| R T r A(x) 2 ||x|| 2 A(x).x,x
Let δ 0 be a positive real number close enough to ∧ -∧ such that δ 0 > ∧ -∧. Let 2η 0 be a positive real number very small with respect to δ 0 -(∧ -∧) > 0. And let us give η > 0, 0 < η < η 0 -( arbitrary small) -. From (18.4) there exists R η = R ∞ such that for any x, ||x|| R ∞ we have (18.5)

∧(η) = ∧ -η ∧(x) ∧ + η = ∧(η)
where

∧(x) = T r A(x) 2 ||x|| 2 A(x).x, x .
Let us consider the operator

A(•) = ij a ij (x) ∂ 2 (•) ∂x i ∂x j . From operator A(•) we introduce a family of radial operators x ∈ R N -→ A r (x)(•) = d 2 (•) dr 2 + ∧(x) r d dr (•) = 1 r ∧(x) d dr r ∧(x) d dr (•) ,
where r > 0 and x -→ ∧(x) is the function of the spectral dispersion associated to the matrix A(x). The link between A(•) and A r (x)(•) is the following : for any regular and radial function Ψ(x) = ϕ(||x|| 2 ) we have

AΨ 4 ij a ij x i x j = ϕ (||x|| 2 ) + ∧(x) ||x|| 2 ϕ (||x|| 2 ) = A ρ (x)ϕ(ρ) /ρ=||x|| 2 .
Remark 5. Let us point out that for some technical reasons the variable r plays the role of ||x|| 2 , instead of ||x|| as usually.

A -Method of sub and supersolution.

Let us give a positive radial function r -→ g(r) which will be choosen later in a suitable way. For any -(but fixed)-x belonging to R N , with ||x|| large enough, we consider a family of radial problems :

(P x ) : (19) -A r (x)h(x, r) = -h (x, r) -∧(x) r h (x, r) = g(r) , r > 0 h (x, 0) = 0 , lim r→+∞ h(x, r) = 0 , h(x, r) > 0 where g satisfies +∞ 1
σ ∧ g(σ) dσ < +∞ with ∧ given by (18.4) section IV. The unique solution r -→ h(x, r) of ( 19) is given by

(20) h(x, r) := h g (x, r) = +∞ r 1 s ∧(x) s 0 σ ∧(x) g(σ) dσ ds . If ∧(•) = constant ∀ x , ||x|| R 0 , the function h g (x, ||x|| 2 ) taks the form h g (||x|| 2 ) = h(||x|| 2 ).
And let us point out that in this case x -→ h(||x|| 2 ) gives the behavior at infinity of the solution of (12) [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF]. So roughly speaking, our idea is to look for a subsolution σ, -( respectivement a supersolution σ)-of (12) in the form

(21) H(x) = H g (x) = h g (x, ||x|| 2 ) = h(x, ||x|| 2 ) .
How to construct these functions? For this it is sufficient to choose two functions g 1 and g 2 in a suitable way such that σ(•) = H g1 (•) and σ(•) = H g2 (•) have the same behavior as ||x|| goes to infinity. Next we establish the result thanks the comparison principle.

B-Construction of sub and supersolution of (12). B0 -Preliminary results.

Let us introduce the following functions that we need later. For any x ∈ R N , any r > 0 and any suitable positive function g(•) : R + -→ R + , we set

K 1 = K 1 (x, r, g) = +∞ r 1 s ∧(x) s 0 Log σ s .σ ∧(x) g(σ) dσ ds K 2 = K 2 (x, r, g) = +∞ r 1 s ∧(x) s 0 Log σ s 2 .σ ∧(x) g(σ) dσ ds K 3 = K 3 (x, r, g) = - 1 r ∧(x) s 0 Log σ r .σ ∧(x) g(σ) dσ .
To simplify the presentation we use the short notation K i , i = 1, 2, 3. Since g(•) 0 we have K 1 0, K 2 0 and K 3 0. Proposition 14. The following estimates are true for r > 0 large enough :

1) 0 -K 1 = k. r ∧+1 1 -r ∧+1 0 (∧ + 1)(∧ -1) . Log r r ∧-1 + 1 r ∧-1 2) 0 K 2 = k. r ∧+1 1 -r ∧+1 0 (∧ + 1)(∧ -1) . (Log r) 2 r ∧-1 + 1 r ∧-1 3) 0 K 3 = k. r ∧+1 1 -r ∧+1 0 ∧ + 1 . Log r r ∧-1 + 1 r ∧-1 where ∧ = ∧(x) and g(r) = k.χ [r0,r1] (r), k > 0 and χ [r0,r1] (r) = 1 if r 0 r r 1 and χ [r0,r1] (r) = 0 if r / ∈ [r 0 , r 1 ]. The proof is straightforward.
Proposition 15. Let us assume the spectral dispersion satisfies :

||∇ ∧ || L ∞ R N \B(0,R0) + ||D 2 ∧ || L ∞ R N \B(0,R0) c
for R 0 large enough. Then we have the following : for any ε > 0 there exist R ε R 0 and c ε > 0 such that (23)

