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Remark 1.5. Let H < G be A-definable small groups with H ∩ dcl(A) < G ∩ dcl(A). Then, either CB A (H) < CB A (G), or CB A (H) = CB A (G) and dCB A (H) < dCB A (G).

Corollary 1.6. A small integral domain with unity is a field.

Proof. Let R be this ring. If r is not invertible, then 1 / ∈ rR hence rR ∩ dcl(r) R∩dcl(r). Apply Remark 1.5, but R and rR have same rank and degree over r.

Note that R need not have a unity (see Corollary 1.10). More generally, if ϕ is a definable bijection between two definable groups A ≤ B in a small structure, then A equals B.

Proposition 1.7. (Descending Chain Condition) Let G be a small group and g a finite tuple in G. Set H = g or H = dcl(g). In H, there is no strictly decreasing infinite chain of subgroups of the form

G 0 ∩ H > G 1 ∩ H > G 2 ∩ H > • • • , where the G i are H-definable subgroups of G.
Proof. By Remark 5, either the rank or the degree decreases at each step.

Corollary 1.8. Let G be a small group, H < G a finitely generated subgroup of G, and (G i ) i∈I a family of H-definable subgroups of G. There is a finite subset

I 0 ⊂ I such that i∈I G i ∩ H = i∈I0 G i ∩ H.

Another chain condition on images of endomorphisms :

Proposition 1.9. Let G be a small group and h a group homomorphism of G. There exists some integer n such that Imh n equals Imh n+1 .

Proof. Suppose that the chain (Imh n ) n≥1 be strictly decreasing. Consider the following tree G(x)

Imh P P P P P P Imh 2 h(x).Imh 2 ! ! ! ! a a a a ! ! ! ! a a a a Im.h 3 h 2 (x).Imh 3 h(x).Imh 3 h(x).h 2 (x).Imh 3 . . . . . . . . . . . . Consider the partial type Φ(x) := {x / ∈ h -n Imh n+1 , n ≥ 1}.
The sequence (h -n Imh n+1 ) n≥1 is increasing, and each set G \ h -n Imh n+1 is non-empty, so Φ is finitely consistent. Let b be a realization of Φ in a saturated model. The graph G(b) has 2 ω consistent branches, whence S 1 (b) has cardinal 2 ω , a contradiction with G being small. Corollary 1.10. Let G be a small group and h a group homomorphism of G. There exists some integer n such that G equals Kerh n • Imh n .

Proof. Take n as in Proposition 1.9, and set f = h n . We have Imf 2 = Imf , so for all g ∈ G there exists g ′ such that f (g) = f 2 (g ′ ). Hence f (gf (g ′ ) -1 ) = 1 and gf

(g ′ ) -1 ∈ Kerf , that is g ∈ Kerf • Imf .
It was shown in [START_REF] Wagner | Small stable groups and generics[END_REF] that a definable injective homomorphism of a small group is surjective. Note that this follows again from Corollary 1.10.

Small skew fields

Recall a result proved in [START_REF] Wagner | Small fields[END_REF] : Fact 2.1. An infinite small field is algebraically closed.

Let D be an infinite small skew field. We begin by analysing elements of finite order.

Lemma 2.2. Let a ∈ D an element of order n < ω. Then a is central in D. Proof. Either D has zero characteristic, so Z(D) is infinite, hence algebraically closed. But Z(D)(a) is an extension of Z(D) of degree d ≤ n, whence a ∈ Z(D).
Or D has positive characteristic. Suppose that a is not central, then [3, Lemma 3.1.1 p.70] there exists x in D such that xax -1 = a i = a. If x has finite order, then all elements in the multiplicative group x, a have finite order. Hence x, a is commutative [3, Lemma 3.1.3 p.72], contradicting xax -1 = a. So x has infinite order. Conjugating m times by x, we get x m ax -m = a i m . But a and a i have same order n, with gcd(n, i Let us now show that a small skew field is connected, that is to say, has no definable proper subgroup of finite index. 

) = 1. Put m = φ(n). By Fermat's Theorem, i m ≡ 1[n], so x m and a commute. Then L = Z(C D (a, x m )) is a definable infinite commutative subfield of D which contains a. Let L x be {l ∈ L, x -1 lx = l}. This is a proper subfield of L. Moreover 1 < [L x (a) : L x ] ≤ n. But L x is infinite as it contains x. By Fact 2.
Proof. Clearly C D (a) ≤ C D (a n ). Consider L = Z(C D (a n )). It is algebraically closed by Fact 2.1, but L(a) is a finite commutative extension of L, whence a ∈ L and C D (a n ) ≤ C D (a).
Now suppose that D is not commutative. We shall look for a commutative centralizer C and show that the dimension [D : C] is finite. This will yield a contradiction.

Lemma 2.7. Let a ∈ D, t ∈ D \ im(x → ax -xa) and ϕ : x → t -1 • (ax -xa). Then D = imϕ ⊕ kerϕ. Moreover, if k = dcl(a, t, x), where x is a finite tuple, then k = imϕ ∩ k ⊕ kerϕ ∩ k. Proof. Let K = kerϕ = C D (a). Put I = imϕ; this is a right K-vector space, so I ∩ K = {0}, since 1 ∈ K ∩ I is impossible by the choice of t. Consider the morphism φ : D + /K -→ D + /K x -→ ϕ(x)
φ is an embedding, and D + /K is small ; by Corollary 10, φ is surjective and D/K = φ(D/K), hence D = I ⊕ K. Now, let k = dcl(a, t, x) where x is a finite tuple of parameters in D. I and K are k-definable. For all α ∈ k there exists a unique couple (α 1 , α 2 ) ∈ I × K such that α = α 1 + α 2 , so α 1 and α 2 belong to dcl(α, a, t) ≤ k, that is to say

k = I ∩ k ⊕ K ∩ k.
Lemma 2.8. For every a / ∈ Z(D), the map ϕ a : x → ax -xa is onto.

