CÉDRIC MILLIET

ABSTRACT. A small field of positive characteristic is commutative

Wedderburn showed in 1905 that finite fields are commutative. As for infinite fields, we know that superstable [1, Cherlin, Shelah] and supersimple [4, Pillay, Scanlon, Wagner] ones are commutative. In their proof, Cherlin and Shelah use the fact that a superstable field is algebraically closed. Wagner showed that a small field is algebraically closed [5], and asked whether a small field should be commutative. We shall answer this question positively in non-zero characteristic.

1. Preliminaries

Definition 1.1. A theory is *small* if it has countably many n-types without parameters for all integer n. A structure is *small* if its theory is so.

We shall denote dcl(A) the definable closure of a set A. Note that if K is a field and A a subset of K, then dcl(A) is a field too. Smallness is clearly preserved under interpretation and addition of finitely many parameters.

Let D, D_1, D_2 be A-definable sets in some structure M with $A \subset M$. We define the Cantor-Bendixson rank $CB_A(D)$ and degree $dCB_A(D)$ of D over A.

Definition 1.2. By induction, we define

 $CB_A(D) \geq 0$ if D is not empty

 $CB_A(D) \ge \alpha + 1$ if there is an infinite family of disjoint A-definable subsets $(D_i)_{i\in\omega}$ of D, such that $CB_A(D_i) \ge \alpha$ for all $i < \omega$.

 $CB_A(D) \ge \beta$ for a limit ordinal β if $CB_A(D) \ge \alpha$ for all $\alpha < \beta$.

Definition 1.3. $dCB_A(D)$ is the greatest integer d such that D can be divided into d disjoint A-definable sets, with same rank over A as D.

Proposition 1.4. If M is small and A is a finite set,

- (i) $CB_A(M)$ is ordinal.
- (ii) dCB_A is well defined.
- (iii) If $D_1 \subset D_2$, then $CB_A(D_1) \leq CB_A(D_2)$.
- (iv) $CB_A(D_1 \cup D_2) = max\{CB_A(D_1), CB_A(D_2)\}.$
- (v) CB_A and dCB_A are preserved under A-definable bijections.

If A is empty, we shall write CB and dCB rather than CB_{\emptyset} or dCB_{\emptyset} .

²⁰⁰⁰ Mathematics Subject Classification. 03C15, 03C50, 03C60, 12E15. Key words and phrases. Smallness, skew fields.

Remark 1.5. Let H < G be A-definable small groups with $H \cap dcl(A) < G \cap dcl(A)$. Then, either $CB_A(H) < CB_A(G)$, or $CB_A(H) = CB_A(G)$ and $dCB_A(H) < dCB_A(G)$.

Corollary 1.6. A small integral domain with unity is a field.

Proof. Let R be this ring. If r is not invertible, then $1 \notin rR$ hence $rR \cap dcl(r) \leq R \cap dcl(r)$. Apply Remark 1.5, but R and rR have same rank and degree over r. \Box

Note that R need not have a unity (see Corollary 1.10). More generally, if φ is a definable bijection between two definable groups $A \leq B$ in a small structure, then A equals B.

Proposition 1.7. (Descending Chain Condition) Let G be a small group and \overline{g} a finite tuple in G. Set $H = \langle \overline{g} \rangle$ or $H = dcl(\overline{g})$. In H, there is no strictly decreasing infinite chain of subgroups of the form $G_0 \cap H > G_1 \cap H > G_2 \cap H > \cdots$, where the G_i are H-definable subgroups of G.

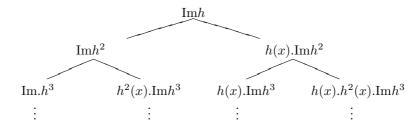
Proof. By Remark 5, either the rank or the degree decreases at each step.

Corollary 1.8. Let G be a small group, H < G a finitely generated subgroup of G, and $(G_i)_{i \in I}$ a family of H-definable subgroups of G. There is a finite subset $I_0 \subset I$ such that $\bigcap_{i \in I} G_i \cap H = \bigcap_{i \in I_0} G_i \cap H$.