K 2 . A(x)∇∧, ∇ ∧ + K 1 .T r A(x)D 2 ∧ + 4K 3 . A(x)∇∧, x c ε . ||g|| ∞ ρ ∧+1 1 -ρ ∧+1 0 ||x|| 2(∧(x)-1-ε)
for any x, ||x|| R ε , r = ||x|| 2 and for any positive function g(•) such that support g ⊆ x / ρ 0 ||x|| ρ 1 and where ∧ and ∧ are given by (18.4) section IV.

Proof . It follows easily from the proposition 14. Remark 6. Without another assumption on ∧(•) the left-hand side of (23) tends to zero as ||x|| goes to infinity. But we will see that the behavior of (23) at infinity is not sufficient to prove our result. So we will assume that the left-hand side of (23) goes to zero faster than 1 ||x|| 2(∧(x)-1-ε) as ||x|| goes to infinity. The results of section II allow us to show that the supposed assumptions are suitable for a large classe of matrices.

From [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] and theorem 13.1 and for some fixed ε > 0 small enought, we have

a ||x|| 2(∧-1+ε) u(x) b ||x|| 2(∧-1-ε)
for ||x|| sufficiently large and with 0 < a < b. These inequalities prove that u(•) has a behavior of the form u(x) = c(x) ||x|| δ(x) where the function δ(•) and c(•) satisfy :

0 < c 0 c(x) c 1 , 2(∧ -1) δ(x) 2(∧ -1) , Log c 0 -Log u(x) Log (||x||) δ(x) Log c 1 -Log u(x) Log (||x||) .
That is to say δ(x) = -Log u(x) Log (||x||) for ||x|| large enough.

Proposition 16. Let A(•) be a matrix belonging to Q(α, β). Let us assume that, for any positive continuous function f with compact support, the solution

u(•) = u f (•) of -T r(AD 2 u f ) = f in R N u f (x) > 0 ∀ x , lim ||x||→+∞ u f (x) = 0
has the following asymptotic behavior :

a(f ) ||x|| δ f (x) u(x) b(f ) ||x|| δ f (x) , ∀ x , ||x|| R f > 0 with 0 < a(f ) b(f ) , b(f ) a(f ) γ , b(f ) ||u|| ∞ 2 Then δ f (•) is independant of f and satisfies N. α β -2 δ f (•) N. β α -2
Proof . We need two steps.

1) First step : asymptotic behavior of the somme of two solutions. Let us consider

(24) -T r(AD 2 u i ) = f i in R N , i = 1, 2 u i (x) > 0 , lim ||x||→+∞ u i (x) = 0 . Let us set δ i (•) = δ fi (•), ω(•) = u 1 (•) + u 2 (•), g = f 1 + f 2 , a i = a(f i ), b i = b i (f ), R i = R fi . For any x, ||x|| sup R 1 , R 2 , R g we have :        a(g) ||x|| δ g ω(x) b(g) ||x|| δ g a i ||x|| δi u i (x) b i ||x|| δi , i = 1, 2 .
Since ω = u 1 + u 2 , we obtain

a i ||x|| δi u i (x) b(g) ||x|| δg . There exists R sup R 1 , R 2 , R g such that δ i (x) δ g (x) ∀ x , ||x|| R .
This entails that we have inf δ 1 (x), δ 2 (x) δ g (x) . As we have

(25) a(g) ||x|| δ g ω = u 1 + u 2 b 1 ||x|| δ 1 + b 2 ||x|| δ 2 b 1 + b 2 ||x|| inf(δ1,δ2)
we obtain δ g (x) inf δ 1 (x), δ 2 (x) for ||x|| sufficiently large. Thus we have

(26) δ g (x) = inf δ 1 (x), δ 2 (x) .
And since operator -T r(AD 2 •) is linear, we have :

(27) δ kf (x) = δ f (x) , ∀ k > 0 .
And thus from (26) and (27) we obtain (28)

δ kf2+f1 (x) = inf δ 1 (x), δ 2 (x)
∀ k > 0 and ||x|| large enough .

2) Second step : a perturbation result.

