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Anisotropic asymptotic behaviour for second order differential
operators in non-divergential form

R. Tahraoui 1 2

Abstract :

For any matrix A(•) such that αI 6 A(x) 6 βI, N
2 > β

α , we prove that the solution u(•) of
{ −Tr

(
A(x)D2u

)
= f , f > 0 with compact support

u(x) > 0 , lim||x||→+∞ u(x) = 0

behaves like the function x → 1

||x||2
(
∧(x)−1

) where ∧(x) =
Tr

(
A(x)

)
2

||x||2
(
A(x).x,x

) satisfies a differential

condition.
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I - Introduction. In this work we study the asymptotic behaviour with respect to x of the
solution u(•) of the following equation

1
{ −Tr

(
A(x)D2u

)
= f(x), x ∈ RN , N > 3

lim||x||→+∞ u(x) = 0, u(x) > 0, ∀x ∈ RN

where f(•) is a bounded positive function with a compact support. The matrix A(x) =
(
aij(x)

)
ij

is bounded symmetric and uniformly elliptic that is to say : for any x ∈ RN

α||y||2 6
(
A(x)y, y) 6 β||y||2 ∀y ∈ RN

where α and β are real constant such that 0 < α < β, D2u stands for Hessian matrix of u(•),
Tr(B) stands for the trace of the matrix B and x → ||x|| stands for the euclidian norme of
RN . The result depends to the behaviour of the function [4]

∧(x) := ∧A(x) :=
Tr

(
A(x)

)
2

||x||2
(
A(x).x, x

)

as ||x|| goes to infinity. Without hypotheses concerning the matrix A(•) we prove the fol-
lowing result : for any ε > 0 there exist three real positive constants c1 := c1(ε), c2 := c2(ε)
and R := R(ε) such that for any x ∈ RN , ||x|| > R, we have

c1

||x||2(θ−1−ε)
6 u(x) 6 c2

||x||2(θ−1−ε)

with

θ = inf
B∈Q(α,β)

lim
R→+∞

sup
||x||>R

∧(A,B)(x), θ = sup
B∈Q(α,β)

lim
R→+∞

inf
||x||>R

∧(A,B)(x).

where

∧(A, B)(x) =
Tr

(√
B−1.A(

√
B.x).

√
B−1

)
2

||x||2
(√

B−1.A(
√

B.x).
√

B−1x, x
) .

Let us remark that θ > 1. This function ∧(•) plays a central role in our work. It is called
the function of the spectral dispersion of the matrix A(•), in short the spectral dispersion of
A. This name is justified by the following inequalities :

1 <
N

2
.
α

β
6 N

2
λ1(A)
λN (A)

6 ∧(x) 6 N

2
λN (A)
λ1(A)

6 N

2
.
β

α
.

These inequalities give an idea of the distribution of the spectrum of the matrix A(•) :

oscillation (∧) 6 N

2

[
sup

x

λN

(
A(x)

)

λ1

(
A(x)

) − inf
x

λ1

(
A(x)

)

λN

(
A(x)

)
]

6 β2 − α2

α.β
.
N

2

where the ordered real numbers 0 < λ1(A) 6 · · · 6 λN (A) stand for the eigenvalues of A(•).
In some sens the previous result is optimal. Indeed in the case A is the identity matrix (or
equivalently a constant matrix) we have θ = θ = N

2 > 1 and we obtain the classical optimal
result :

u(x) ∼ c

||x||N−2

as ||x|| goes to infinity. Let us specify that there is no evident link between the asymptotic
behaviour of ∧(•) and the asymptotic behaviour of A(•), as ||x|| goes to infinity. Indeed, for
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instance, there exist matrices A(•) such that, for any x, A(x) belongs to
Q(α, β) = {M symmetric matrix / αI 6 M 6 βI} and has oscillating coefficients and for
which the associated function ∧(•) goes to some constant as ||x|| goes to infinity. And there
exist matrices A(•) having a function ∧(•) of spectral dispersion which is oscillating as ||x||
goes to infinity i.e. which satisfies :

lim
R→+∞

[
sup
||x||>R

∧(
A(x)

)− inf
||x||>R

∧(
A(x)

)]
> 0,

with the notation ∧(
A(x)

)
:= ∧(x). These two examples are explained by the fact that there

are many matrices belonging to Q(α, β) and having the same function ∧(•) satisfying :

N

2
.
α

β
6 ∧(x) 6 N

2
.
β

α
∀x.

In section II we will give theses results with some details. To give a classification of this
problem, we introduce the function which follows :

B ∈ Q(α, β) −→ J∞(B) = lim
R→+∞

JR(B)

where
JR(B) = sup

||x||>R

λN

(
B−1.A(x)

)− inf
||x||>R

λ1

(
B−1.A(x)

)
.

There exists B∞ belonging to Q(α, β) such that 0 6 J∞(B∞) 6 J∞(B) ∀B ∈ Q(α, β). If
J∞(B∞) = 0, the matrix A(•) goes to a constant matrix as ||x|| goes to infinity and after a
change of variables by a suitable transformation in (1) we find that ∧(x) goes to the constant
N
2 as ||x|| goes to infinty. And roughly speeking the asymptotic behaviour of u(•) is given
by [4] :

u(x) ∼ c

||x||N−2

This result is also given by [2] in the exterior problem with f = 0 i.e. u(x) = ©
(

1
||x||N−2

)

.
If J∞(B∞) 6= 0, we have two cases to study.

i) after a change of variable in (1) by a suitable transformation, if necessary, the behaviour
of ∧(•) is radially oscillating as ||x|| goes to infinity. Let us suppose that this behaviour
is given by, for instance, γ(||x||2). Then, under some hypothesis, the work in [4] give
the result :

u(x) ∼ c.v(||x||2) ∀x, ||x|| > R,

for R > 0 large enough and where

v(||x||2) =
∫ +∞

||x||2
exp

(
−

∫ s

R2

γ(σ)
σ

dσ
)

ds

- ( cf remark 4.1 section III ) -.

ii) the function ∧(•) is oscillating anisotropically in a neighborhood of the infinity. This
case is the aim of our study. Under a suitable hypothesis called (H) and satisfied by
∧(•) in a neighborhood of the infinity, we prove the following result :

u(x) ∼ c(x)

||x||2
(
∧(x)−1

) , 0 < c0 6 c(x) 6 c1, ∀x, ||x|| > R ,

where R > 0 is large enough.
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Let us specify that our hypothesis (H) is satisfied by the constant functions. A particulary
interesting case is the following : Let us suppose that ∧(•) verifies

(2)
{ ∧(λx) = ∧(x) ∀x, ||x|| > R, R large enough
∀λ > 1 .

The relation (2) is satisfied, for instance, in the following case : There exists R > 0 large
enough such that for any x0, ||x0|| > R we have A(λx0) = A(x0) ∀λ > 1.
Under some conditions, the result of this example can be explained as following : ∀x, ||x|| > R
we have

∀λ > 1 u(λx) =
c(λx)

|λ|2
(
∧(x)−1

)

where the funtion c(•) is such that 0 < c0 6 c(x) 6 c1. Our assumption (H) is a differential
inequality satisfied by the function ∧(•). Roughly speaking ∧(•) satisfies

c(x).T r
(
A(x)D2 ∧ )

+ b(x).
(
A(x)D∧, D ∧ )

+ a(x).
(
A(x)D∧, x

)

∈
[
− c̃(c, b, a)

1 + ||x||2(∧(x)+δ(x))
,

c̃(c, b, a)
1 + ||x||2(∧(x)+δ(x))

]

for any x, ||x|| > R > 0, where c(•), b(•) and a(•) stands for some given functions and
δ(x) > δ0 > 0 such that δ0 > θ − θ.
Finally, note that after the publication of our work in [4], we discovered that when the
matrix A(•) is constant at infinity - (i.e. there exists a constant matrix A0 such that

lim||x||→+∞A(x) = A0) - ,the behaviour u(x) = ©
(

1
||x||N−2

)
was established in [2] for

the exterior domain with f = 0 and ∧(•) was used. But this result [2] does not apply in the

case ∧(x) := ∧(A)(x) =
N

2
, ∀x, and A is an oscillating matrix - (cf proposition 3 section II)

-, where u(•) behaves like
1

||x||N−2
as ||x|| goes to infinity. Finally we note that the most

part of the paper [2] is devoted to the question of the well_posedness of problems like (1).
The paper is organised as follow. A wide part of this paper is devoted to justify our as-
sumption (H). That is the goal of the preparatory part in section II. In the third section,
we give a classification of asymptotic behaviour of the matrix x −→ A(x) when ||x|| tends
to infinity and we shall need later. And we give a new presentation of previous results [4].
Section IV will be devoted to establish the asymptotic behavior of the solution u(•) of (1)
when the function ∧(•) oscillates anisotropically as ||x|| goes to infinity. The main result is
obtained under the key hypothesis (H). The guiding idea of our method is to consider that
A(•) and ∧(•) are two independant datas and to construct two functions ui(•) - (i = 1, 2)-
respectively solution of

(Pi)
{ −Tr(AiD

2ui) = f in RN

ui(x) > 0, lim||x||→+∞ ui(x) = 0, i = 1, 2 .

and having the same asymptotic behaviour as the solution u(•) of (1). The matrices Ai(•) -
(i = 1, 2) - are two adequates matrices satisfying : A1(x) = A2(x) = A(x) for any x, ||x|| > R
and for R > 0 large enough. Next we construct a super-solution H1(•) of (P1) and a sub-
solution H2(•) of (P2) . Next we establish that H1(•) and H2(•) have the same asymptotic
behavior. And the final result follows from the comparison principle [1], [3].
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II - Preliminary results preparing to justify the main assumption (H).
Let us give two real positive numbers α and β, 0 < α < β such that N

2 > β
α . Let us set

Q(α, β) =
{
M ∈ SN×N

+ / α||x||2 6 (Mx, x) 6 β||x||2, ∀x ∈ RN
}

where SN×N
+ stands for the set of symmetric definite positive matrices. For any x and y

belonging to RN , (x, y) stands for the inner product of RN and ||x|| the associated norm of
x. Let us give a function A : x −→ A(x) ∈ Q(α, β). In order to simplify the text we note
A(x) ∈ Q(α, β) ∀x ∈ RN or A(•) ∈ Q(α, β). We have the following result.

Theorem 1. Let E be a subset of RN . Let ∧(•) be a function satisfying

N.α

2β
6 ∧(x) 6 N.β

2α
, ∀x ∈ E ⊆ RN \ {0}.

Then for any x ∈ E there exists an uncountable sub-set M(x) of Q(α, β) such that for any
A(x) ∈M(x),

Tr
(
A(x)

)
2

||x||2 .
(
A(x).x, x

) = ∧(x) ∀x ∈ E.

This means that ∧(•) is the spectral dispersion of A(•).

Proof . To proove this result we need two steps.

First step. For any x ∈ E let us give a partition
{
I1(x), I2(x), I3(x)

}
of the set [1, 2, · · · , N ].

Let us set
γj(x) :=

∑

i∈Ij(x)

x2
i , nj = card Ij(x) , ∀j = 1, 2, 3 .