Proof. Suppose ϕ a not surjective. Let t / ∈ imϕ a , and k = dcl(t, a, x) be a non commutative subfield of D for some finite tuple x. Consider the morphism ϕ : Theorem 2.9. A small field in non-zero characteristic is commutative.

D + -→ D + x -→ t -1 .(ax -xa) Set H = imϕ, and K = C D (a) = kerϕ. By Lemma 2.7 we get k = H ∩ k ⊕ K ∩ k. Let N = I a i H be a finite intersection of left-translates of H by elements in k, such that N ∩ k be minimal. We have N ∩ k = i∈I a i H ∩ k = d∈k dH ∩ k, so N ∩k is a left ideal. Moreover, H ∩k is a right K ∩k vector-space of codimension 1. Then N ∩ k has codimension at most n =| I |. If N ∩ k = k, then H ∩ k = k, whence K ∩ k = {0}, a contradiction. So N ∩ k is trivial and, k is a K ∩ k-
Proof. Let a ∈ D be non-central, and let us show that x → ax-xa is not surjective. Otherwise there exists x such that ax -xa = a, hence axa -1 = x + 1. We would then have a p xa -p = x + p = x, and x ∈ C D (a p ) \ C D (a), a contradiction with Lemma 2.2.

3. Open problems Note that a positive answer to question 3 implies a positive answer to question 4, as all the proves given still hold. In general, one can prove divisibility and connectivity of an infinite weakly small field. So D × is divisible and the proof of Proposition 2.5 still holds.

Proposition 3.3. An infinite weakly small field is connected.

  1, it is algebraically closed and cannot have a proper extension of finite degree. Proposition 2.3. Every element of D has a n th root for each n ∈ ω. Proof. Let a ∈ D. If a has infinite order, Z(C D (a)) is an infinite commutative definable subfield of D. Hence it is algebraically closed, and a has an n th root in Z(C D (a)). Otherwise a has finite order. According to Lemma 2.2 it is central in D. Let x ∈ D have infinite order. Then a ∈ Z(C D (a, x)), a commutative, infinite, definable, and thus algebraically closed field. Remark 2.4. Note that since D × is divisible, it has elements of arbitrary large finite order, which are central by Lemma 2.2. Taking D omega-saturated, we can suppose Z(D) infinite.

Proposition 2 . 5 .

 25 D is connected. Proof. Multiplicatively : By Proposition 2.3, D × is divisible so has no subgroup of finite index. Additively : Let H be a definable subgroup of D + of finite index n. In zero characteristic, D + is divisible, so n = 1. In general, let k be an infinite finitely generated subfield of D. Consider a finite intersection G = i∈I d i H of left translates of H by elements in k such that G ∩ k is minimal ; this exists by the chain condition. By minimality, G ∩ k = d∈k dH ∩ k, so G ∩ k is a left ideal of k. Furthermore, G is a finite intersection of subgroups of finite index in D + ; it has therefore finite index in D. Thus G ∩ k has finite index in D ∩ k = k, and cannot be trivial, so G ∩ k = k = H ∩ k. This holds for every infinite finitely generated k, whence H = D. Now we look at elements of infinite order. Lemma 2.6. a ∈ D have infinite order. Then C D (a) = C D (a n ) for all n > 0.

  vector space of dimension at most n. By [2, Corollary 2 p.49] we get [k :K ∩ k] = [Z(k)(a) : Z(k)]. But Z(k) = Z(C D (k)) ∩ k with Z(C D (k))algebraically closed. Note that every element of k commutes with Z(C D (k)), so a ∈ Z(k), which is absurd if we add b / ∈ C D (a) in k.

Proposition 3 . 2 .

 32 Every element in an infinite weakly small field D has a n th root for all n ∈ ω.Proof. Let a ∈ D. In zero characteristic, Z(C D (a)) is an infinite definable commutative subfield of D, hence weakly small. According to [5, Proposition 9], every element in Z(C D (a)) has a n th root. In positive characteristic, we can reason as in the proof of Lemma 12, and find y with infinite order which commutes with a. Apply one more time[START_REF] Wagner | Small fields[END_REF] Proposition 9] to Z(C D (a, y)).

  3.1. Zero characteristic. Note that we just use characteristic p in proof of theorem 19 to show that there exist a / ∈ Z(D) such that x → ax -xa is not surjective. Thus questions 1 and 2 are equivalent : Question 1. Is a small skew field D of zero characteristic commutative ? Question 2. Is every x → ax -xa surjective onto D for a /

∈ Z(D) ? 3.2. Weakly small fields. small structures have been introduced to give a common generalization of small and minimal structures. Minimal fields are known to be commutative. Definition 3.1. A structure M is weakly small if for all finite set of parameters A in M , there are only countably many 1-types over A. Question 3. Is a weakly small field algebraically closed ? Question 4. Is a weakly small skew field commutative ?