For any ε > 0 we set g ε = f 1 + εf 2 ; and u ε 2 (x) = εu 2 (x) is the solution of (24) with εf 2 instead of f 2 . From (28) we obtain

δ g ε (x) = inf δ 1 (x), δ 2 (x) = δ g (x). From (25) we can write (29) a(g ε ) ||x|| δ1 a(g ε ) ||x|| δg u 1 (x) + εu 2 (x) b 1 ||x|| δ1 + εb 2 ||x|| δ2 for ||x|| sufficiently large, since δ 1 (x) δ g (x). Consequently as b(g ε ) ||u 1 + εu 2 || ∞ 2 ||u 1 || ∞ -ε||u 2 || ∞ 2 ||u 1 || ∞ 4 ,
for ε sufficiently small, we have

β 0 a(g ε ) b(g ε ) ||u 1 || ∞ 4
and thus a(g ε )

||u 1 || ∞ 4β0
. Let us pass to the limit in (29) as ε goes to zero. We obtain

1 ||x|| δg ||u 1 || ∞ 4β 0 u 1 (x) b 1 ||x|| δ1 .
This entails, for ||x|| sufficiently large, δ g (x) δ 1 (x) . In the same way we can prove that δ g (x) δ 2 (x), and thus we have

(30) δ g (x) sup δ 1 (x), δ 2 (x) .
Finally ( 26) and (30) give the result :

δ g (x) = δ 1 (x) = δ 2 (x) . The inequalities -2 + N α β δ(x) -2 + N β α come from [4]
The behavior at infinity of matrices is important as shown by the following result.

Proposition 17. Let us give two matricies

A 1 (•) and A 2 (•) belonging to Q(α, β) such that A 1 (x) = A 2 (x) for any x, ||x|| R 0 > 0. Then the solutons u i (•), i = 1, 2, of (31) -T r(A i D 2 u i ) = f i in R N u i (x) > 0 , lim ||x||→+∞ u i (x) = 0
where

f i = f , (i = 1, 2)
, is a positive continuous function with compact support, have the same asymptotic behavior, that is to say there exist 0

< a i < b i , i = 1, 2 and x -→ δ(x) ∈ [N α β -2, N β α -2] such that a i ||x|| δ(x) u i (x) b i ||x|| δ(x) i = 1, 2
for ||x|| sufficiently large.

Proof . From (31) it follows

(32) -T r A 1 D 2 (u 1 -u 2 ) = g(x)
where

g(x) = -T r (A 2 -A 1 )D 2 u 2 (x) is a continuous function with compact support in B(O, R 0 ) since A 2 (x)-A 1 (x) = 0, ∀ x, ||x|| > R 0 . Let us set h(x) = |g(x)|. From comparison principle -( cf [1] , [3] )-we have (33) 0 u 1 (x) -u 2 (x) s(x)
where s(•) is the solution of (31) with h(•) and A 1 instead of f i = f and A i , respectively.

From proposition 16 we have (33.1)

       a(h) ||x|| δ 1 (x) s(x) b(h) ||x|| δ 1 (x) ∀ x, ||x|| R R 0 , a i (f ) ||x|| δi(x) u i (x) b i (f ) ||x|| δi(x) ∀ x, ||x|| R R 0 , i = 1, 2 .
From (33) we have u 2 (x) u 1 (x) + s(x) and thus it follows

a 2 (f ) ||x|| δ2(x) b 1 (f ) + b(h) ||x|| δ1(x) .
For ||x|| large enough, this give δ 2 (x) δ 1 (x). In the same way, reversing the role of u 1 and u 2 we get δ 1 (x) = δ 2 (x).

Proposition 18. Consider the two functions

H i (x) = +∞ ||x|| 2 1 s ∧i(x) s 0 σ ∧ i (x) g i (σ) dσ ds i = 1, 2 .
Let us assume that

∧ 1 (x) = ∧ 2 (x) = ∧(x) ∀ x, ||x|| R ,
and g i (•) is positive bounded function with compact support, i = 1, 2. Then the two functions H 1 (•) and H 2 (•) have the same behavior as the function 1 ||x|| 2(∧(x)-1) at infinity.