First, we look for a diagonal matrix A(•) belonging to Q(α, β) such that for any x ∈ E

aii(x) = dj , ∀i ∈ Ij(x) , ∀j ∈ [1, 2, 3] .

The unknown real numbers dj satisfies α 6 dj 6 β. Let us give an arbitrary function θ(•)
such that αN 6 θ(x) 6 βN , ∀x ∈ E. The real numbers dj satisfy the following equations :

(3) TrA := θ =
3∑

i=1

ni.di ,

3∑

i=1

λi.di =
θ

2∧

where

∧(x) =
Tr

(
A(x)

)

2
(A(x).x, x)
||x||2

and λi(x) =
γi(x)
||x||2 ,

3∑

i=1

λi = 1

To solve the equations (3) we consider the following problem for any fixed x ∈ E :

(P) : inf
[
J(d) =

3∑

i=1

d2
i / d = (d1, d2, d3) , α 6 di 6 β ,

3∑

i=1

nidi = θ ,
∑

i

λidi =
θ

2∧
]

This problem has a unique solution. So we found a diagonal matrix A(•) that the spectral
dispersion is ∧(•).
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Second step. To find an unreduced form of A(•), we introduce an arbitrary orthogonal
transformation whose the matrix is B(•). Let us set θ̃(x) := θ

(
B−1(x).x

)
and ∧̃(x) = ∧(

B−1(x).x
)
,

where θ(•) is the arbitrary function introduced in the first step. We denote by D(x) the
diagonal matrix founded in the previous step and corresponding to the two functions θ̃(x)
and ∧̃(x). After some elementary computations the matrix A(x) = B−1(x).D

(
B(x).x

)
.B(x)

satisfies :

∧(x) = ∧A(x) :=
Tr

(
A(x)

)

2
(A(x).x, x)
||x||2

∀x ∈ E

and thus A(x) solve our problem. In addition x −→ A(x) is regular in RN \ {0}. ¤

For any A(•) ∈ Q(α, β) we denote by ∧(A)(•) the associated spectral dispersion. There is
no evident link between the asymptotic behavior of A(•) and the asymptotic behavior of
∧(A)(•) = ∧(•). The following results show this fact.

Corollary 2. For any k ∈ [
N α

β , N β
α

]
there exists a non constant matrix A(•) belonging to

Q(α, β) such that ∧(A)(x) = k, ∀x 6= 0. In addition A(•) does not have a limit when ||x||
goes to infinity. In fact we can prove a more precise result.

Proposition 3. There exists a matrix A(•) having oscillating coefficients and such that
∧(A)(x) = constant for any x.

Proof . First, we are going to construct a such matrix in R3, and next we give its extension
in RN . For this let us set y := (t, x) = (t, x1, x2) ∈ R3. Let us give two functions y −→ a(y)
such that 0 < 1 6 a(y) 6 2, ∀ y, for instance, and x −→ δ(x) = sin x1. sin x2. Let us set

γ(x) :=





δ(x)
2

x1.x2

||x||2 ∀ x = (x1, x2) ∈ R2, x 6= 0;

0 if x = 0

The searched matrix is

A0(y) =




a(y) + γ(x) λ(x) 0
λ(x) a(y)− γ(x) 0

0 0 a(y)




where λ(x) = −δ(x)
2

.
x2

1 − x2
2

||x||2 , ∀ x ∈ R2, x 6= 0 and λ(0) = 0. Indeed after some computations

we obtain that ∧(A0)(y) := ∧(y) =
3
2
, ∀ y ∈ R3. In the case N > 3 we chose a(y) = a0,

∀ y ∈ R3 and, for instance, the searched matrix is

A =




A0 0 · · · 0 0
0 A0 · · · 0 0
...

...
. . .

...
...

0 0 · · · A0 0
0 0 · · · 0 I




where I is some identity matrix (n, n).
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Proposition 4 . There exists a definite positive matrix A such that x −→ ∧(A)(x) is an
oscillating function as ||x|| goes to infinity.

Proof . We can chose the following example

A(y) = A(x, t) =




k + λ2(x) λµ 0
λµ k + µ2(x) 0
0 0 k




where y = (x, t) = (x1, x2, t) ∈ R3, k = constant > 0, λ(x) =
x2

||x||
[
cos(||x||) + 2

]
,

µ(x) =
x1

||x||
[
cos(||x||) + 2

]
.

We have ∧(A)(y) = ∧(y) =
3k + (cos(||x||) + 2)2

2k
. This case of ∧(•) is interesting for the

section III-B. ¤

Approximation lemma. Let us give two regular matrices A1(•) and A2(•) belonging to
Q(α, β). Then for any R1 and R2, 0 < R1 < R2 there exists a regular matrix A(•) belonging
to Q(α, β) such that :

A(x) =
{

A1(x) ∀x, ||x|| 6 R1,
A2(x) ∀x, ||x|| > R2.

In addition if d > ∧A1(x) > c ∀x, ||x|| 6 R, d > ∧A2(x) > c ∀x, ||x|| > R, we have
d > ∧A(x) > c ∀x, with R1 < R < R2.

Proof. Let us give a regular increasing function Ψ : R+ −→ [0, 1] such that Ψ(t) = 0,
∀t 6 R1; Ψ(t) = 1, ∀t > R2. Let us set ϕ(x) = Ψ(||x||). Then we are going to prove that the
matrix A(x) =

(
1−ϕ(x)

)
A1(x) + ϕ(x)A2(x) is the matrix that is our solution. Indead A(•)

is regular and satisfies α||x||2 6
(
A(x).x, x

)
6 β||x||2 and thus A(•) ∈ Q(α, β). The last

result follows from the following remark : for any real numbers (a1, b1, a2, b2, c) ∈ (R+,∗)5

such that a1
b1

> c, a2
b2

> c we have ta1+sa2
tb1+sb2

> c, for any (t, s) ∈ (R+)2 such that tb1 + sb2 > 0.
The second inequality can be established in the same way. ¤

Proposition 5. Let M be a symmetric positive definite matrix. Let us consider the half-
straight line of matrices D(O,M) =

{
B/B = t.M , t > 0

}
. Then we have D(O,M) ∩

Q(α, β) 6= ∅ if and only if
β

α
>

λN (M)
λ1(M)

. In addition we have

D(O, M) ∩Q(α, β) =
{

B = t.M / t ∈
[ α

λ1(M)
,

β

λN (M)

]}
.

If
β

α
=

λN (M)
λ1(M)

we have

D(O, M) ∩Q(α, β) =
{

B =
α

λ1(M)
.M

}
=

{
B =

β

λN (M)
.M

}
.

And in this case D(O,M) is called an extremal ray passing through the zero matrix O.
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Proof . It is sufficient to remark that tM belongs to Q(α, β) if and only if
α
t 6 λ1(M) 6 · · · 6 λN (M) 6 β

t . ¤

Let us consider the set P of supporting hyperplanes of Q(α, β) passing through the zero
matrix O. We set :

Qc(α, β) :=
⋃

P∈P
[
P ∩Q(α, β)

]

=
{

T ∈ Q(α, β) / α = λ1(T ) 6 λi 6 λN (T ) = β i = 2, · · · , N − 1
}

Theorem 6. Let V be a (N,N)-symmetric matrix. Then there exists a matrix A belonging
to Q(α, β) such that Tr(A.V ) = 0 if and only if

(4)





[
βλN (V )− αλ1(V )

][
βλ1(V )− αλN (V )

]
6 0

(β − α)|||V |||2 >
[
βλN (V )− αλ1(V )

]
TrV if TrV > 0

(β − α)|||V |||2 >
[
βλ1(V )− αλN (V )

]
TrV if TrV 6 0

Proof . Let us consider the matrices plan Vect{I, V } generated by the two matrices I and
V . We have Vect{I, V } ∩ Q(α, β) ∩ Qc(α, β) = {W1,W2} ⊆ Qc(α, β) i.e. λ1(Wi) = α,
λN (Wi) = β i = 1, 2 and α 6 λj(Wi) 6 β, ∀ i = 1, 2 ; ∀ j = 2, · · · , N − 1. We have
aI + bV = W1 with a and b belonging to R. This entails that V and W have the sames
eigenspaces. We equip then RN with the basis of the eigenvectors of V . We obtain

a =
αλN (V )− βλ1(V )
λN (V )− λ1(V )

, b =
β − α

λN (V )− λ1(V )
> 0 ,

α 6 λi(W1) = a + bλi(V ) 6 β, i = 2, · · · , N − 1. And thus Tr(W1.V ) = aTrV + b|||V |||2.
In the same way we have cW1 + dV = W2. The matrices W1, V and W2 have the same
eigenspaces. And as previously we obtain :

d =
β2 − α2

βλ1(V )− αλN (V )
, c =

βλN (V )− αλ1(V )
αλN (V )− βλ1(V )

,

α 6 λi(W2) = cλi(W1) + dλi(V ) 6 β , i = 2, · · · , N − 1.

Since VectV
⋂ {

Q(α, β)
⋃ [−Q(α, β)

]}
= ∅, we have c > 0. And thus

T (V.W2) = acTrV + (d + bc)|||V |||2 i.e. after some calculations

Tr(V.W2) =
βλN (V )− αλ1(V )
λN (V )− λ1(V )

.T rV − (β − α).|||V |||2
λN (V )− λ1(V )

.

It is easy to see that a necessary and sufficient condition that there exists A ∈ Q(α, β) such
that Tr(A.V ) = 0 is that we have

(5) Tr(W1.V ).T r(W2.V ) 6 0, and c > 0.

And (5) is equivalent to (4). ¤

Remarks 1.

1) Let us set X :=
{
M ∈ SN×N / Tr(M.V ) = 0

}
. Then any M belonging to X ∩Q(α, β)

satisfies Tr(V.M) = 0 that is to say there exist many M belonging to Q(α, β) such that
Tr(M.V ) = 0 if (4) is satisfied, where SN×N stands for the set of symmetric matrices.
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2) Let V and R be two (N, N)-symmetric matrices. We can prove that there exists
A ∈ Q(α, β) such that Tr(AV ) = Tr(AR) = 0 if we have :

(6)





|||V |||2.|||R|||2 − (R : V )2 6= 0 and

1− 1
N

|||(TrV ).R− (TrR).V |||2
|||V |||2.|||R|||2 − (R : V )2

>

1
N
−

[
(α + β)2 + (N − 2)(α2 + β2)

]2
(α + β)2(α2 + β2) + (N − 2)(α2 + β2)2

The proof follows from a straightforward calculation and classical idea. ¤

Application. Let B(O, ε) be the open ball of RN , of radius ε, centred at O. Let us give a
C2 bounded function ϕ : RN \ B(O, ε) −→ R+,∗ such that ϕ(x) > ϕ0 > 0 ∀x, where ϕ0 is a
real positive number. Let us define the following matrix

x −→ M(ϕ)(x) := D2ϕ− γ(x)∇ϕ(x)⊗∇ϕ(x) + kH
(
x,∇ϕ(x)

)

where (
H

(
x,∇ϕ(x)

))
ij

=
ϕ(x)

2

( xi

||x||2 .
∂ϕ

∂xj
+

xj

||x||2 .
∂ϕ

∂xi

)
ij

,

k is a real number and γ(•) is a given function defined on RN \ B(O, ε). In section IV we
use the following corollary to justify our essential hypothesis (H).

