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Abstract. We present a framework based on the standard InkML format to 
represent digital ink in a collaborative environment using pen-based interaction 
functionalities. This framework includes the capture, the rendering and the 
interpretation of the digital ink. In the proposed framework, we focus more 
particularly on the representation of the contextual environment of the ink and 
used it for its interpretation (as drawing, for example) as well as on the 
representation of semantic information attached to the ink after its 
interpretation. 
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1 Introduction 

With the emergence of pen-based devices such as PDAs, Tablet PCs or whiteboards, 
pen-based input methods are becoming relevant in collaborative environments. 
Indeed, they allow users to input elements like text or drawings in a more natural way 
to communicate with each other. Pen-based interactions are thus useful in domains 
like remote healthcare, collaborative document annotation or active learning in 
classrooms where applications like whiteboard sharing allow several users to write or 
draw on a virtual shared whiteboard (blank or containing documents like images that 
can be annotated, for example). 

The digital ink data used for this interaction thus needs to be represented in some 
format to be exchanged among the users. This format should also be able to represent 
other contextual information that may be needed to interpret the digital ink as text, 
drawing or annotations, for example, and should be able to represent the result of this 
interpretation process. To do so, the Ink Markup Language (InkML) [1] has been 
proposed by the W3C Multimodal Interaction Activity as an open standard for 
representing both the ink data (entered with some electronic device) and the inking 
environment. Furthermore, as InkML is an XML-based language, it is easily 
extensible to add specific information needed by any developed application. 
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The context of this paper is the addition of pen-based interaction functionalities 
into the collaborative environment Synchromedia. Synchromedia is a consortium 
regrouping Canadian Universities (ÉTS, Concordia, Waterloo, UQÀM or Teluq), 
companies like Inocybe Technologies Inc. and other partners such as the Hôpital du 
Sacré-Coeur in Montreal. The aim of this consortium is to develop a collaborative 
environment integrating different media (texts, sounds, videos…). The current phase 
of this project focuses on methods to improve the communication between users and 
to include functionalities that take advantage of pen-based interactions and more 
particularly on the interpretation of digital ink to attach semantic information to it. For 
this purpose, we propose a framework based on the InkML format, where we focus 
more particularly on the representation of the contextual environment of the digital 
ink as well as on the representation of its interpreted elements. Previous works [2] and 
[4] also use InkML to represent digital ink in a collaborative environment but they 
focused more on dealing with interoperability problems to send digital ink and to 
render it on heterogeneous devices and platforms.  

The rest of this paper is organized as follows. In Section 2, we present the basic 
elements of InkML and, in Section 3, we describe the framework and more 
particularly the use of InkML to represent the aforementioned elements. Finally, we 
draw some conclusions in Section 4. 

2 Overview of the Ink Markup Language (InkML) 

InkML[1] is a markup language for representing digital ink which has been proposed 
by the W3C as an alternative to proprietary ink data formats (e.g. Microsoft’s Ink 
Serializable Format (ISF)). Its specification defines a set of primitive elements for all 
basic ink applications. Furthermore, since it is an XML-based language, it is easily 
extensible to add application-specific information to suit the needs of the applications. 
We present here the basic elements of InkML (see [1] for further details). 

The fundamental elements in InkML are traces (defined between <trace> 
elements, which are contained within a single <ink> element). A trace represents a 
sequence of contiguous ink points between a pen-down and a pen-up. Each point is 
represented by values depending on the pen’s position, such as its X and Y 
coordinates (the <traceFormat> element describes the quantities that may be 
considered for the points and may also include the tip force or the angle). The 
following code shows an example of a simple InkML file containing the X and Y 
coordinates of the points of two traces: 

<ink> 

 <trace>10 0, 9 14, 8 28, 7 42, 6 56, 6 70</trace> 

 <trace>282 45, 281 59, 284 73</trace> 

</ink> 
Information about the digitizer device can be recorded in the <inkSource> element 

and may include the sample rate, the resolution or the model of the device. The 
<context> element enables the ink context to be taken into account and may include 
information about the writer or about the graphical context (using the <brush> 



element to record the color and the width of the ink). InkML also allows logical 
regrouping of  ink using either <traceGroup> or <traceView> elements referring to 
<trace> elements. These groups of traces can also be semantically labeled using 
<annotationXML> elements. 

Furthermore, InkML allows digital ink to be represented into two styles. The 
streaming style is more appropriate for applications that deal with transmission of ink 
because it allows the ink to be considered as it is entered, relatively to a current state 
(context modifications are given according to this state). The archival style is more 
relevant for applications that store ink or process stored ink because the contextual 
information is separated from the traces (organized and annotated hierarchically).  