Another chain condition on images of endomorphisms :

Proposition 1.9. Let G be a small group and h a group homomorphism of G. There exists some integer n such that Imh^n equals Imh^{n+1} .

Proof. Suppose that the chain $(\text{Im}h^n)_{n\geq 1}$ be strictly decreasing. Consider the following tree G(x)



Consider the partial type $\Phi(x) := \{x \notin h^{-n} \operatorname{Im} h^{n+1}, n \geq 1\}$. The sequence $(h^{-n} \operatorname{Im} h^{n+1})_{n\geq 1}$ is increasing, and each set $G \setminus h^{-n} \operatorname{Im} h^{n+1}$ is non-empty, so Φ is finitely consistent. Let b be a realization of Φ in a saturated model. The graph G(b) has 2^{ω} consistent branches, whence $S_1(b)$ has cardinal 2^{ω} , a contradiction with G being small. \Box

Corollary 1.10. Let G be a small group and h a group homomorphism of G. There exists some integer n such that G equals $\operatorname{Kerh}^n \cdot \operatorname{Imh}^n$.

Proof. Take n as in Proposition 1.9, and set $f = h^n$. We have $\text{Im}f^2 = \text{Im}f$, so for all $g \in G$ there exists g' such that $f(g) = f^2(g')$. Hence $f(gf(g')^{-1}) = 1$ and $gf(g')^{-1} \in \text{Ker}f$, that is $g \in \text{Ker}f \cdot \text{Im}f$.

It was shown in [6] that a definable injective homomorphism of a small group is surjective. Note that this follows again from Corollary 1.10.

2. Small skew fields

Recall a result proved in [5]:

Fact 2.1. An infinite small field is algebraically closed.

Let D be an infinite small skew field. We begin by analysing elements of finite order.

Lemma 2.2. Let $a \in D$ an element of order $n < \omega$. Then a is central in D.

Proof. Either D has zero characteristic, so Z(D) is infinite, hence algebraically closed. But Z(D)(a) is an extension of Z(D) of degree $d \leq n$, whence $a \in Z(D)$. Or D has positive characteristic. Suppose that a is not central, then [3, Lemma 3.1.1 p.70] there exists x in D such that $xax^{-1} = a^i \neq a$. If x has finite order, then all elements in the multiplicative group $\langle x, a \rangle$ have finite order. Hence $\langle x, a \rangle$ is commutative [3, Lemma 3.1.3 p.72], contradicting $xax^{-1} \neq a$. So x has infinite order. Conjugating m times by x, we get $x^m a x^{-m} = a^{i^m}$. But a and a^i have same order n, with qcd(n,i) = 1. Put $m = \phi(n)$. By Fermat's Theorem, $i^m \equiv 1[n]$, so x^m and a commute. Then $L = Z(C_D(a, x^m))$ is a definable infinite commutative subfield of D which contains a. Let L^x be $\{l \in L, x^{-1}lx = l\}$. This is a proper subfield of L. Moreover $1 < [L^x(a) : L^x] \le n$. But L^x is infinite as it contains x. By Fact 2.1, it is algebraically closed and cannot have a proper extension of finite degree.

Proposition 2.3. Every element of D has a n^{th} root for each $n \in \omega$.

Proof. Let $a \in D$. If a has infinite order, $Z(C_D(a))$ is an infinite commutative definable subfield of D. Hence it is algebraically closed, and a has an n^{th} root in $Z(C_D(a))$. Otherwise a has finite order. According to Lemma 2.2 it is central in D. Let $x \in D$ have infinite order. Then $a \in Z(C_D(a, x))$, a commutative, infinite, definable, and thus algebraically closed field.

Remark 2.4. Note that since D^{\times} is divisible, it has elements of arbitrary large finite order, which are central by Lemma 2.2. Taking D omega-saturated, we can suppose Z(D) infinite.