Corollary 7. Suppose that the matrix M(ϕ) verify the differential inequalities (4) of the
theorem 6. Then there exists x −→ A(x) ∈ Q(α, β) such that

−Tr(AD2ϕ)− γ(x)
(
A∇ϕ,∇ϕ

)
+

k

||x||2
(
A∇ϕ, x

)
= 0 ∀x ∈ RN \ B(O, ε)

Proof . For any B1 and B2 belonging to Q(α, β), we have :

(B1V, V ) = Tr(B1.C1) ∀V = (v1, · · · , vN ) ∈ RN

with
C1 = V ⊗ V = (vi.vj); and Tr

(
B2.H(x,∇ϕ)

)
=

1
||x||2

(
B2∇ϕ, x

)

From this we apply the theorem 6 to obtain the result. ¤

Remark 2. If we add the additional condition that ϕ(•) is the spectral dispersion of the
matrix A that we are looking for, we can use (6) instead of corollary 7, with

V = M(ϕ) and R = I − 2
ϕ(x)
||x||2 x⊗ x,

to conclude that there is A belonging to Q(α, β) such that Tr(A.V ) = Tr(A.R) = 0 if V
and R satisfy (6).

Remark 3. Given a matrix x −→ A(x) ∈ Q(α, β), we can ask if there exists a bounded and
positive function ϕ(•) oscillating as ||x|| goes to infinity - (i.e. such that
limR→+∞ sup||x||>R ϕ(x)− limR→+∞ inf ||x||>R ϕ(x) > 0 ) - and such that we have

(7) − Tr(AD2ϕ)− γ(x)
(
A∇ϕ,∇ϕ

)
+

k.ϕ

||x||2
(
A∇ϕ, x

)
= 0

9



for any x, ||x|| > R > 0. Since any constant function is a solution of (7), it seems difficult to
answer this question in general. However there are some encouraging examples which show
that (7) has nontrivial solutions in general. A particular case of (7) is the following equation
that we will encounter later -(section IV)- :

(8) −4u + Log
(||x||2).|∇u|2 + u

x.∇u

||x||2 = 0, ||x|| > R.

Proposition 8. The equation (8) has many nontrivial solutions, for R > 0 large enough.

Proof . The result is technical, but it is straightforward. So we will give the essential steps
of the proof. We construct a family of solutions u(•) in the form u(x) = ϕ

(
Log(||x||2)).

We establish an o.d.e. satisfied by the function t −→ ϕ(t), where t plays the role of
Log(||x||2) > t0 > 1. We solve this o.d.e. by setting ϕ(t) = f

(
v(t)

)
where

(9) f(σ) = −2
c
Arctg

(σ

c

)
+ d ∀σ > σ0 > 0

with c > 0 and d >
π

2
+

N − 1
2

. The function v(•) is solution of the following Cauchy-Lipschitz
problem :

(10)
{

v′(t) = G
(
t, v(t)

)
, ∀ t > t0 > 1

v(t0) = v0, v0 > σ0 > 0

where

G(t, σ) =
∫ t

t0

g(θ) dθ − N − 2
2

σ + F (σ) ∀σ > t0

and ∣∣∣∂G

∂σ
(t, σ)

∣∣∣ 6 N − 2
2

+
π

2
+ d ;

g(•) is an arbitrary continuous function with compact support and F (•) is a primitive of
f(•) :

F (σ) = −2σ

c
Arctg

(σ

c

)
+ d.σ +

1
c
Log

(
1 +

(σ

c

)2)
.

Thus we obtain :
(11) u(x) = −2

c
Arctg

(
v
(
Log(||x||2))

)
+ d

is a solution of equation (8) in RN \ B(0, R) where c,d and g are somewhat arbitrary datas.
¤

III - Isotropic asymptotic behavior. This section gives a new presentation of the results
already established in [4] and allows us to understand the classification of the behavior at
infinity of matrices and associated solutions. As we have already mentioned, the asymptotic
behavior of the solution u(•) of

(12)




−Tr

(
A(x)D2u

)
= f(x) in RN ,

lim||x||→+∞ u(x) = 0 , u(x) > 0 ∀x ,
with f(x) > 0 , supportf = compact,
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depends on the behavior of the function ∧(A)(x) =
Tr

(
A(x)

)
2

||x||2 (A(x).x, x)
. From the results of

section II there is no evident links between the behavior of A(•) and that of ∧(A)(•). However
there are some precise situations to be distinguished.

First case. The matrix A(•) is constant. By a change of variables x = B−1y with
B =

√
A−1, the equation (12) becomes

(13)
{ −4 ω(y) = g(y) = f(B−1y)

u(x) = ω(Bx) , lim||y||→+∞ ω(y) = 0 , ω(y) > 0 .

For (13) the asymptotic behavior of ω(•) is known - (cf [4] for instance) - : ω(y) ' c

||y||N−2
.

And thus u(x) ' c

||x||N−2
, since ∧(I)(x) =

N

2
∀x.

Second step. The matrix A(•) is not constant. In this case we see that it suffices to examine
the behavior at infinity of A(•) and ∧(A)(•) [4]. In the following our aim is to examine the
oscillations of A(•) and ∧(A)(•). The matrix A(•) belongs to Q(α, β). Let B be a constant
matrix belonging to Q(α, β). For any x, B−1A(x) has n eigenvalues λi(x) = λi(B−1A) such
that

α

β
6 λ1(x) 6 · · · 6 λN (x) 6 β

α

where for any x ∈ RN , any i, 1 6 i 6 N , λi(x) = λi

(
B−1A(x)

)
stands for the ith eigenvalue

of the following problem :
A(x).r = λi(x)B.r

where r ∈ RN is an eigenvector associated to λi(x). For any R > 0, we introduce the
following function JR : Q(α, β) −→ R+ defined by

JR(B) = sup
||x||>R

λN

(
B−1A(x)

)− inf
||x||>R

λ1

(
B−1A(x)

)
.

Proposition 9. The set of functions
(
JR(•))

R
is

2β2

α3
-lipschitz.

Proof . It is sufficient to prove that the function B −→ sup||x||>R λN

(
B−1A(x)

)
and

B −→ inf ||x||>R λ1

(
B−1A(x)

)
are uniformly lipschitz. For any y 6= 0 we have

∣∣∣∣
(
B1y, y

)
(
A(x)y, y

) −
(
B2y, y

)
(
A(x)y, y

)
∣∣∣∣ 6 |||B1 −B2|||

α

or again

−|||B1 −B2|||
α

+ inf
y 6=0

(
B1y, y

)
(
A(x)y, y

) 6 inf
y 6=0

(
B2y, y

)
(
A(x)y, y

) 6 inf
y 6=0

(
B1y, y

)
(
A(x)y, y

) +
|||B1 −B2|||

α

i.e.

∀x ∈ RN , −|||B1 −B2|||
α

+
1

λN

(
B−1

1 A(x)
) 6 1

λN

(
B−1

2 A(x)
) 6 1

λN

(
B−1

1 A(x)
)+

|||B1 −B2|||
α

.
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This implies
∣∣∣∣ sup
||x||>R

λN

(
B−1

1 A(x)
)− sup

||x||>R

λN

(
B−1

2 A(x)
)∣∣∣∣ 6

(β

α

)2 |||B1 −B2|||
α

From the same way we show that
∣∣∣∣ inf
||x||>R

λ1

(
B−1

1 A(x)
)− inf

||x||>R
λ1

(
B−1

2 A(x)
)∣∣∣∣ 6

(β

α

)2 |||B1 −B2|||
α

and thus the result follows : for any R > 0

∣∣∣JR(B1)− JR(B2)
∣∣∣ 6 2β2

α3
|||B1 −B2|||

¤
Proposition 10. JR(•) converges uniformly to J∞(•) in Q(α, β) as R goes to infinity. In

addition J∞(•) is 2β2

α3
-lipschitz and there exists B∞ belonging to Q(α, β) such that, for any

R > 0, we have
0 6 J∞(B∞) 6 J∞(B) 6 JR(B) , ∀B ∈ Q(α, β).

Proof . It is easy. We use Ascoli-Arzelà’s theorem, the compactness of Q(α, β) and the fact
that R −→ JR(•) is decreasing. Thus it follows that there exists B∞ ∈ Q(α, β) such that

0 6 J∞(B∞) = inf
B∈Q(α,β)

J∞(B) 6 JR(B) , ∀B ∈ Q(α, β).

¤
Definition 1. The real number J∞(B∞) = infB∈Q(α,β) J∞(B) is called the amplitude of
the oscillations of the spectrum of A(•) as ||x|| goes to infinity.

Study of a classification : We have two cases to examine.

A - First case : the amplitude J∞(B∞) is null. We have :

0 = J∞(B∞) 6 JR(B∞) ∀R > 0 ,

(14)
{

limR→+∞ sup||x||>R λN

(
B−1
∞ A(x)

)
= γ1

∞
limR→+∞ inf ||x||>R λ1

(
B−1
∞ A(x)

)
= γ2

∞ ,

since the sequences R −→ sup||x||>R λN

(
B−1
∞ A(x)

)
and R −→ inf ||x||>R λ1

(
B−1
∞ A(x)

)
are

monotonic and bounded. Thus we have :

lim
R→+∞

JR(B∞) = γ1
∞ − γ2

∞ = J∞(B∞) = 0 ,

that is to say
(15) γ∞ := γ1

∞ = γ2
∞

¤
Proposition 11. Let us assume that J∞(B∞) = 0. Then we have

1) limR→+∞ sup||x||>R Tr
(
B−1
∞ A(x)

)
= Nγ∞,

2) limR→+∞ sup||x||>R |||B−1
∞ A(x)− γ∞.I||| = 0,
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limR→+∞ sup||x||>R |||A(x)− γ∞B∞||| = 0 .

Proof . Le us prove the first result. We have :

N. inf ||x||>R λ1

(
B−1
∞ A(x)

)
6 inf ||x||>R Tr

(
B−1
∞ A(x)

)
6 sup||x||>R Tr

(
B−1
∞ A(x)

)
6 N. sup||x||>R λN

(
B−1
∞ A(x)

)

By definition of JR(•), we obtain :

0 6 sup
||x||>R

Tr
(
B−1
∞ A(x)

)− inf
||x||>R

Tr
(
B−1
∞ A(x)

)
6 N.JR(B∞) .

And from (14), (15) and the proposition 10, the first resultat is obtained. Let us prove the
second result. By the very definition of λi

(
B−1
∞ A(x)

)
, i = 1, . . . , N , we have :

∀ y 6= 0 , inf
||x||>R

λ1

(
B−1
∞ A(x)

)
6

(
A(x).y, y

)
(
B∞y, y

) 6 sup
||x||>R

λN

(
B−1
∞ A(x)

)
,

and for any i0 ∈ [1, . . . , N ]

(16) ∀x inf
||t||>R

λ1

(
B−1
∞ A(t)

)
6 λi0

(
B−1
∞ A(x)

)
6 sup
||t||>R

λN

(
B−1
∞ A(t)

)
.