Proof . Let us recall that we have

0 < +∞ 0 σ ∧i(x) g i (σ) < Γ i < +∞
It is sufficient to prove the result for H 1 (•), for instance. We have

0 H 1 (x) Γ 1 . +∞ ||x|| 2 ds s ∧ 1 (x) = Γ 1 ∧ 1 (x) -1 ||x|| 2(∧1-1)
that is to say

0 H 1 (x) Γ 1 ∧ 1 (x) -1 ||x|| 2(∧(x)-1) ∀ x , ||x|| R .
Now let us prove the reverse inequality. Since g 1 (•) has a compact support, there exists

R 1 R such that +∞ 0 σ ∧ 1 (x) g 1 (σ) dσ = R1 0 σ ∧ 1 (x) g 1 (σ) dσ R1 1 σ ∧1 g 1 (σ) dσ + 1 0 σ ∧1 g 1 (σ) dσ Γ 0 > 0
where ∧1 = inf ||x|| R1 ∧ 1 (x) and ∧1 = sup ||x|| R 1 ∧ 1 (x). This gives the following :

∀ x, ||x|| R 1 , H 1 (x) Γ 0 +∞ ||x|| 2 ds s ∧1(x) = Γ 0 ∧ 1 (x) -1 ||x|| 2(∧(x)-1)
Remark 6.1. The previous result will enable us to prove that the solution u(•) of (12) behaves like a suitable function H associated to ∧(•). This shows that only ∧(•) controls the behaviour of u(•). The following result is easy to obtain. Proposition 19. Let us set H(x) = h g (x, ||x|| 2 ) where r -→ h g (x, r) is defined by ( 19) and (20). Then function H(•) satisfies the following

T r A(x)D 2 H = -4 A(x).x, x .g ||x|| 2 + K 1 (x, ||x|| 2 , g).T r A(x)D 2 ∧ + K 2 (x, ||x|| 2 , g). A(x)∇∧, ∇ ∧ + 4K 3 (x, ||x|| 2 ,

g). A(x)∇∧, x

Proof . For any x ∈ R N , let us consider the solution r -→ h(x, r) of (19) given by (20). To conclude it is sufficient to see that

A r (x)h(x, •) ||x|| 2 = -4 A(x).x, x g ||x|| 2
Let us introduce our essential assumption (H) : there exists R 0 (H) := R 0 > 0 such that for any R > 0 and any positive, bounded function g with compact support in B(O, R), the spectral dispersion ∧(•) satisfies the following :

-K 1 (x, ||x|| 2 , g).T r A(x)D 2 ∧ -K 2 (x, ||x|| 2 , g). A(x)∇∧, ∇ ∧ -4K 3 (x, ||x|| 2 , g). A(x)∇∧, x ∈ - c 0 (R)||g|| ∞ 1 + ||x|| 2(∧(x)+δ(x)) , c 0 (R)||g|| ∞ 1 + ||x|| 2(∧(x)+δ(x)) ∀ x , ||x|| R 0 ,
with δ(x) δ 0 > 0 and ∧ -∧ + δ 0 > 0 , where ∧ and ∧ are defined in (18.4).

Remark 5.1. if ∧ = ∧ = ∧ ∞ then we have lim R→+∞ sup ||x|| R ∧ (x) -∧ ∞ = 0, and the result of [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] can apply.

Comments about the assumption (H) :

The differential inequality (H) is suitable as shown by the following remarks

1) if ∧(•) is constant for ||x|| R, (H) is satisfied.
And in this case our result already follows from [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF]. And from proposition 3 section II this result does not obtained by [START_REF] Meyyers | The exterior Dirichlet problem for second order elliptic partial differential equations[END_REF] since in this work [START_REF] Meyyers | The exterior Dirichlet problem for second order elliptic partial differential equations[END_REF] lim ||x||→+∞ A(x) = A 0 , a constant matrix.

2) Let us consider the matrix M (∧) defined by :

M (∧) = K 1 .D 2 ∧ +K 2 .∇ ∧ ⊗∇ ∧ +K 3 . ∧(x) ||x|| 2 .N (∧)
where

K i = K i (x, ||x|| 2 , g) and N (∧) ij = x i . ∂∧ ∂x j + x j . ∂∧ ∂x i ∀ i, j .
If M (∧) satisfies the inequalities (4) for any x, ||x|| R, then from corollary 7 there exists a matrix x -→ A(x) ∈ Q(α, β) such that

(34) K 1 .T r A(x)D 2 ∧ + K 2 A(x)∇∧, ∇ ∧ + K 3 A(x)∇∧, x = 0 , ∀ x, ||x|| R.
And thus (H) is satisfied by A(•) and ∧(•).

3) If in addition ∧(•) is the spectral dispersion of the matrix that we seek, then we use the remark 2 section II with the two following matrices V = M (∧) and R = I -2∧ ||x|| 2 .x⊗x. And we find A(•) ∈ Q(α, β) satisfying (H) and such that ∧(•) is its spectral dispersion.

