
HAL Id: hal-00582427
https://hal.science/hal-00582427v1

Submitted on 1 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of a framework using InkML for pen-based
interaction in a collaborative environment

Solen Quiniou, Mohamed Cheriet, Eric Anquetil

To cite this version:
Solen Quiniou, Mohamed Cheriet, Eric Anquetil. Design of a framework using InkML for pen-based
interaction in a collaborative environment. International Conference on Human Computer Interaction
(HCI International), Jul 2009, San Diego, United States. �hal-00582427�

https://hal.science/hal-00582427v1
https://hal.archives-ouvertes.fr

Design of a Framework Using InkML for Pen-Based
Interaction in a Collaborative Environment

Solen Quiniou1, Mohamed Cheriet1, and Eric Anquetil2

1Synchromédia Laboratory – École de Technologie Supérieure, 1100 rue Notre-Dame Ouest,
Montréal (Québec) H3C 1K3, Canada

2IRISA—INSA, Campus de Beaulieu, 35042 Rennes Cedex, France
Solen.Quiniou@synchromedia.ca, Mohamed.Cheriet@etsmtl.ca,

Eric.Anquetil@irisa.fr

Abstract. We present a framework based on the standard InkML format to
represent digital ink in a collaborative environment using pen-based interaction
functionalities. This framework includes the capture, the rendering and the
interpretation of the digital ink. In the proposed framework, we focus more
particularly on the representation of the contextual environment of the ink and
used it for its interpretation (as drawing, for example) as well as on the
representation of semantic information attached to the ink after its
interpretation.

Keywords: Digital ink, InkML, annotations, collaborative environments.

1 Introduction

With the emergence of pen-based devices such as PDAs, Tablet PCs or whiteboards,
pen-based input methods are becoming relevant in collaborative environments.
Indeed, they allow users to input elements like text or drawings in a more natural way
to communicate with each other. Pen-based interactions are thus useful in domains
like remote healthcare, collaborative document annotation or active learning in
classrooms where applications like whiteboard sharing allow several users to write or
draw on a virtual shared whiteboard (blank or containing documents like images that
can be annotated, for example).

The digital ink data used for this interaction thus needs to be represented in some
format to be exchanged among the users. This format should also be able to represent
other contextual information that may be needed to interpret the digital ink as text,
drawing or annotations, for example, and should be able to represent the result of this
interpretation process. To do so, the Ink Markup Language (InkML) [1] has been
proposed by the W3C Multimodal Interaction Activity as an open standard for
representing both the ink data (entered with some electronic device) and the inking
environment. Furthermore, as InkML is an XML-based language, it is easily
extensible to add specific information needed by any developed application.

mailto:Solen.Quiniou@synchromedia.ca
mailto:Mohamed.Cheriet@etsmtl.ca
mailto:Eric.Anquetil@irisa.fr

The context of this paper is the addition of pen-based interaction functionalities
into the collaborative environment Synchromedia. Synchromedia is a consortium
regrouping Canadian Universities (ÉTS, Concordia, Waterloo, UQÀM or Teluq),
companies like Inocybe Technologies Inc. and other partners such as the Hôpital du
Sacré-Coeur in Montreal. The aim of this consortium is to develop a collaborative
environment integrating different media (texts, sounds, videos…). The current phase
of this project focuses on methods to improve the communication between users and
to include functionalities that take advantage of pen-based interactions and more
particularly on the interpretation of digital ink to attach semantic information to it. For
this purpose, we propose a framework based on the InkML format, where we focus
more particularly on the representation of the contextual environment of the digital
ink as well as on the representation of its interpreted elements. Previous works [2] and
[4] also use InkML to represent digital ink in a collaborative environment but they
focused more on dealing with interoperability problems to send digital ink and to
render it on heterogeneous devices and platforms.

The rest of this paper is organized as follows. In Section 2, we present the basic
elements of InkML and, in Section 3, we describe the framework and more
particularly the use of InkML to represent the aforementioned elements. Finally, we
draw some conclusions in Section 4.

2 Overview of the Ink Markup Language (InkML)

InkML[1] is a markup language for representing digital ink which has been proposed
by the W3C as an alternative to proprietary ink data formats (e.g. Microsoft’s Ink
Serializable Format (ISF)). Its specification defines a set of primitive elements for all
basic ink applications. Furthermore, since it is an XML-based language, it is easily
extensible to add application-specific information to suit the needs of the applications.
We present here the basic elements of InkML (see [1] for further details).

The fundamental elements in InkML are traces (defined between <trace>
elements, which are contained within a single <ink> element). A trace represents a
sequence of contiguous ink points between a pen-down and a pen-up. Each point is
represented by values depending on the pen’s position, such as its X and Y
coordinates (the <traceFormat> element describes the quantities that may be
considered for the points and may also include the tip force or the angle). The
following code shows an example of a simple InkML file containing the X and Y
coordinates of the points of two traces:

<ink>

 <trace>10 0, 9 14, 8 28, 7 42, 6 56, 6 70</trace>

 <trace>282 45, 281 59, 284 73</trace>

</ink>
Information about the digitizer device can be recorded in the <inkSource> element

and may include the sample rate, the resolution or the model of the device. The
<context> element enables the ink context to be taken into account and may include
information about the writer or about the graphical context (using the <brush>

element to record the color and the width of the ink). InkML also allows logical
regrouping of ink using either <traceGroup> or <traceView> elements referring to
<trace> elements. These groups of traces can also be semantically labeled using
<annotationXML> elements.