And thus, for any y 6= 0 and any x, we have :
∣∣∣∣
(
A(x).y, y

)− λi0(x)
(
B∞y, y

)
(
B∞y, y

)
∣∣∣∣ 6 JR(B∞) ,

1
β

.

∣∣∣
((

A(x)− λi0(x)B∞
)
y, y

)∣∣∣
||y||2 6 JR(B∞) ,

that is to say, for any x, we obtain

sup
y 6=0

∣∣∣
((

A(x)− λi0(x)B∞
)
y, y

)∣∣∣
||y||2 6 βJR(B∞) .

And since the matrix A(x)− λi0(x)B∞ is symmetric we obtain

sup
||x||>R

|||A(x)− λi0(x)B∞||| 6 β.JR(B∞) .

This entails

sup
||x||>R

|||A(x)− γ∞B∞||| 6 β.JR(B∞) + sup
||x||>R

∣∣λi0(x)− γ∞
∣∣.|||B∞||| .

And from (16), (14) and (15) we obtain

(17) lim
R→+∞

sup
||x||>R

|||A(x)− γ∞B∞||| = 0 .

And the second result 2) follows from

|||B−1
∞ A(x)− γ∞I||| ≡ |||B−1

∞
(
A(x)− γ∞B∞

)||| 6 |||B−1
∞ |||.|||A(x)− γ∞B∞||| .
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Corollary 12. We have

lim
R

sup
||x||>R

[
Tr

(
B−1
∞ A(x)

)
2

||x||2 .
(
B−1∞ A(x).x, x

)
]

=
N

2
= lim

R
sup
||x||>R

[
Tr

(
Â(x)

)
2

||x||2 .
(
Â(x).x, x

)
]
where

{
Â(x) = BA(B−1x)B ,

B =
√

B−1∞
.

Proof . For any x we have :

(
B−1
∞ A(x).x, x

)
=

((
B−1
∞ A(x)− γ∞I

)
.x, x

)
+

(
γ∞I.x, x

)
.

This entails (
B−1
∞ A(x).x, x

)

||x||2 > γ∞ − sup
||x||>R

|||B−1
∞ A(x)− γ∞I|||

and (
B−1
∞ A(x).x, x

)

||x||2 6 γ∞ + sup
||x||>R

|||B−1
∞ A(x)− γ∞I||| .

Then it is easy to obtain

1
2 sup||x||>R Tr

(
B−1
∞ A(x)

)
.
[
γ∞ + sup||x||>R |||B−1

∞ A(x)− γ∞I|||
]−1

6 sup||x||>R

[
Tr

(
B−1
∞ A(x)

)
2

||x||2
(
B−1
∞ A(x)x,x

)
]

6 1
2 sup||x||>R Tr

(
B−1
∞ A(x)

)
.
[
γ∞ − sup||x||>R |||B−1

∞ A(x)− γ∞I|||
]−1

.

Thanks to proposition 11 and passing to the limit as R goes to infinity the first result follows.
Now let us prove the second equality. We have

BAB −B−1
∞ A =

(
BAB − γ∞I

)
+

(
γ∞I −B−1

∞ A
)

= B
(
A− γ∞B−2

)
B +

(
γ∞I −B−1

∞ A
)

= B
(
A− γ∞B∞

)
B +

(
γ∞I −B−1

∞ A
)

,

and thus

|||BAB −B−1
∞ A||| 6 |||B|||2 |||A− γ∞B∞|||+ |||γ∞I −B−1

∞ A||| .

From this last inequality and using the proposition 11, we prove the second equality in the
same way as in the first one. ¤

The following definition is justified by the previous result.

Definition 2. If, for any matrix A(•) belonging to Q(α, β), we have J∞(B∞) = 0, the
matrix A(•) is called constant as ||x|| goes to infinity or shortly constant at infinity.

Theorem 13. [2] [4]. If the matrix A(•) is constant for any x, ||x|| > R, the solution of the
problem (12) has the following asymptotic behavior :

u(x) ∼ c

||x||N−2

for ||x|| large enough.
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Proof . In (12) we use the following change of variables :

x = B−1y i.e. y = Bx with B =
√

B−1∞ .

We obtain the following equation

(18)
{
−Tr

(
Â(y)D2ω(y)

)
= f(B−1y) ,

u(x) = ω(B.x) , lim||y||→+∞ ω(y) = 0 , ω(y) > 0 ,

where
Â(y) = B.A

(
B−1y

)
.B .

From proposition 11 and corollary 12 the matrix Â(y) satisfies

Tr
(
Â(y)

)

2
||y||2.

(
Â(y).y, y

) =
N

2
, ∀x , ||x|| > R .

We conclude by the result of [4], [2] and the fact that u(•) and ω(•) have the same asymptotic
behaviour. ¤

B - Second case : the amplitude J∞(B∞) is positive. The matrix A(•) is not constant
at infinity. We call it oscillating matrix. The amplitude of its oscillations is measured by the
real number J∞(B∞). We have two possibilities to examine.

i) the behavior of the spectral dispersion is radial that is to say there exists a radial
function x −→ γ

(||x||2) such that R −→ ϕ(R) = sup||x||>R

∣∣∧ (x)− γ
(||x||2)

∣∣ verifies :

(18.1) lim
R

ϕ(R) = 0

with x −→ γ
(||x||2) is oscillating at infinity. In this case, under some hypothesis about

ϕ(•), the behavior of the solution u(•) of (12) is known [4] : there exists a real number
R > 0 large enough such that for any x, ||x|| > R we have u(x) ∼ c.v(||x||2). The
function v(•) is given explicitly by

(18.2) v(||x||2) =
∫ +∞

||x||2
exp

(
−

∫ s

R2

γ(σ)
σ

dσ
)

ds

For more details we can see Theorem 3.1 and remark 4.1 hereafter.

ii) the function of spectral dispersion x −→ ∧(x) is anisotropically oscillating at infinity.
In the sequel our goal is to study this case. In the sequel we consider the constructed
matrix Â and the associated equation (18). To simplify the notations we denote Â(•)
by A(•) and we identify (18) to (12) with f(B−1•) identified to f(•).

Remark 4. For any matrix B ∈ Q(α, β), we use the change of variables y =
√

B−1.x. Thus
the problem (12) and

(18.3)
{ −TrAB(y)D2ω(y) = f

(√
B.y

)

ω(y) > 0 , lim||y||→+∞ ω(y) = 0 , AB(y) =
√

B−1A
(√

B.y
)
.
√

B−1

have the same asymptotic behaviour since u(x) = ω
(√

B−1.x
)
.
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Theorem 13.1. Without any hypothesis about ∧(•), for any ε > 0, there exist R0 := R0(ε) > 0,
c1 := c1(ε) > 0, c2 := c2(ε) > 0 such that the solution u(•) of (12) satisfies : for any x,
||x|| > R0

c1

||x||2(∧∞−1+ε)
6 u(x) 6 c2

||x||2(∧∞−1−ε)

where
∧∞ = inf

B∈Q(α,β)
lim

R→+∞
sup
||x||>R

∧(A, B)(x)

∧∞ = sup
B∈Q(α,β)

lim
R→+∞

inf
||x||>R

∧(A, B)(x)

with ∧(A,B)(x) =
Tr

(
AB(x)

)
2

||x||2 .
(
AB(x).x,x

) where AB(x) =
√

B−1.A
(√

B.x
)
.
√

B−1 .

Before to give the proof of this result, let us remark that from the very definition of ∧(A,B)
we have ∧∞ > 1 since N

2 > β
α .

Proof . Let us prove the right hand side inequality. From the very definition of ∧∞ we can
see that for any ε > 0 there exist B0 = B0(ε) ∈ Q(α, β) and r0 = r0(ε) such that : for any

x, ||x|| > r0 we have ∧∞ − ε 6 ∧(A,B0)(x). After the change of variables y =
√

B−1
0 .x, we

first prove our inequality for the function ω(•) defined by

u(x) = ω
(√

B−1
0 .x

)
or ω(y) = u

(√
B0.y

)
.

This function satisfies

(18.3.1)
{ −Tr

(
AB0(x)D2ω(x)

)
= f

(√
B0.x

)
ω(x) = ωε(x) > 0 , ω(x) = u

(√
B0.x

)
, lim||x||→+∞ ω(x) = 0 ,

since problems (12) and (18.3) have the same asymptotic behaviour. For this let us set, for
any x ∈ RN ,

f(x) = sup
{

f(
√

C.x)
4(ACx, x)

/ C ∈ Q(α, β)
}

.

There exists a radial positive function h(•), with compact support [0, ρ2
0] such that h(||x||2) > f(x)

∀x ∈ RN . Increasing r0 if necessary, we give the following positive, continuous and increasing
function :

(18.3.2) ∧(r) =




∧∞ − ε , ∀ r > r2

0 ,
l(r) , ∧∞ − ε > l(r) > αN

2β > 1 , ∀ r < r2
0 with l(||x||2) 6 ∧(A, B0)(x)

∀x , ||x|| 6 r0 ,

and let us consider ωrad(•) solution of the following differential equation

(18.3.3)

{
− 1

σ(r)

(
σ(r)ω′rad(r)

)′ = h(r) ,

ω′rad(0) = 0 , ωrad(r) > 0 , limr→+∞ ωrad(r) = 0 ,

with
σ(r) = exp

( ∫ r

1

∧(θ)
θ

dθ
)

.

16



From the very definition of ∧(•) we have ∧(||x||2) 6 ∧(A, B0)(x) ∀x, and using the same
methode as in section IV - B1 - first step or as in [4], we can prove that ωr(x) := ωrad(||x||2)
is a super-solution of (18.3) that is to say :

(18.3.4)
{ −div

(
AB0D

2ωr(x)
)

> f(
√

B0.x) ,
ωr(x) > 0 , lim||x||→+∞ ωr(x) = 0 .

And from the comparison principle [1], [3], we obtain :

(18.3.5) ∀x ∈ RN , 0 6 ω(x) 6 ωr(x) =
∫ +∞

||x||2
1

σ(θ)

∫ θ

0

σ(t)h(t) dt dθ .

But we have :

∀ θ , θ > r0(ε) > ρ0 ,

∫ θ

0

σ(t)h(t) dt =
∫ ρ0

0

σ(t)h(t) dt 6 ||σ||∞.||h|||∞.ρ0 6 c0(h)

where c0(h) is a constant independant of ε;

∀ θ , θ > r0(ε) > ρ0 , σ(θ) = exp
( ∫ θ

1

∧(r)
r

dr

)
= exp

( ∫ r0

1

l(r)
r

dr

)
.

(
θ

r0

)∧∞−ε

.

And thus for any x, ||x|| > r0 we obtain :

0 6 ω(x) 6 c0(h).r∧∞−ε
0

exp
( ∫ r0

1
l(r)
r dr

) .
1

||x||2(∧∞−1−ε)
,

0 6 ω(x) 6 cε.c0(h)
||x||2(∧∞−1−ε)

, ∀x , ||x|| > r0(ε) .