4)

Let us write the equation (34) in the form

(35) T r A(x)D 2 ∧ + K 2 K 1 . A(x)∇∧, ∇ ∧ + K 3 K 1 A(x)∇∧, x = 0 , ∀ x, ||x|| R.
Then for R > 0 large enough and A = I, the equation ( 35) is "very close" to the radial form :

(36)

   -∧ + 1 2 Log ||x|| 2 .||∇ ∧ || 2 + ∧(x) x.∇∧ ||x|| 2 = 0 . ∀ x , ||x|| R .
The equation ( 36) is obtained by "approximation" using the proposition 14 section IV. The proposition 8 section II shows that the equation (36) has many non constant positive and bounded solutions. This gives a partial answer to the question posed in the remark 3 section II. 5) an elementary example satisfying (H) : Let k be a positive real number such that

ϕ(x) = k + sin 2π 1 + ||x|| 2m ∈ α β N, β α N
for any x ∈ R N . After some elementary calculations we obtain that there exist some positive constant c such that

|||D 2 ϕ(x)||| + ||∇ϕ(x)|| c 1 + ||x|| 2m-1 ∀ x ∈ R N and thus c 1 (x)T rA(x)D 2 ϕ(x) + c 2 (x)a ∇ϕ(x), ∇ϕ(x) + c 3 (x)a ∇ϕ(x), x c 1 + ||x|| 2m-1
for any c 1 , c 2 , c 3 bounded functions in R N , and any matrix A(•) belonging to Q(α, β). The positive real number m is arbitrary.

B1 -Construction of a super-solution of (12) or (18) Thanks to the proposition 16 we can suppose that the function f (•) has its support in the open ball B(O, ρ 1 ). To choose a suitable function r -→ g(r) for which the function H(•) = H g (•) is a super-solution of (12), we introduce the following radial function

f (r) = sup f (x) / x ∈ R N , ||x|| 2 = r .
Regularizing f (•) if necessary, thanks to proposition 16, we can suppose that f (•) is continuous and satisfies f (||x|| 2 ) f (x) for any x. And we can suppose sup f ⊂ [0, ρ 2 1 [. Let k be a positive real number such that (37)

k.α.||x|| 2 χ K ||x|| 2 > f ||x|| 2 where K = x / ||x|| 2 < ρ 2 1 = B(O, ρ 1 ), χ K ||x|| 2 = 1 if x ∈ K, χ K ||x|| 2 = 0 if x / ∈ K. Let us set (38) G(x) := g ||x|| 2 := kχ K r ||x|| 2
where χ Kr ||x|| 2 := χ [0,ρ 2 1 ] ||x|| 2 . We need to introduce the following function σ(•) defined by : (38.1)

   σ (r)/σ(r) = ∧(r) r , r 0 , σ(1) = 1 with ∧(r) = ∧ + η for any r R 0 (H) = R 0 and such that ∧(||x|| 2 ) ∧(x) ∀ x ∈ R N .
We have : η) for θ large enough.

(38.2) σ(r) = exp r 1 ∧(θ) θ dθ . 1) (39)    R 0 > ρ 1 3α 2 . ρ 2 1 0 σ(θ) dθ > c 0 (ρ 1 ). +∞ R 2 0 σ(θ) (1 + θ ∧(η)+δ 0 )θ dθ since we have ∧(η) -∧(η) + δ 0 = ∧ -∧ + δ 0 -2η and σ(θ) ∼ c.θ ∧(
2) there exists

R 1 = R 1 (ε) such that (40)    ρ 1 < R 1 < R 0 3α 2 . ρ 2 1 0 σ ∧+1 dθ > 4 R 2 0 R 2 1 c 1 (ρ 1 )σ ∧(η) (1 + θ (∧-1+ε) )θ dθ
with R 1 close enough to R 0 . Thanks to the proposition 17, we can modify our matrix A(•) in a suitable ball. This procedure does not affect the assumption (H) since this hypothesis is supposed true at infinity. For this, let θ ε = θ > 0, be small enough with respect to R 0 -R 1 and ε. And let us consider the following matrix

Ãε (x) = Ã(x) = A(x) ∀ x , ||x|| R 0 -θ τ.I ∀ x , ||x|| < R 0 -θ
where τ is a real number such that α < τ < β, and I the identity matrix. From the approximation lemma giving the approximation of the matrix Ã, we obtain the regular matrix A 1 (x) which satisfies :