Furthermore, InkML allows digital ink to be represented into two styles. The
streaming style is more appropriate for applications that deal with transmission of ink
because it allows the ink to be considered as it is entered, relatively to a current state
(context modifications are given according to this state). The archival style is more
relevant for applications that store ink or process stored ink because the contextual
information is separated from the traces (organized and annotated hierarchically).

3 Framework of an Ink Processor Based on InkML

In this section, we present the framework that uses the previously presented InkML
elements to process digital ink.The ink processor consists of three modules to capture,
render and interpret the digital ink (see Fig. 1). In a collaborative environment, each
user has its own ink processor both to deal with its own digital ink and with the ink
from the other users. These three modules are presented in the following sub-sections.

Fig. 1. Ink processor framework.

3.1 Ink Capturer

The aim of this module is to capture ink data from a digitizer and to represent these
data in the Streaming InkML style by creating <trace> elements, where each point
coordinates are generated according to the <traceFormat> element.

This module also receives context change events from the Graphical User Interface
(GUI) and generates <context> elements. Among these context events are changes on
the width or color of the ink (that may be specified by the <brush> element). Other
information may be useful for the interpretation of the ink data and may be added to
the InkML format, like a change of mode (a mode corresponds to the nature of the ink

which may correspond to gestures, annotations, texts, drawings or even to a search
mode where the ink may be used as a request). Furthermore, in collaborative
environments, useful information may include the ID of the ink owner or the
protection level of the ink (eg public or private depending on if the data can be shared
with other users). This InkML fragment shows examples of created context changes:

<context id=’’context1’’>

 <brush id=’’black15pen’’><width>15</width><color>#FFFFFF</color>

 </brush>

 <mode type=’’drawing’’/>

 <owner id=’’writer1’’/> <protection>private</protection>

</context>

All these InkML generated elements are then sent to the ink interpreter module.

3.2 Ink Interpreter

The ink interpreter module receives ink data and context information both from the
user and from the other users. It then sends its interpretation information to the
renderer module as well as to the other users (which may depend on whether or not
the ink is public).

The aim of this module is thus to interpret the received ink using the corresponding
context information, received as well. The interpretation process mainly consists in
associating semantic information to the ink data like, for example, the type of the ink
(corresponding to the previously mentioned modes). To do so, the ink interpreter
module may use specific interpreter sub-modules like handwriting, gesture or drawing
recognizers. This overall interpretation process can be done in a synchronous way,
thus generating context elements for changes of modes, before sending the
corresponding ink, as shown in the given fragment code (a change to a gesture mode
has been detected by the interpreter and is sent before sending the ink traces):

<context id=’’context3’’>

 <mode type=’’gesture’’/>

</context>

<trace>10 5, 10 7,...</trace>

The interpretation can also be done in an asynchronous way, as a background process,
and the interpretation results will thus refer to previously entered and displayed ink,
using <traceView> and <annotationXML> elements, as shown below (previous trace
referenced by ’’#L1’’ has been interpreted as an annotation):

<traceView id=’’L7’’ traceDataRef=’’#L1’’>

 <annotationXML type=’’annotation’’/>

</traceView>

Moreover, in order to allow the ink and its interpretation to be further used, the
corresponding information is stored in a database, after being converted to the
Archival InkML style (using the conversion algorithm given in [3]). Thus, when the
search mode is activated, the entered ink can be used as a request to retrieve
corresponding documents, with ink documents being converted back to the Streaming
style (the database may also contained documents without ink data).

3.3 Ink Renderer

The aim of this module is to render ink on the display area of the device, using the
information given by the interpreter module, from the current user as well as the other
ones. Ink rendering is an important aspect of pen-based applications because a non-
satisfactory rendering, for a given user, may lead to a rejection of the corresponding
application by this user.

To perform this rendering, <trace> elements sent by the interpreter module as well
as <context> elements are processed; properties of the display device may also be
taken into account to correctly render the ink. Furthermore, as the ink interpretation
may be asynchronous, this module may also have to process <traceView> elements
and thus change the rendering of already displayed ink data, according to the
corresponding interpretation (ink data interpreted as annotations may be displayed
with a different color, for example).

4 Conclusion and Future Works

In this paper, we have presented a framework based on the standard InkML format for
representing digital ink in a collaborative context. We have focused more particularly
on the representation of various context elements as well as on how to attach semantic
information to the digital ink (the information being given by interpreter modules).

In future works, we will integrate the proposed framework in the Synchromédia
collaborative environment to add pen-based functionalities into it. Given the domain
applications, other extensions to InkML may also be needed. For example, we may
want to further categorize annotations like in [5] as well as to specify different types
of indexes to add search functionalities on documents (containing or not annotations).

References

1. Chee, Y.-M., Froumentin, M., Watt, S.M.: Ink Markup Language (InkML).
http://www.w3.org/TR/InkML (October 2006)

2. Keshari, B., Madhvanath S., Prasad, M., Selvaraj, M., Watt, S.M.: Sharing Digital
Ink in Heterogeneous Collaborative Environments. Proc. of the 11th International
Conference on Frontiers in Handwriting Recognition. Montréal (2008)

3. Keshari, B, Watt, S.M.: Streaming-Archival InkML Conversion. Proc. of the 9th
International Conference on Document Analysis and Recognition. Curitiba (2007)

4. Neddenriep, J., Griswold, W.G.: RiverInk - an Extensible Framework for Multimodal
Interoperable Ink. Proc. of the 40th Annual Hawaii International Conference on
System Sciences. Hawaii (2007)

5. Wang, X., Shilman, M., Raghupathy, S.: Parsing Ink Annotations on Heterogeneous
Documents. Proc. of the Eurographics Workshop on Sketch-Based Interfaces and
Modeling. Vienna (2006)

http://www.w3.org/TR/InkML