By the reverse change of variables x =
√

B−1
0 t we have u(t) = ω

(√
B−1

0 .t
)
; and we obtain

u(t) 6 cε.c0(h)

||
√

B−1
0 t||2(∧∞−1−ε)

.

And since
√

α
β2 I 6

√
B−1

0 6
√

β
α2 I, there exists c(α, β) > 0 such that

(18.3.6) u(t) 6 cε.c(α, β).c0(h)
||t||2(∧∞−1−ε)

for any t, ||t||2 > r2
0.

α2√
β
. In the same way we prove the left hand side inequality. ¤

Let us set ∧B(r) = inf ||x||>r ∧(A,B)(x), ∀ r > 0.

Corollary 13.2 Let us suppose that the matrix A(•) is such that the decreasing function
r −→ ϕ(r) = supB∈Q(α,β)[∧∞ − ∧B(r)] satisfies the following : exp

( ∫ +∞
1

ϕ(r)
r dr

)
< +∞.

Then we obtain the following result : there exist some constants c1(α, β, h) > 0, r0 > 0, such
that

u(x) 6 c1(α, β, h)
||x||2(∧∞−1)

∀x , ||x|| > r0 .
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Proof : From our hypothesis we have, for any B ∈ Q(α, β)

∧∞ − ϕ(r) 6 ∧B(r) 6 ∧(A, B)(x) , ∀x , ||x|| > r .

In (18.3.1) we use B instead of B0 and in (18.3.2) we set ∧(r) := ∧∞ − ϕ(r) ∀ r > 0. Then
(18.3.5) becomes :

0 6 ωB(x) := ω(x) 6 c0(h).
∫ +∞

||x||2
dθ

σ(θ)
, ∀ ||x|| > ρ0 ,

with

σ(θ) = θ∧∞ .exp
(
−

∫ θ

1

ϕ(r)
r

dr

)
,

that is to say

0 6 ω(x) 6 exp
( ∫ +∞

1

ϕ(r)
r

dr

)
.

c0(h)
||x||2(∧∞−1)

.

That is to say

0 6 ω(x) 6 c1(h)
||x||2(∧∞−1)

,

where c1(h) is a constant independant on B ∈ Q(α, β). And as previously, (18.3.6) becomes

u(x) 6 c(h).c(α, β)
||x||2(∧∞−1)

∀ ||x|| > r0 ,

for some r0 > ρ0. ¤

We have a similar result to estimate u(•) from below :

u(x) > c2(α, β, h) / ||x||2(∧∞−1) .

Remark 4.1 Contrary to what is stated in theorems 21 and 22 of [4], the result obtained
in [4] is the following : for any ε > 0 there exist R0 := R0(ε) > 0, c1(ε) > 0 and c2(ε) > 0
such that

c1(ε)v1(||x||2) 6 u(x) 6 c2(ε)v2(||x||2) ∀x , ||x|| > R0

with

v1(||x||2) =
∫ +∞

||x||2
exp

(
−

∫ s

R2

γ(σ) + ε

σ
dσ

)
ds

v2(||x||2) =
∫ +∞

||x||2
exp

(
−

∫ s

R2

γ(σ)− ε

σ
dσ

)
ds .

The function γ(•) can play the role of θ, θ or γ(||x||2) given in the introduction, for in-
stance. Indead the conclusion in the last line of the proof - ([4] p 180, line 5 from the
top) - is not correct because it is some what fast : the various constants depend to the
variable ε. To overcome this difficulty we need to replace the hypothesis (H3) of [4] by
the following : the decreasing function r −→ ϕ(r) = sup||x||>r

∣∣ ∧ (x)− γ(||x||2)
∣∣ satisfies

exp
( ∫ +∞

1
ϕ(r)

r dr
)

< +∞. And in this case the result of [4] follows from the same idea of
corollary 13.2 i. e.

u(x) ∼
∫ +∞

||x||2
exp

(
−

∫ s

R2

γ(σ)
σ

dσ
)

ds

18



for ||x|| large enough. ¤

IV - Anisotropic asymptotic behavior.
In the sequel we denote again by A(x) the matrix Â(x) =

√
B−1∞ .A

(√
B∞.x

)
.
√

B−1∞ , where
B∞ is given by proposition 10. From the very definition of A(•), the amplitude of its
spectrum is positive. Let us set :

(18.4)





∧ = limR sup||x||>R

Tr
(
A(x)

)
2

||x||2
(
A(x).x,x

)

∧ = limR inf ||x||>R
Tr

(
A(x)

)
2

||x||2
(
A(x).x,x

)

Let δ0 be a positive real number close enough to ∧ − ∧ such that δ0 > ∧ − ∧. Let 2η0 be
a positive real number very small with respect to δ0 − (∧ − ∧) > 0. And let us give η > 0,
0 < η < η0 - ( arbitrary small) - . From (18.4) there exists Rη = R∞ such that for any x,
||x|| > R∞ we have

(18.5) ∧(η) = ∧ − η 6 ∧(x) 6 ∧+ η = ∧(η)

where

∧(x) =
Tr

(
A(x)

)
2

||x||2
(
A(x).x, x

) .

Let us consider the operator A(•) =
∑

ij aij(x)
∂2(•)

∂xi∂xj
. From operator A(•) we introduce a

family of radial operators

x ∈ RN −→ Ar(x)(•) =
d2(•)
dr2

+
∧(x)

r

d
dr

(•) =
1

r∧(x)

d
dr

(
r∧(x) d

dr
(•)

)
,

where r > 0 and x −→ ∧(x) is the function of the spectral dispersion associated to the
matrix A(x). The link between A(•) and Ar(x)(•) is the following : for any regular and
radial function Ψ(x) = ϕ(||x||2) we have

AΨ
4

∑
ij aijxixj

= ϕ′′(||x||2) +
∧(x)
||x||2 ϕ′(||x||2) = Aρ(x)ϕ(ρ)/ρ=||x||2 .

Remark 5. Let us point out that for some technical reasons the variable r plays the role of
||x||2, instead of ||x|| as usually.

A - Method of sub and supersolution.
Let us give a positive radial function r −→ g(r) which will be choosen later in a suitable
way. For any -(but fixed)- x belonging to RN , with ||x|| large enough, we consider a family
of radial problems :

(Px) : (19)
{
−Ar(x)h(x, r) = −h′′(x, r)− ∧(x)

r h′(x, r) = g(r) , r > 0
h′(x, 0) = 0 , limr→+∞ h(x, r) = 0 , h(x, r) > 0

where g satisfies
∫ +∞
1

σ∧g(σ) dσ < +∞ with ∧ given by (18.4) section IV. The unique
solution r −→ h(x, r) of (19) is given by

(20) h(x, r) := hg(x, r) =
∫ +∞

r

1
s∧(x)

( ∫ s

0

σ∧(x)g(σ) dσ
)

ds .
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If ∧(•) = constant ∀x , ||x|| > R0, the function hg(x, ||x||2) taks the form hg(||x||2) = h(||x||2).
And let us point out that in this case x −→ h(||x||2) gives the behavior at infinity of the
solution of (12) [4]. So roughly speaking, our idea is to look for a subsolution σ, -( respec-
tivement a supersolution σ)- of (12) in the form

(21) H(x) = Hg(x) = hg(x, ||x||2) = h(x, ||x||2) .

How to construct these functions? For this it is sufficient to choose two functions g1 and g2

in a suitable way such that σ(•) = Hg1(•) and σ(•) = Hg2(•) have the same behavior as ||x||
goes to infinity. Next we establish the result thanks the comparison principle. ¤

B- Construction of sub and supersolution of (12).

B0 - Preliminary results.
Let us introduce the following functions that we need later. For any x ∈ RN , any r > 0 and
any suitable positive function g(•) : R+ −→ R+, we set

K1 = K1(x, r, g) =
∫ +∞

r

1
s∧(x)

[ ∫ s

0

Log
(σ

s

)
.σ∧(x)g(σ) dσ

]
ds

K2 = K2(x, r, g) =
∫ +∞

r

1
s∧(x)

[ ∫ s

0

(
Log

(σ

s

))2

.σ∧(x)g(σ) dσ
]
ds

K3 = K3(x, r, g) = − 1
r∧(x)

∫ s

0

Log
(σ

r

)
.σ∧(x)g(σ) dσ .

To simplify the presentation we use the short notation Ki, i = 1, 2, 3. Since g(•) > 0 we
have K1 6 0, K2 > 0 and K3 > 0.

Proposition 14. The following estimates are true for r > 0 large enough :

1) 0 6 −K1 = k.
r∧+1
1 − r∧+1

0

(∧+ 1)(∧ − 1)
.
Log r

r∧−1
+©

( 1
r∧−1

)

2) 0 6 K2 = k.
r∧+1
1 − r∧+1

0

(∧+ 1)(∧ − 1)
.
(Log r)2

r∧−1
+©

( 1
r∧−1

)

3) 0 6 K3 = k.
r∧+1
1 − r∧+1

0

∧+ 1
.
Log r

r∧−1
+©

( 1
r∧−1

)

where ∧ = ∧(x) and g(r) = k.χ[r0,r1]
(r), k > 0 and χ[r0,r1]

(r) = 1 if r0 6 r 6 r1 and
χ[r0,r1]

(r) = 0 if r /∈ [r0, r1]. The proof is straightforward.

Proposition 15. Let us assume the spectral dispersion satisfies :

||∇ ∧ ||
L∞

(
RN\B(0,R0)

) + ||D2 ∧ ||
L∞

(
RN\B(0,R0)

) 6 c

for R0 large enough. Then we have the following : for any ε > 0 there exist Rε > R0 and
cε > 0 such that

(23)

∣∣∣K2.
(
A(x)∇∧,∇∧ )

+K1.T r
(
A(x)D2 ∧ )

+ 4K3.
(
A(x)∇∧, x

)∣∣∣

6 cε.
||g||∞

[
ρ∧+1
1 − ρ

∧+1
0

]

||x||2(∧(x)−1−ε)

20



for any x, ||x|| > Rε, r = ||x||2 and for any positive function g(•) such that support
g ⊆ [

x / ρ0 6 ||x|| 6 ρ1

]
and where ∧ and ∧ are given by (18.4) section IV.

Proof . It follows easily from the proposition 14. ¤

Remark 6. Without another assumption on ∧(•) the left-hand side of (23) tends to zero as
||x|| goes to infinity. But we will see that the behavior of (23) at infinity is not sufficient to
prove our result. So we will assume that the left-hand side of (23) goes to zero faster than

1
||x||2(∧(x)−1−ε)

as ||x|| goes to infinity. The results of section II allow us to show that the

supposed assumptions are suitable for a large classe of matrices. ¤

From [4] and theorem 13.1 and for some fixed ε > 0 small enought, we have

a

||x||2(∧−1+ε)
6 u(x) 6 b

||x||2(∧−1−ε)

for ||x|| sufficiently large and with 0 < a < b. These inequalities prove that u(•) has a

behavior of the form u(x) =
c(x)

||x||δ(x)
where the function δ(•) and c(•) satisfy :

0 < c0 6 c(x) 6 c1 ,

2(∧ − 1) 6 δ(x) 6 2(∧ − 1) ,

Log c0 − Log u(x)
Log (||x||) 6 δ(x) 6 Log c1 − Log u(x)

Log (||x||) .