(38.3) A 1 (x) = A(x) ∀ x , ||x|| R 0 τ.I ∀ x , ||x|| R 1
The matrix A 1 (•) depends to ε, R 0 , R 1 , η. From the approximation lemma the matrix A 1 (•) belongs to Q(α, β). This is now the regularized matrix A 1 (•) that we use in the equation ( 18), (or equivalently in (12) ), to construct a super-solution. Hence the equation (18) becomes

-T r A 1 (x)D 2 u 1 = f in R N , u 1 (x) > 0 , lim ||x||→+∞ u 1 (x) = 0 . The spectral dispersion of A 1 (•) is ∧(•) if ||x|| R 0 and N 2 if ||x|| R 1 . Thus A 1 (•) satisfies (H) for x belonging to {x / ||x|| R 0 } ∪ {x / ||x|| R 1 }.
To simplify the notation we denote again ∧(•) the spectral dispersion of A 1 (•).

Theorem 20. Let g(•) be a radical function satisfying (37) and (38). For any x let us consider the function r -→ h(x, r) = h g (x, r), solution of (19) associated to the matrix A 1 (•). Then the function

x -→ H g (x) := H 1 (x) = h g (x, ||x|| 2 ) = h(x, ||x|| 2 ) ,
is a super-solution of (18).

Remark 5. In the sequel we use the notation

H 1 (•) instead of H g (•) because the operator -T r(A 1 D 2 •) is associated to the matrix A 1 (•).
where σ(•) and ∧(•) are given by (38.1). It is easy to see that this function satisfies the condition ω rad (0) = 0 and the differential equation in (45). It remains to prove the others conditions. For this it is sufficient to verify that we have :

(46) ∀ s 0 , 0 s 0 σ(θ) Ψ(θ) dθ +∞ 0 σ(θ) Ψ(θ) dθ = Γ ∞ < +∞ .
We have four cases to distinguish.

First case : for 0 s ρ 2 1 we have

s 0 σ(θ) Ψ(θ) dθ = 3kα 4β . s 0 σ(θ) dθ 0 . Second case : for ρ 2 1 s R 2 1 we have s 0 σ(θ) Ψ(θ) dθ = 3kα 4β . ρ 2 1 0 σ(θ) dθ > 0 . Third case : for R 2 1 s R 2 0 we have s 0 σ(θ) Ψ(θ) dθ 3kα 4β . ρ 2 1 0 σ(θ) dθ - k 4β R 2 0 R 2 1 c 1 (ρ 1 )σ(θ) (1 + θ (∧(η)-1-ε) )θ dθ > 0 .
by the choice of R 1 and R 0 given by (40). And thus ω rad (•) is the solution of (45) and behaves like 1 r ∧(η)-1 as r goes to infinity. From (46) and since ∧(x) ∧(||x|| 2 ) for any x, we have by (45) :

-ω rad (r) -ω rad (r) ∧(x) r -ω rad (r) -ω rad (r) ∧(r) r = Ψ(r) , for any x ∈ R N and r = ||x|| 2 . We obtain :

-4 A 1 (x).x, x ω rad (||x|| 2 ) -4ω rad (||x|| 2 ) ∧ (x). A 1 (x).x, x ||x|| 2 4 A 1 (x).x, x Ψ(||x|| 2 ) that is to say, after some computations and using (44,) the function ω(x) = ω rad (||x|| 2 ) satisfies (47) -T r(A 1 D 2 ω) ϕ(x) in R N , ω(x) > 0 , lim ||x||→+∞ ω(x) = 0 .

Second step : Let us prove that we have :

H 1 (x) -ω(x) ω rad (||x|| 2 ) > 0 , ∀ x ∈ R N .
It follows from (47) that we have

(48) -T r A 1 D 2 (H 1 -ω) + T r(A 1 D 2 ω) ϕ(x) -Ψ(||x|| 2 ) 0 in R N lim ||x||→+∞ ω(x) = lim ||x||→+∞ (H 1 -ω)(x) = 0 .
Since x -→ ϕ(x) -Ψ(||x|| 2 ) is non negative, with compact support we proceed as in [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] to prove that H 1 (x) -ω(x) ω(x) = ω rad (||x|| 2 ) > 0 for any x ∈ R N : we consider (48) in a ball B(O, n) with the Dirichlet boundary condition. Let us denote by H 1,n , ω n , ω rad,n the corresponding approximations of H 1 , ω and ω rad respectively. The maximum principle, [1] - [START_REF] Protter | Principles in Differential Equations[END_REF], gives that we have

(H 1,n -ω n )(x) -ω rad,n (||x|| 2 ) 0 , ∀ x ∈ B(O, n) .
After establishing some suitable estimates, we pass to the limit as n goes to infinity and we conclude that we have :

H 1 (x) -ω(x) ω rad (||x|| 2 ) > 0 , ∀ x ∈ R N .
Third step : Since by construction f (||x|| 2 ) f (x) ∀ x ∈ R N , we prove as previously [START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] that we have ω(x) u 1 (x) ∀ x ∈ R N . And the final result follows :

H 1 (x) u 1 (x) ∀ x ∈ R N
that is to say H 1 (•) is a super-solution of (18) and recalling that u 1 (•) is the solution of (18) associated to the operator -T r(A 1 D 2 •).