Let us now show that a small skew field is *connected*, that is to say, has no definable proper subgroup of finite index.

Proposition 2.5. *D* is connected.

Proof. Multiplicatively : By Proposition 2.3, D^{\times} is divisible so has no subgroup of finite index. Additively : Let H be a definable subgroup of D^+ of finite index n. In zero characteristic, D^+ is divisible, so n = 1. In general, let k be an infinite finitely generated subfield of D. Consider a finite intersection $G = \bigcap d_i H$ of left $i \in I$

translates of H by elements in k such that $G \cap k$ is minimal; this exists by the

chain condition. By minimality, $G \cap k = \bigcap_{d \in k} dH \cap k$, so $G \cap k$ is a left ideal of k.

Furthermore, G is a finite intersection of subgroups of finite index in D^+ ; it has therefore finite index in D. Thus $G \cap k$ has finite index in $D \cap k = k$, and cannot be trivial, so $G \cap k = k = H \cap k$. This holds for every infinite finitely generated k, whence H = D.

Now we look at elements of infinite order.

Lemma 2.6. $a \in D$ have infinite order. Then $C_D(a) = C_D(a^n)$ for all n > 0.

Proof. Clearly $C_D(a) \leq C_D(a^n)$. Consider $L = Z(C_D(a^n))$. It is algebraically closed by Fact 2.1, but L(a) is a finite commutative extension of L, whence $a \in L$ and $C_D(a^n) \leq C_D(a)$.

Now suppose that D is not commutative. We shall look for a commutative centralizer C and show that the dimension [D:C] is finite. This will yield a contradiction.

Lemma 2.7. Let $a \in D$, $t \in D \setminus im(x \mapsto ax - xa)$ and $\varphi : x \mapsto t^{-1} \cdot (ax - xa)$. Then $D = im\varphi \oplus ker\varphi$. Moreover, if $k = dcl(a, t, \overline{x})$, where \overline{x} is a finite tuple, then $k = im\varphi \cap k \oplus ker\varphi \cap k$.

Proof. Let $K = ker\varphi = C_D(a)$. Put $I = im\varphi$; this is a right K-vector space, so $I \cap K = \{0\}$, since $1 \in K \cap I$ is impossible by the choice of t. Consider the morphism

$$\tilde{\varphi} : \begin{array}{ccc} D^+/K & \longrightarrow & D^+/K \\ x & \longmapsto & \varphi(x) \end{array}$$

 $\tilde{\varphi}$ is an embedding, and D^+/K is small; by Corollary 10, $\tilde{\varphi}$ is surjective and $D/K = \tilde{\varphi}(D/K)$, hence $D = I \oplus K$. Now, let $k = dcl(a, t, \overline{x})$ where \overline{x} is a finite tuple of parameters in D. I and K are k-definable. For all $\alpha \in k$ there exists a unique couple $(\alpha_1, \alpha_2) \in I \times K$ such that $\alpha = \alpha_1 + \alpha_2$, so α_1 and α_2 belong to $dcl(\alpha, a, t) \leq k$, that is to say $k = I \cap k \oplus K \cap k$.

Lemma 2.8. For every $a \notin Z(D)$, the map $\varphi_a : x \mapsto ax - xa$ is onto.

Proof. Suppose φ_a not surjective. Let $t \notin im\varphi_a$, and $k = dcl(t, a, \overline{x})$ be a non commutative subfield of D for some finite tuple \overline{x} . Consider the morphism

$$\varphi : \begin{array}{ccc} D^+ & \longrightarrow & D^+ \\ x & \longmapsto & t^{-1}.(ax - xa) \end{array}$$