That is to say δ(x) = − Log u(x)
Log (||x||) for ||x|| large enough.

Proposition 16. Let A(•) be a matrix belonging to Q(α, β). Let us assume that, for any
positive continuous function f with compact support, the solution u(•) = uf (•) of

{ −Tr(AD2uf ) = f in RN

uf (x) > 0 ∀x , lim||x||→+∞ uf (x) = 0

has the following asymptotic behavior :

a(f)
||x||δf (x)

6 u(x) 6 b(f)
||x||δf (x)

, ∀x , ||x|| > Rf > 0

with
0 < a(f) 6 b(f) ,

b(f)
a(f)

6 γ , b(f) > ||u||∞
2

Then δf (•) is independant of f and satisfies

N.
α

β
− 2 6 δf (•) 6 N.

β

α
− 2

Proof . We need two steps.
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1) First step : asymptotic behavior of the somme of two solutions. Let us
consider

(24)
{ −Tr(AD2ui) = fi in RN , i = 1, 2

ui(x) > 0 , lim||x||→+∞ ui(x) = 0 .

Let us set δi(•) = δfi(•), ω(•) = u1(•) + u2(•), g = f1 + f2, ai = a(fi), bi = bi(f),
Ri = Rfi

. For any x, ||x|| > sup
(
R1, R2, Rg

)
we have :





a(g)
||x||δg

6 ω(x) 6
b(g)
||x||δg

ai

||x||δi
6 ui(x) 6

bi

||x||δi
, i = 1, 2 .

Since ω = u1 + u2, we obtain

ai

||x||δi
6 ui(x) 6 b(g)

||x||δg
.

There exists R > sup
(
R1, R2, Rg

)
such that δi(x) > δg(x) ∀x , ||x|| > R .

This entails that we have inf
(
δ1(x), δ2(x)

)
> δg(x) . As we have

(25)
a(g)
||x||δg

6 ω = u1 + u2 6 b1

||x||δ1
+

b2

||x||δ2
6 b1 + b2

||x||inf(δ1,δ2)

we obtain δg(x) > inf
(
δ1(x), δ2(x)

)
for ||x|| sufficiently large. Thus we have

(26) δg(x) = inf
(
δ1(x), δ2(x)

)
.

And since operator −Tr(AD2•) is linear, we have :

(27) δkf (x) = δf (x) , ∀ k > 0 .

And thus from (26) and (27) we obtain

(28)
{

δkf2+f1(x) = inf
(
δ1(x), δ2(x)

)
∀ k > 0 and ||x|| large enough .

2) Second step : a perturbation result.

For any ε > 0 we set gε = f1 + εf2; and uε
2(x) = εu2(x) is the solution of (24) with εf2

instead of f2. From (28) we obtain δgε(x) = inf
(
δ1(x), δ2(x)

)
= δg(x). From (25) we

can write
(29)

a(gε)
||x||δ1

6 a(gε)
||x||δg

6 u1(x) + εu2(x) 6 b1

||x||δ1
+

εb2

||x||δ2

for ||x|| sufficiently large, since δ1(x) > δg(x). Consequently as

b(gε) > ||u1 + εu2||∞
2

> ||u1||∞ − ε||u2||∞
2

> ||u1||∞
4

,

for ε sufficiently small, we have β0a(gε) > b(gε) > ||u1||∞
4 and thus a(gε) > ||u1||∞

4β0
.

Let us pass to the limit in (29) as ε goes to zero. We obtain

1
||x||δg

||u1||∞
4β0

6 u1(x) 6 b1

||x||δ1
.
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This entails, for ||x|| sufficiently large, δg(x) > δ1(x) . In the same way we can prove
that δg(x) > δ2(x), and thus we have

(30) δg(x) > sup
(
δ1(x), δ2(x)

)
.

Finally (26) and (30) give the result :

δg(x) = δ1(x) = δ2(x) .

The inequalities −2 + N α
β 6 δ(x) 6 −2 + N β

α come from [4] ¤

The behavior at infinity of matrices is important as shown by the following result.

Proposition 17. Let us give two matricies A1(•) and A2(•) belonging to Q(α, β) such that
A1(x) = A2(x) for any x, ||x|| > R0 > 0. Then the solutons ui(•), i = 1, 2, of

(31)
{ −Tr(AiD

2ui) = fi in RN

ui(x) > 0 , lim||x||→+∞ ui(x) = 0

where fi = f , (i = 1, 2), is a positive continuous function with compact support, have the
same asymptotic behavior, that is to say there exist 0 < ai < bi, i = 1, 2 and x −→ δ(x) ∈
[N α

β − 2, N β
α − 2] such that

ai

||x||δ(x)
6 ui(x) 6 bi

||x||δ(x)
i = 1, 2

for ||x|| sufficiently large.

Proof . From (31) it follows

(32) − Tr
(
A1D

2(u1 − u2)
)

= g(x)

where g(x) = −Tr
(
(A2 − A1)D2u2(x)

)
is a continuous function with compact support in

B(O, R0) since A2(x)−A1(x) = 0, ∀x, ||x|| > R0. Let us set h(x) = |g(x)|. From comparison
principle -( cf [1] , [3] )- we have

(33) 0 6
∣∣u1(x)− u2(x)

∣∣ 6 s(x)

where s(•) is the solution of (31) with h(•) and A1 instead of fi = f and Ai, respectively.
From proposition 16 we have

(33.1)





a(h)
||x||δ1(x)

6 s(x) 6
b(h)

||x||δ1(x)
∀x, ||x|| > R > R0 ,

ai(f)
||x||δi(x)

6 ui(x) 6
bi(f)
||x||δi(x)

∀x, ||x|| > R > R0 , i = 1, 2 .

From (33) we have u2(x) 6 u1(x) + s(x) and thus it follows

a2(f)
||x||δ2(x)

6 b1(f) + b(h)
||x||δ1(x)

.

For ||x|| large enough, this give δ2(x) > δ1(x). In the same way, reversing the role of u1 and
u2 we get δ1(x) = δ2(x). ¤
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Proposition 18. Consider the two functions

Hi(x) =
∫ +∞

||x||2
1

s∧i(x)

( ∫ s

0

σ∧i(x)gi(σ) dσ
)

ds i = 1, 2 .

Let us assume that
∧1(x) = ∧2(x) = ∧(x) ∀x, ||x|| > R ,

and gi(•) is positive bounded function with compact support, i = 1, 2. Then the two func-

tions H1(•) and H2(•) have the same behavior as the function
1

||x||2(∧(x)−1)
at infinity.

Proof . Let us recall that we have

0 <

∫ +∞

0

σ∧i(x)gi(σ) < Γi < +∞

It is sufficient to prove the result for H1(•), for instance. We have

0 6 H1(x) 6 Γ1.

∫ +∞

||x||2
ds

s∧1(x)
=

Γ1( ∧1 (x)− 1
)||x||2(∧1−1)

that is to say

0 6 H1(x) 6 Γ1( ∧1 (x)− 1
)||x||2(∧(x)−1)

∀x , ||x|| > R .

Now let us prove the reverse inequality. Since g1(•) has a compact support, there exists
R1 > R such that
∫ +∞

0

σ∧1(x)g1(σ) dσ =
∫ R1

0

σ∧1(x)g1(σ) dσ >
∫ R1

1

σ∧̃1g1(σ) dσ +
∫ 1

0

σ∧̃1g1(σ) dσ > Γ0 > 0

where ∧̃1 = inf ||x||6R1 ∧1(x) and ∧̃1 = sup||x||6R1
∧1(x). This gives the following :

∀x, ||x|| > R1 , H1(x) > Γ0

∫ +∞

||x||2
ds

s∧1(x)
=

Γ0( ∧1 (x)− 1
)||x||2(∧(x)−1)

¤
Remark 6.1. The previous result will enable us to prove that the solution u(•) of (12)
behaves like a suitable function H associated to ∧(•). This shows that only ∧(•) controls
the behaviour of u(•). The following result is easy to obtain.

Proposition 19. Let us set H(x) = hg(x, ||x||2) where r −→ hg(x, r) is defined by (19) and
(20). Then function H(•) satisfies the following

Tr
(
A(x)D2H

)
= −4

(
A(x).x, x

)
.g

(||x||2) +K1(x, ||x||2, g).T r
(
A(x)D2 ∧ )

+
K2(x, ||x||2, g).

(
A(x)∇∧,∇∧ )

+
4K3(x, ||x||2, g).

(
A(x)∇∧, x

)

Proof . For any x ∈ RN , let us consider the solution r −→ h(x, r) of (19) given by (20). To
conclude it is sufficient to see that

(Ar(x)h(x, •))(||x||2) = −4
(
A(x).x, x

)
g
(||x||2)
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¤

Let us introduce our essential assumption (H) : there exists R0(H) := R0 > 0 such
that for any R > 0 and any positive, bounded function g with compact support in B(O,R),
the spectral dispersion ∧(•) satisfies the following :

−K1(x, ||x||2, g).T r
(
A(x)D2 ∧ )−K2(x, ||x||2, g).

(
A(x)∇∧,∇∧ )

−4K3(x, ||x||2, g).
(
A(x)∇∧, x

) ∈[
− c0(R)||g||∞

1 + ||x||2(∧(x)+δ(x))
,

c0(R)||g||∞
1 + ||x||2(∧(x)+δ(x))

]
∀x , ||x|| > R0 ,

with δ(x) > δ0 > 0 and ∧ − ∧+ δ0 > 0 , where ∧ and ∧ are defined in (18.4).

Remark 5.1. if ∧ = ∧ = ∧∞ then we have limR→+∞ sup||x||>R

∣∣ ∧ (x)− ∧∞
∣∣ = 0, and the

result of [4] can apply.

Comments about the assumption (H) : The differential inequality (H) is suitable as
shown by the following remarks

1) if ∧(•) is constant for ||x|| > R, (H) is satisfied. And in this case our result already
follows from [4]. And from proposition 3 section II this result does not obtained by [2]
since in this work [2] lim||x||→+∞A(x) = A0, a constant matrix.

2) Let us consider the matrix M(∧) defined by :

M(∧) = K1.D
2 ∧+K2.∇∧⊗∇ ∧+K3.

∧(x)
||x||2 .N(∧)

where
Ki = Ki(x, ||x||2, g) and N(∧)ij = xi.

∂∧
∂xj

+ xj .
∂∧
∂xi

∀ i, j .

If M(∧) satisfies the inequalities (4) for any x, ||x|| > R, then from corollary 7 there
exists a matrix x −→ A(x) ∈ Q(α, β) such that

(34) K1.T r
(
A(x)D2 ∧ )

+K2

(
A(x)∇∧,∇∧ )

+K3

(
A(x)∇∧, x

)
= 0 , ∀x, ||x|| > R.

And thus (H) is satisfied by A(•) and ∧(•).
3) If in addition ∧(•) is the spectral dispersion of the matrix that we seek, then we use the

remark 2 section II with the two following matrices V = M(∧) and R = I− 2∧
||x||2.x⊗x.