3 Framework of an Ink Processor Based on InkML 

In this section, we present the framework that uses the previously presented InkML 
elements to process digital ink.The ink processor consists of three modules to capture, 
render and interpret the digital ink (see Fig. 1). In a collaborative environment, each 
user has its own ink processor both to deal with its own digital ink and with the ink 
from the other users. These three modules are presented in the following sub-sections. 

 
Fig. 1. Ink processor framework. 

3.1 Ink Capturer 

The aim of this module is to capture ink data from a digitizer and to represent these 
data in the Streaming InkML style by creating <trace> elements, where each point 
coordinates are generated according to the <traceFormat> element.  

This module also receives context change events from the Graphical User Interface 
(GUI) and generates <context> elements. Among these context events are changes on 
the width or color of the ink (that may be specified by the <brush> element). Other 
information may be useful for the interpretation of the ink data and may be added to 
the InkML format, like a change of mode (a mode corresponds to the nature of the ink 



which may correspond to gestures, annotations, texts, drawings or even to a search 
mode where the ink may be used as a request). Furthermore, in collaborative 
environments, useful information may include the ID of the ink owner or the 
protection level of the ink (eg public or private depending on if the data can be shared 
with other users). This InkML fragment shows examples of created context changes: 

<context id=’’context1’’> 

 <brush id=’’black15pen’’><width>15</width><color>#FFFFFF</color> 

 </brush> 

 <mode type=’’drawing’’/> 

 <owner id=’’writer1’’/>  <protection>private</protection> 

</context> 

All these InkML generated elements are then sent to the ink interpreter module. 

3.2 Ink Interpreter 

The ink interpreter module receives ink data and context information both from the 
user and from the other users. It then sends its interpretation information to the 
renderer module as well as to the other users (which may depend on whether or not 
the ink is public). 

The aim of this module is thus to interpret the received ink using the corresponding 
context information, received as well. The interpretation process mainly consists in 
associating semantic information to the ink data like, for example, the type of the ink 
(corresponding to the previously mentioned modes). To do so, the ink interpreter 
module may use specific interpreter sub-modules like handwriting, gesture or drawing 
recognizers. This overall interpretation process can be done in a synchronous way, 
thus generating context elements for changes of modes, before sending the 
corresponding ink, as shown in the given fragment code (a change to a gesture mode 
has been detected by the interpreter and is sent before sending the ink traces): 

<context id=’’context3’’> 

 <mode type=’’gesture’’/> 

</context> 

<trace>10 5, 10 7,...</trace> 

The interpretation can also be done in an asynchronous way, as a background process, 
and the interpretation results will thus refer to previously entered and displayed ink, 
using <traceView> and <annotationXML> elements, as shown below (previous trace 
referenced by ’’#L1’’ has been interpreted as an annotation): 

<traceView id=’’L7’’ traceDataRef=’’#L1’’> 

 <annotationXML type=’’annotation’’/> 

</traceView> 

Moreover, in order to allow the ink and its interpretation to be further used, the 
corresponding information is stored in a database, after being converted to the 
Archival InkML style (using the conversion algorithm given in [3]). Thus, when the 
search mode is activated, the entered ink can be used as a request to retrieve 
corresponding documents, with ink documents being converted back to the Streaming 
style (the database may also contained documents without ink data). 



3.3 Ink Renderer 

The aim of this module is to render ink on the display area of the device, using the 
information given by the interpreter module, from the current user as well as the other 
ones. Ink rendering is an important aspect of pen-based applications because a non-
satisfactory rendering, for a given user, may lead to a rejection of the corresponding 
application by this user.  

To perform this rendering, <trace> elements sent by the interpreter module as well 
as <context> elements are processed; properties of the display device may also be 
taken into account to correctly render the ink. Furthermore, as the ink interpretation 
may be asynchronous, this module may also have to process <traceView> elements 
and thus change the rendering of already displayed ink data, according to the 
corresponding interpretation (ink data interpreted as annotations may be displayed 
with a different color, for example). 

4 Conclusion and Future Works 

In this paper, we have presented a framework based on the standard InkML format for 
representing digital ink in a collaborative context. We have focused more particularly 
on the representation of various context elements as well as on how to attach semantic 
information to the digital ink (the information being given by interpreter modules). 

In future works, we will integrate the proposed framework in the Synchromédia 
collaborative environment to add pen-based functionalities into it. Given the domain 
applications, other extensions to InkML may also be needed. For example, we may 
want to further categorize annotations like in [5] as well as to specify different types 
of indexes to add search functionalities on documents (containing or not annotations). 
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