B2 -Construction of a sub-solution of (18) or (12). We proceed exactly as before. To avoid repetition we only indicate the key points that differ from the section B1. Before to choose the suitable function g wich allows us to construct a sub-solution H g (•) of ( 18), let us introduce, as previously, the following function

f (r) = inf f (x) / x, ||x|| 2 = r .
Thanks to the proposition 16 we can assume that the non negative and regular function f (•), with compact support, is such that : 

Definition 2 .

 2 If, for any matrix A(•) belonging to Q(α, β), we have J ∞ (B ∞ ) = 0, the matrix A(•) is called constant as ||x|| goes to infinity or shortly constant at infinity. Theorem 13. [2] [4]. If the matrix A(•) is constant for any x, ||x|| R, the solution of the problem (12) has the following asymptotic behavior :

Remark 4 .

 4 For any matrix B ∈ Q(α, β), we use the change of variables y = √ B -1 .x. Thus the problem (12) and

  The function γ(•) can play the role of θ, θ or γ(||x|| 2 ) given in the introduction, for instance. Indead the conclusion in the last line of the proof -([4] p 180, line 5 from the top) -is not correct because it is some what fast : the various constants depend to the variable ε. T o overcome this difficulty we need to replace the hypothesis (H3) of[START_REF]Tahraoui Comparison principle for second order elliptic operators and applications[END_REF] by the following : the decreasing function r -→ ϕ(r) = sup ||x|| r ∧ (x) -γ(||x|| 2 ) satisfies exp

Fourth case : for s R 2 c 1 2 0c 0

 2120 (ρ 1 )σ(θ) (1 + θ (∧(η)-1-ε) )θ dθ -k +∞ R (ρ 1 )σ(θ) (1 + θ (∧(η)+δ) )θ dθ > 0 from (39) and (40). Thus we conclude that for any s 0 we have : dθ = Γ ∞ < +∞ .

( 2 1 <ρ<R 2 0 1 ∧

 221 49) ρ -→ f (ρ) ≡ 0 , supportf = {ρ / 0 ρ < ρ 2 1 } . Let us introduce the function (50) G(x) := g(||x|| 2 ) = k.χ Kr ||x|| 2whereΨ(r) := -kχ [ρ / ρ>R 2 0 ] (r).c 0 (ρ 2 ) 1 + r (∧(η)-1-ε) -kχ [ρ / R ] (r).c 1 (ρ 2 ) 1 + r (∧(η)-1-ε) +4kβχ Kr (r).r .As previously we remark that the radial functionω rad (r) = ) Ψ(θ) dθ dsis the solution of the following ordinary differential equation (56)   -ω (r) -∧(r) r ω (r) = Ψ(r) 4βr := Ψ(r) ω (0) = 0 , lim r→+∞ ω(r) = 0 , ω (r) 0 , with σ(r) = exp r (s) s ds .Using (52) and the definition of Ψ(•) we can prove that (57) ∀ s 0 , 0s 0 σ(θ) Ψ(θ) dθ Γ ∞ < +∞and thus ω rad (r) 0 for any r > 0. This entails that ω rad (•) behaves like the functionr -→ +∞ r dθ σ(θ)as r goes to infinity. Now in a second step we acheave the proof of our result.Second step : Let us set ω(x) := ω rad (||x|| 2 ). We can prove that ω(•) satisfies(58) -T r(A 2 D 2 ω) Ψ(||x|| 2 ) ϕ(x) -T r A 2 D 2 (ω -H 2 ) .Since ω rad (•) is non negative, from the Maximum Principle we obtain, using (58)0 ω rad (||x|| 2 ) ω(x) -H 2 (x) ∀ x ∈ R N , that is to say H 2 (x) ω(x) ∀ x ∈ R N .Denoting by u 2 (•) the solution of (18) associated to A 2 (•), it follows ω(x) u 2 (x) for any x, since f (x) f (x) ∀ x. And thus H 2 (x) u 2 (x) ∀ x ∈ R N C -Asymptotic behavior of u(•).