And we find A(•) ∈ Q(α, β) satisfying (H) and such that ∧(•) is its spectral dispersion.
4) Let us write the equation (34) in the form

(35) Tr
(
A(x)D2 ∧ )

+
K2

K1
.
(
A(x)∇∧,∇∧ )

+
K3

K1

(
A(x)∇∧, x

)
= 0 , ∀x, ||x|| > R.

Then for R > 0 large enough and A = I, the equation (35) is "very close" to the radial
form :

(36)




−4∧+ 1

2Log
(||x||2).||∇ ∧ ||2 + ∧(x)

x.∇∧
||x||2 = 0 .

∀x , ||x|| > R .
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The equation (36) is obtained by "approximation" using the proposition 14 section
IV. The proposition 8 section II shows that the equation (36) has many non constant
positive and bounded solutions. This gives a partial answer to the question posed in
the remark 3 section II.

5) an elementary example satisfying (H) : Let k be a positive real number such that

ϕ(x) = k + sin
( 2π

1 + ||x||2m

)
∈

[α

β
N,

β

α
N

]

for any x ∈ RN . After some elementary calculations we obtain that there exist some
positive constant c such that

|||D2ϕ(x)|||+ ||∇ϕ(x)|| 6 c

1 + ||x||2m−1
∀x ∈ RN

and thus ∣∣c1(x)TrA(x)D2ϕ(x) + c2(x)a
(∇ϕ(x),∇ϕ(x)

)
+ c3(x)a

(∇ϕ(x), x
)∣∣

6
c

1 + ||x||2m−1

for any c1, c2, c3 bounded functions in RN , and any matrix A(•) belonging to Q(α, β).
The positive real number m is arbitrary.

B1 - Construction of a super-solution of (12) or (18)
Thanks to the proposition 16 we can suppose that the function f(•) has its support in
the open ball B(O, ρ1). To choose a suitable function r −→ g(r) for which the function
H(•) = Hg(•) is a super-solution of (12), we introduce the following radial function

f(r) = sup
{
f(x) / x ∈ RN , ||x||2 = r

}
.

Regularizing f(•) if necessary, thanks to proposition 16, we can suppose that f(•) is contin-
uous and satisfies f(||x||2) > f(x) for any x. And we can suppose sup f ⊂ [0, ρ2

1[. Let k be
a positive real number such that

(37) k.α.||x||2χK

(||x||2) > f
(||x||2)

where K =
{
x / ||x||2 < ρ2

1

}
= B(O, ρ1), χK

(||x||2) = 1 if x ∈ K, χK

(||x||2) = 0 if x /∈ K.
Let us set

(38) G(x) := g
(||x||2) := kχKr

(||x||2)

where χKr

(||x||2) := χ[0,ρ2
1]

(||x||2). We need to introduce the following function σ(•) defined
by :

(38.1)





σ′(r)/σ(r) = ∧̃(r)
r ,

r > 0 , σ(1) = 1 with ∧̃(r) = ∧+ η for any r > R0 (H) = R0

and such that ∧̃(||x||2) > ∧(x) ∀x ∈ RN .

We have :
(38.2) σ(r) = exp

( ∫ r

1

∧̃(θ)
θ

dθ

)
.

Let ε be a positive and arbitrary small real number. After increasing R0 = R0(H), if
necessary, -(and in this case R0 = R0(ε) )- we can assume that we have the following :
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1)

(39)





R0 > ρ1

3α

2
.

∫ ρ2
1

0
σ(θ) dθ > c0(ρ1).

∫ +∞

R2
0

σ(θ)
(1 + θ∧(η)+δ0)θ

dθ

since we have ∧(η)−∧(η)+ δ0 = ∧−∧+ δ0−2η and σ(θ) ∼ c.θ∧(η) for θ large enough.

2) there exists R1 = R1(ε) such that

(40)





ρ1 < R1 < R0

3α

2
.

∫ ρ2
1

0
σ∧+1 dθ > 4

∫ R2
0

R2
1

c1(ρ1)σ∧(η)

(1 + θ(∧−1+ε))θ
dθ

with R1 close enough to R0. Thanks to the proposition 17, we can modify our matrix A(•)
in a suitable ball. This procedure does not affect the assumption (H) since this hypothesis is
supposed true at infinity. For this, let θε = θ > 0, be small enough with respect to R0 −R1

and ε. And let us consider the following matrix

Ãε(x) = Ã(x) =
{

A(x) ∀x , ||x|| > R0 − θ
τ.I ∀x , ||x|| < R0 − θ

where τ is a real number such that α < τ < β, and I the identity matrix. From the
approximation lemma giving the approximation of the matrix Ã, we obtain the regular
matrix A1(x) which satisfies :

(38.3) A1(x) =
{

A(x) ∀x , ||x|| > R0

τ.I ∀x , ||x|| 6 R1

The matrix A1(•) depends to ε, R0, R1, η. From the approximation lemma the matrix
A1(•) belongs to Q(α, β). This is now the regularized matrix A1(•) that we use in the
equation (18), (or equivalently in (12) ), to construct a super-solution. Hence the equation
(18) becomes { −Tr

(
A1(x)D2u1

)
= f in RN ,

u1(x) > 0 , lim||x||→+∞ u1(x) = 0 .

The spectral dispersion of A1(•) is ∧(•) if ||x|| > R0 and
N

2
if ||x|| 6 R1. Thus A1(•)

satisfies (H) for x belonging to {x / ||x|| > R0} ∪ {x / ||x|| 6 R1}. To simplify the notation
we denote again ∧(•) the spectral dispersion of A1(•).

Theorem 20. Let g(•) be a radical function satisfying (37) and (38). For any x let us
consider the function r −→ h(x, r) = hg(x, r), solution of (19) associated to the matrix
A1(•). Then the function

x −→ Hg(x) := H1(x) = hg(x, ||x||2) = h(x, ||x||2) ,

is a super-solution of (18).

Remark 5. In the sequel we use the notation H1(•) instead of Hg(•) because the operator
−Tr(A1D

2•) is associated to the matrix A1(•).
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Proof of theorem 20. From (H) and the definition of H1(•) given in proposition 18, and
using the proposition 19, we obtain :

(41)





−Tr(A1D
2H1) > −kc0(ρ1).χ[y / ||y||>R0]

(x)

1 + ||x||2(∧(x)+δ(x))

−c1(ρ1).k.χ[R1<||y||<R0]
(x)

1 + ||x||2(∧(x)−1−ε)

+4
(
A1(x).x, x

)
.G(x) := p(x) in RN

with lim||x||→+∞H1(x) = 0 and where c1(ρ1) = cε.[ρ∧+1
1 ]. Let us consider the solution ω of

the following :

(42)
{ −Tr(A1D

2ω) = f(||x||2) in RN ,
ω(x) > 0, lim||x||→+∞ ω(x) = 0 .

Writing (41) - (42) we obtain :

(43)
{ −Tr

(
A1D

2(H1 − ω)
)

> p(x)− f(||x||2) := ϕ(x)
lim||x||→+∞(H1 − ω)(x) = 0.

In the sequel we propose to estimate from below H1−ω by a suitable radial function ωrad(•).

First step : introduction of ωrad(•).

This function will be a solution of an ordinary differential equation. For this let us estimate
from below the function ϕ(•) in (43) by a radial one. By (37) and (38) we have :

(
A1(x).x, x

)
.G(x) = kχKr

(||x||2).(A1(x).x, x
)

> kα||x||2χKr

(||x||2) > f
(||x||2)

since A1(•) ∈ Q(α, β). From the definitions (18.4) and (18.5) we have ||x||2∧(x) > ||x||2∧(η)

for any x, ||x|| > R1 and it follows that the function ϕ(•) is estimated from below by the
following radial function

r −→ Ψ(r) = −
kc0(ρ1).χ[ρ / ρ>R2

0]
(r)

1 + r∧(η)+δ0

−
c1(ρ1).k.χ[ρ / R2

1<ρ<R2
0]

(r)

1 + r(∧(η)−1−ε)

+3kα.r.χKr
(r)

where r = ||x||2 that is to say

(44) Ψ
(||x||2) 6 ϕ(x) ∀x .

Then we define ωrad(•) as the solution of the following ordinary differential equation :

(45)




−ω′′rad(r)− ∧̃(r)

r
ω′rad(r) =

Ψ(r)
4β.r

:= Ψ̃(r) , r > 0

ω′rad(0) = 0 , limr→+∞ ωrad(r) = 0 , ωrad(r) > 0 , ω′rad(r) 6 0 .

Let us set

ωrad(r) :=
∫ +∞

r

1
σ(θ)

( ∫ s

0

σ(θ)Ψ̃(θ) dθ
)

ds ,
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where σ(•) and ∧̃(•) are given by (38.1). It is easy to see that this function satisfies the
condition ω′rad(0) = 0 and the differential equation in (45). It remains to prove the others
conditions. For this it is sufficient to verify that we have :

(46) ∀ s > 0 , 0 6
∫ s

0

σ(θ)Ψ̃(θ) dθ 6
∫ +∞

0

σ(θ)Ψ̃(θ) dθ = Γ∞ < +∞ .

We have four cases to distinguish.

First case : for 0 6 s 6 ρ2
1 we have

∫ s

0

σ(θ)Ψ̃(θ) dθ =
3kα

4β
.

∫ s

0

σ(θ) dθ > 0 .

Second case : for ρ2
1 6 s 6 R2

1 we have

∫ s

0

σ(θ)Ψ̃(θ) dθ =
3kα

4β
.

∫ ρ2
1

0

σ(θ) dθ > 0 .

Third case : for R2
1 6 s 6 R2

0 we have

∫ s

0

σ(θ)Ψ̃(θ) dθ > 3kα

4β
.

∫ ρ2
1

0

σ(θ) dθ − k

4β

∫ R2
0

R2
1

c1(ρ1)σ(θ)
(1 + θ(∧(η)−1−ε))θ

dθ > 0 .

by the choice of R1 and R0 given by (40).

Fourth case : for s > R2
0, we have

∫ s

0
σ(θ)Ψ̃(θ) dθ >

3kα

4β
.

∫ ρ2
1

0
σ(θ) dθ

− k

4β

∫ R2
0

R2
1

c1(ρ1)σ(θ)
(1 + θ(∧(η)−1−ε))θ

dθ

−k

∫ +∞

R2
0

c0(ρ1)σ(θ)
(1 + θ(∧(η)+δ))θ

dθ > 0

from (39) and (40). Thus we conclude that for any s > 0 we have :

0 6
∫ s

0

σ(θ)Ψ̃(θ) dθ 6 3kα

4β
.

∫ ρ2
1

0

σ(θ) dθ = Γ∞ < +∞ .

And thus ωrad(•) is the solution of (45) and behaves like
1

r∧(η)−1
as r goes to infinity. From

(46) and since ∧(x) 6 ∧̃(||x||2) for any x, we have by (45) :

−ω′′rad(r)− ω′rad(r)
∧(x)

r
6 −ω′′rad(r)− ω′rad(r)

∧̃(r)
r

= Ψ̃(r) ,

for any x ∈ RN and r = ||x||2. We obtain :

−4
(
A1(x).x, x

)
ω′′rad(||x||2)− 4ω′rad(||x||2) ∧ (x).