Set $H = im\varphi$, and $K = C_D(a) = ker\varphi$. By Lemma 2.7 we get $k = H \cap k \oplus K \cap k$. Let $N = \bigcap_I a_i H$ be a finite intersection of left-translates of H by elements in k, such that $N \cap k$ be minimal. We have

$$N \cap k = \bigcap_{i \in I} a_i H \cap k = \bigcap_{d \in k} dH \cap k,$$

so $N \cap k$ is a left ideal. Moreover, $H \cap k$ is a right $K \cap k$ vector-space of codimension 1. Then $N \cap k$ has codimension at most n = |I|. If $N \cap k = k$, then $H \cap k = k$, whence $K \cap k = \{0\}$, a contradiction. So $N \cap k$ is trivial and, k is a $K \cap k$ -vector space of dimension at most n. By [2, Corollary 2 p.49] we get $[k : K \cap k] = [Z(k)(a) : Z(k)]$. But $Z(k) = Z(C_D(k)) \cap k$ with $Z(C_D(k))$ algebraically closed. Note that every

element of k commutes with $Z(C_D(k))$, so $a \in Z(k)$, which is absurd if we add $b \notin C_D(a)$ in k.

Theorem 2.9. A small field in non-zero characteristic is commutative.

Proof. Let $a \in D$ be non-central, and let us show that $x \mapsto ax - xa$ is not surjective. Otherwise there exists x such that ax - xa = a, hence $axa^{-1} = x + 1$. We would then have $a^pxa^{-p} = x + p = x$, and $x \in C_D(a^p) \setminus C_D(a)$, a contradiction with Lemma 2.2.

3. Open problems

3.1. Zero characteristic. Note that we just use characteristic p in proof of theorem 19 to show that there exist $a \notin Z(D)$ such that $x \mapsto ax - xa$ is not surjective. Thus questions 1 and 2 are equivalent :

Question 1. Is a small skew field D of zero characteristic commutative ?

Question 2. Is every $x \mapsto ax - xa$ surjective onto D for $a \notin Z(D)$?

3.2. Weakly small fields. Weakly small structures have been introduced to give a common generalization of small and minimal structures. Minimal fields are known to be commutative.

Definition 3.1. A structure M is *weakly small* if for all finite set of parameters A in M, there are only countably many 1-types over A.

Question 3. Is a weakly small field algebraically closed ?

Question 4. Is a weakly small skew field commutative ?

Note that a positive answer to question 3 implies a positive answer to question 4, as all the proves given still hold. In general, one can prove divisibility and connectivity of an infinite weakly small field.

Proposition 3.2. Every element in an infinite weakly small field D has a n^{th} root for all $n \in \omega$.

Proof. Let $a \in D$. In zero characteristic, $Z(C_D(a))$ is an infinite definable commutative subfield of D, hence weakly small. According to [5, Proposition 9], every element in $Z(C_D(a))$ has a n^{th} root. In positive characteristic, we can reason as in the proof of Lemma 12, and find y with infinite order which commutes with a. Apply one more time [5, Proposition 9] to $Z(C_D(a, y))$.

So D^{\times} is divisible and the proof of Proposition 2.5 still holds.

Proposition 3.3. An infinite weakly small field is connected.

References

- [1] G. Cherlin and S. Shelah, *Superstable fields and groups*, Annals of Mathematical Logic 18, 1980.
- [2] P.M. Cohn, Skew fields constructions, Cambridge University Press, 1977.
- [3] I.N. Herstein, Noncommutative Rings, The Mathematical Association of America, fourth edition, 1996.
- [4] A. Pillay, T. Scanlon et F.O. Wagner, Supersimple fields and division rings, Mathematical Research Letters 5, p. 473-483, 1998.
- [5] F.O. Wagner, Small fields, The Journal of Symbolic Logic, vol. 63, n?3, 1998.
- [6] F.O. Wagner, Small stable groups and generics, The Journal of Symbolic Logic, vol. 56, 1991.

Current address, Cédric Milliet: Université de Lyon, Université Lyon 1, Institut Camille Jordan UMR 5208 CNRS, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

E-mail address, Cédric Milliet: milliet@math.univ-lyon1.fr