Corollary 22 : 2 ||x|| 2 A

 2222 asymptotic behavior of u. For any non negative bounded function f (•) with compact support, and for any matrixA(•) belonging to Q(α, β) such that (H) is satisfied, the solution u(•) of the equation -T r(AD 2 u) = f in R N u(x) > 0 , lim ||x||→+∞ u(x) = 0From (61) and proposition 17 u(•) behaves like the solution u 0 (•) of-T r A 0 (x)D 2 u 0 (x) = f (x) , x ∈ R N , u 0 (x) > 0 , lim ||x||→+∞ u 0 (x) = 0 .In addition if∧ 0 (x) =T r A 0 (x) 0 (x).x, x satisfies hypothetis (H), then u(•) behaves like x -→ 1 ||x|| 2(∧ 0 (x)-1)

Proof of theorem 20. From (H) and the definition of H 1 (•) given in proposition 18, and using the proposition 19, we obtain :

kc 0 (ρ 1 ).χ [y / ||y|| R0] (x)

1 + ||x|| 2(∧(x)+δ(x))

c 1 (ρ 1 ).k.χ [R 1 <||y||<R 0 ] (x)

1 + ||x|| 2(∧(x)-1-ε) +4 A 1 (x).x, x .G(x) := p(x) in R N with lim ||x||→+∞ H 1 (x) = 0 and where c 1 (ρ 1 ) = c ε .[ρ ∧+1 1 ]. Let us consider the solution ω of the following :

Writing (41) -( 42) we obtain :

In the sequel we propose to estimate from below H 1 -ω by a suitable radial function ω rad (•).

First step : introduction of ω rad (•).

This function will be a solution of an ordinary differential equation. For this let us estimate from below the function ϕ(•) in ( 43) by a radial one. By (37) and (38) we have :

From the definitions (18.4) and (18.5) we have ||x|| 2∧(x) ||x|| 2∧(η) for any x, ||x|| R 1 and it follows that the function ϕ(•) is estimated from below by the following radial function

Then we define ω rad (•) as the solution of the following ordinary differential equation :

Let us set

. The real number k > 0 is choosen such that (51)

There exist two positive real numbers R 0 , R 1 , 0 < R 1 < R 0 , large enough and satisfying (52)

As previously in (38.3), from (52) we construct a regular matrix

We have the following result :

Theorem 21. Let g(•) be a function satisfying (49) to (51). For any x ∈ R N we denote by r -→ h(r, x) = h g (r, x) the solution of (18) associated to A 2 (•). Then the function

Proof . We need several steps. From (H), propositions 18 and 19 we obtain :

where

Let ω(•) be the solution of

Writing (53) + (54), it follows :

Now, our goal is to prove that we have ω(x) -H 2 (x) 0 for any x ∈ R N . To do this we use the same way like the section B1. In a first step we construct a positive radial function ω rad (•) which estimates ω -H 2 from below.

First step : we estimate ϕ(•) from below by a radial function Ψ(•). Using the same idea as in section B1, we obtain

behaves like the function x -→ 1 ||x|| 2(∧(x)-1) , when ||x|| goes to infinity, where

.

Proof . Let us consider the previous functions u 1 (•) and u 2 (•) associated, respectively, to the matrices A 1 (•) and A 2 (•). By the propositions 16 and 17 the three functions u 1 (•), u 2 (•) and u(•) has the same asymptotic behavior since

Applying the proposition 18 we can claim that H 1 (•) and H 2 (•) tend to zero like x -→

Then we can introduce the following functions r -→ q 1 (r) = inf u 1 (y) u 2 (y) / y, ||y|| r which is non decreasing, r -→ q 2 (r) = sup u 1 (y) u 2 (y) / y, ||y|| r which is non increasing.

Consequently there exists r 0 > 0 large enough such that (59) 0 < q 1 (r 0 )

since u 1 (•) and u 2 (•) have the same asymptotic behavior. Using (59), theorems (20) and ( 21) and proposition 12 it follows :

that it to say u 1 (•) goes to zero as x -→ 1 ||x|| 2(∧(x)-1) , thanks the proposition 18. And consequently the final result follows for u 2 (•) and u(•). D -Application. We can apply the previous corollary to find the asymptotic behavior in a nonlinear equation :

where (x, η) → A(x, η) ∈ Q(α, β). This problem is in the form of (12) with B(x) = A x, u(x) ∈ Q(α, β). We assume that there exist two positive real constants R 0 and η 0 such that for any x ∈ R N , ||x|| R 0 , any η ∈ R, |η| η 0 we have :