(
A1(x).x, x

)

||x||2 6 4
(
A1(x).x, x

)
Ψ̃(||x||2)
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that is to say, after some computations and using (44,) the function ω(x) = ωrad(||x||2)
satisfies

(47)
{ −Tr(A1D

2ω) 6 ϕ(x) in RN ,
ω(x) > 0 , lim||x||→+∞ ω(x) = 0 .

¤

Second step : Let us prove that we have :

H1(x)− ω(x) > ωrad(||x||2) > 0 , ∀x ∈ RN .

It follows from (47) that we have

(48)
{ −Tr

(
A1D

2(H1 − ω)
)

+ Tr(A1D
2ω) > ϕ(x)−Ψ(||x||2) > 0 in RN

lim||x||→+∞ ω(x) = lim||x||→+∞(H1 − ω)(x) = 0 .

Since x −→ ϕ(x) − Ψ(||x||2) is non negative, with compact support we proceed as in [4] to
prove that H1(x) − ω(x) > ω(x) = ωrad(||x||2) > 0 for any x ∈ RN : we consider (48) in a
ball B(O, n) with the Dirichlet boundary condition. Let us denote by H1,n, ωn, ωrad,n the
corresponding approximations of H1, ω and ωrad respectively. The maximum principle, [1] -
[3], gives that we have

(H1,n − ωn)(x)− ωrad,n(||x||2) > 0 , ∀x ∈ B(O,n) .

After establishing some suitable estimates, we pass to the limit as n goes to infinity and we
conclude that we have :

H1(x)− ω(x) > ωrad(||x||2) > 0 , ∀x ∈ RN .

¤

Third step : Since by construction f(||x||2) > f(x) ∀x ∈ RN , we prove as previously [4]
that we have ω(x) > u1(x) ∀x ∈ RN . And the final result follows :

H1(x) > u1(x) ∀x ∈ RN

that is to say H1(•) is a super-solution of (18) and recalling that u1(•) is the solution of (18)
associated to the operator −Tr(A1D

2•). ¤

B2 - Construction of a sub-solution of (18) or (12).
We proceed exactly as before. To avoid repetition we only indicate the key points that differ
from the section B1. Before to choose the suitable function g wich allows us to construct a
sub-solution Hg(•) of (18), let us introduce, as previously, the following function

f(r) = inf
{
f(x) / x, ||x||2 = r

}
.

Thanks to the proposition 16 we can assume that the non negative and regular function
f(•), with compact support, is such that :

(49) ρ −→ f(ρ) 6≡ 0 , supportf = {ρ / 0 6 ρ < ρ2
1} .

Let us introduce the function

(50) G(x) := g(||x||2) = k.χKr

(||x||2)
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where χKr
(•) = χ[0,ρ2

2]
(•) with ρ2 =

ρ1

2
. The real number k > 0 is choosen such that

(51)





1
2
f(||x||2)− 4kβ.χKr

(||x||2).||x||2 > 0 , ∀x ∈ Rn

1
2
f(||x||2)− 4kβ.χKr

(||x||2).||x||2 > 0 , ∀x ∈ B(0, ρ2) .

There exist two positive real numbers R0, R1, 0 < R1 < R0, large enough and satisfying

(52)





β

2

∫ ρ2
2

0

σ(θ)
θ

dθ − 4c1(ρ2)
∫ R2

0

R2
1

σ(θ)
(1 + θ∧(η)−1−ε).θ

dθ > 0

β

2

∫ ρ2
2

0

σ(θ)
θ

dθ − 4c0(ρ2)
∫ +∞

R2
0

σ(θ)

(1 + θ∧(η)+δ0(θ)).θ
dθ > 0 .

As previously in (38.3), from (52) we construct a regular matrix A2(•) such that A2(x) = A(x)
∀x, ||x|| > R0 and A2(x) = constant ∀x , ||x|| 6 R1. We have the following result :

Theorem 21. Let g(•) be a function satisfying (49) to (51). For any x ∈ RN we denote
by r −→ h(r, x) = hg(r, x) the solution of (18) associated to A2(•). Then the function
x −→ Hg(x) = H2(x) = hg(x, ||x||2) = h(x, ||x||2) is a sub-solution of (18) associated to
−Tr(A2D

2•).

Proof . We need several steps. From (H), propositions 18 and 19 we obtain :

(53)
{

Tr(A2D
2H2)(x) > Ω(x) in RN

lim||x||→+∞H2(x) = 0

where

Ω(x) = −kχ[y / ||y||>R0]
(x).c0(ρ2)

1 + ||x||2(∧(x)+δ)

−c1(ρ2).
kχ[y / R1<||y||<R0]

(x)

1 + ||x||2(∧(x)−1−ε)

−4
(
A2(x).x, x

)
.G(x) .

Let ω(•) be the solution of

(54)
{ −Tr(A2D

2ω) = f(||x||2) in RN

ω(x) > 0 , lim||x||→+∞ ω(x) = 0 .

Writing (53) + (54), it follows :

(55) − TrA2D
2(ω −H2) > Ω(x) + f(||x||2) := ϕ(x) .

Now, our goal is to prove that we have ω(x) − H2(x) > 0 for any x ∈ RN . To do this we
use the same way like the section B1. In a first step we construct a positive radial function
ωrad(•) which estimates ω −H2 from below.

First step : we estimate ϕ(•) from below by a radial function Ψ(•). Using the same idea
as in section B1, we obtain

ϕ(x) > Ψ(||x||2) ∀x ∈ RN ,
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where

Ψ(r) := −
kχ[ρ / ρ>R2

0]
(r).c0(ρ2)

1 + r(∧(η)−1−ε)

−
kχ[ρ / R2

1<ρ<R2
0]

(r).c1(ρ2)

1 + r(∧(η)−1−ε)

+4kβχKr
(r).r .

As previously we remark that the radial function

ωrad(r) =
∫ +∞

r

1
σ(s)

( ∫ s

0

σ(θ)Ψ̃(θ) dθ
)

ds

is the solution of the following ordinary differential equation

(56)




−ω′′(r)− ∧̃(r)

r ω′(r) =
Ψ(r)
4βr

:= Ψ̃(r)

ω′(0) = 0 , limr→+∞ ω(r) = 0 , ω′(r) 6 0 ,

with
σ(r) = exp

(∫ r

1

∧̃(s)
s

ds
)

.

Using (52) and the definition of Ψ(•) we can prove that

(57) ∀ s > 0 , 0 6
∫ s

0

σ(θ)Ψ̃(θ) dθ 6 Γ∞ < +∞

and thus ω′rad(r) 6 0 for any r > 0. This entails that ωrad(•) behaves like the function

r −→ ∫ +∞
r

dθ

σ(θ)
as r goes to infinity. Now in a second step we acheave the proof of our

result.

Second step : Let us set ω(x) := ωrad(||x||2). We can prove that ω(•) satisfies

(58) − Tr(A2D
2ω) 6 Ψ(||x||2) 6 ϕ(x) 6 −Tr

(
A2D

2(ω −H2)
)

.

Since ωrad(•) is non negative, from the Maximum Principle we obtain, using (58)

0 6 ωrad(||x||2) 6 ω(x)−H2(x) ∀x ∈ RN ,

that is to say H2(x) 6 ω(x) ∀x ∈ RN . Denoting by u2(•) the solution of (18) associated to
A2(•), it follows ω(x) 6 u2(x) for any x, since f(x) > f(x) ∀x. And thus H2(x) 6 u2(x)
∀x ∈ RN ¤

C - Asymptotic behavior of u(•).

Corollary 22 : asymptotic behavior of u. For any non negative bounded function f(•) with
compact support, and for any matrix A(•) belonging to Q(α, β) such that (H) is satisfied,
the solution u(•) of the equation

{ −Tr(AD2u) = f in RN

u(x) > 0 , lim||x||→+∞ u(x) = 0
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behaves like the function x −→ 1
||x||2(∧(x)−1)

, when ||x|| goes to infinity, where

∧(x) =
TrA(x)

2
||x||2 .(A(x).x, x)

.

Proof . Let us consider the previous functions u1(•) and u2(•) associated, respectively, to
the matrices A1(•) and A2(•). By the propositions 16 and 17 the three functions u1(•),
u2(•) and u(•) has the same asymptotic behavior since A1(x) = A2(x) = A(x) for any x,
||x|| > R0. Applying the proposition 18 we can claim that H1(•) and H2(•) tend to zero like
x −→ 1

||x||2(∧(x)−1) as ||x|| goes to infinity, since ∧1(x) = ∧2(x) = ∧(x) for any x, ||x|| > R0.
From the Maximum Principle we have ui(x) > 0 , ∀x ∈ RN , i = 1, 2. Then we can introduce
the following functions

r −→ q1(r) = inf
[
u1(y)
u2(y)

/ y, ||y|| > r

]
which is non decreasing,

r −→ q2(r) = sup
[
u1(y)
u2(y)

/ y, ||y|| > r

]
which is non increasing.

Consequently there exists r0 > 0 large enough such that

(59) 0 < q1(r0) 6 u1(x)
u2(x)

6 q2(r0) ∀x , ||x|| > r0 ,

since u1(•) and u2(•) have the same asymptotic behavior. Using (59), theorems (20) and
(21) and proposition 12 it follows :

q1(r0).H2(x) 6 q1(r0).u2(x) 6 u1(x) 6 H1(x) , ∀ ||x|| > r0

that it to say u1(•) goes to zero as x −→ 1
||x||2(∧(x)−1)

, thanks the proposition 18. And

consequently the final result follows for u2(•) and u(•). ¤

D - Application. We can apply the previous corollary to find the asymptotic behavior in
a nonlinear equation :

{
−Tr

(
A

(
x, u(x)

)
D2u

)
= f(x) , x ∈ RN ,

u(x) > 0 , lim||x||→+∞ u(x) = 0 .

where (x, η) → A(x, η) ∈ Q(α, β). This problem is in the form of (12) with
B(x) = A

(
x, u(x)

) ∈ Q(α, β). We assume that there exist two positive real constants R0

and η0 such that for any x ∈ RN , ||x|| > R0, any η ∈ R, |η| 6 η0 we have :

(60) A(x, η) = A(x, 0) .

Let us set A0(x) = A(x, 0). From [4] there exist c > 0 and R > R0 such that

|u(x)| 6 c

||x||∧ ∀x , ||x|| > R ,

where ∧ = limr→+∞ inf ||x||>r ∧B(x). This gives

(61) B(x) = A
(
x, u(x)

)
= A(x, 0) = A0(x) ∀x , ||x|| > R .
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From (61) and proposition 17 u(•) behaves like the solution u0(•) of
{ −Tr

(
A0(x)D2u0(x)

)
= f(x) , x ∈ RN ,

u0(x) > 0 , lim||x||→+∞ u0(x) = 0 .

In addition if

∧0(x) =
Tr

(
A0(x)

)
2

||x||2
(
A0(x).x, x

)

satisfies hypothetis (H), then u(•) behaves like x −→ 1
||x||2(∧0(x)−1) ¤
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