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SMALL SKEW FIELDS

CÉDRIC MILLIET

Abstract. A small field of positive characteristic is commutative

Wedderburn showed in 1905 that finite fields are commutative. As for infinite fields,
we know that superstable [1, Cherlin, Shelah] and supersimple [4, Pillay, Scanlon,
Wagner] ones are commutative. In their proof, Cherlin and Shelah use the fact
that a superstable field is algebraically closed. Wagner showed that a small field
is algebraically closed [5], and asked whether a small field should be commutative.
We shall answer this question positively in non-zero characteristic.

1. Preliminaries

Definition 1.1. A theory is small if it has countably many n−types without
parameters for all integer n. A structure is small if its theory is so.

We shall denote dcl(A) the definable closure of a set A. Note that if K is a field
and A a subset of K, then dcl(A) is a field too. Smallness is clearly preserved under
interpretation and addition of finitely many parameters.

Let D,D1, D2 be A-definable sets in some structure M with A ⊂ M . We define the
Cantor-Bendixson rank CBA(D) and degree dCBA(D) of D over A.

Definition 1.2. By induction, we define

CBA(D) ≥ 0 if D is not empty
CBA(D) ≥ α+1 if there is an infinite family of disjoint A-definable subsets
(Di)i∈ω of D, such that CBA(Di) ≥ α for all i < ω.
CBA(D) ≥ β for a limit ordinal β if CBA(D) ≥ α for all α < β.

Definition 1.3. dCBA(D) is the greatest integer d such that D can be divided
into d disjoint A-definable sets, with same rank over A as D.

Proposition 1.4. If M is small and A is a finite set,

(i) CBA(M) is ordinal.

(ii) dCBA is well defined.

(iii) If D1 ⊂ D2, then CBA(D1) ≤ CBA(D2).
(iv) CBA(D1 ∪D2) = max{CBA(D1), CBA(D2)}.
(v) CBA and dCBA are preserved under A-definable bijections.

If A is empty, we shall write CB and dCB rather than CB∅ or dCB∅.
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Remark 1.5. Let H < G be A-definable small groups with H∩dcl(A) < G∩dcl(A).
Then, either CBA(H) < CBA(G), or CBA(H) = CBA(G) and dCBA(H) <
dCBA(G).

Corollary 1.6. A small integral domain with unity is a field.

Proof. Let R be this ring. If r is not invertible, then 1 /∈ rR hence rR ∩ dcl(r) �
R∩dcl(r). Apply Remark 1.5, but R and rR have same rank and degree over r. �

Note that R need not have a unity (see Corollary 1.10). More generally, if ϕ is a
definable bijection between two definable groups A ≤ B in a small structure, then
A equals B.

Proposition 1.7. (Descending Chain Condition) Let G be a small group and g a

finite tuple in G. Set H = 〈g〉 or H = dcl(g). In H, there is no strictly decreasing

infinite chain of subgroups of the form G0 ∩ H > G1 ∩ H > G2 ∩ H > · · · , where
the Gi are H-definable subgroups of G.

Proof. By Remark 5, either the rank or the degree decreases at each step. �

Corollary 1.8. Let G be a small group, H < G a finitely generated subgroup of G,

and (Gi)i∈I a family of H-definable subgroups of G. There is a finite subset I0 ⊂ I

such that
⋂

i∈I

Gi ∩H =
⋂

i∈I0

Gi ∩H.

Another chain condition on images of endomorphisms :

Proposition 1.9. Let G be a small group and h a group homomorphism of G.

There exists some integer n such that Imhn equals Imhn+1.

Proof. Suppose that the chain (Imhn)n≥1 be strictly decreasing. Consider the fol-
lowing tree G(x)
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Consider the partial type Φ(x) := {x /∈ h−nImhn+1, n ≥ 1}. The sequence
(h−nImhn+1)n≥1 is increasing, and each set G \ h−nImhn+1 is non-empty, so Φ
is finitely consistent. Let b be a realization of Φ in a saturated model. The graph
G(b) has 2ω consistent branches, whence S1(b) has cardinal 2

ω, a contradiction with
G being small. �

Corollary 1.10. Let G be a small group and h a group homomorphism of G. There

exists some integer n such that G equals Kerhn · Imhn.

Proof. Take n as in Proposition 1.9, and set f = hn. We have Imf2 = Imf , so
for all g ∈ G there exists g′ such that f(g) = f2(g′). Hence f(gf(g′)−1) = 1 and
gf(g′)−1 ∈ Kerf , that is g ∈ Kerf · Imf . �
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It was shown in [6] that a definable injective homomorphism of a small group is
surjective. Note that this follows again from Corollary 1.10.

2. Small skew fields

Recall a result proved in [5] :

Fact 2.1. An infinite small field is algebraically closed.

Let D be an infinite small skew field. We begin by analysing elements of finite
order.

Lemma 2.2. Let a ∈ D an element of order n < ω. Then a is central in D.

Proof. Either D has zero characteristic, so Z(D) is infinite, hence algebraically
closed. But Z(D)(a) is an extension of Z(D) of degree d ≤ n, whence a ∈ Z(D).
Or D has positive characteristic. Suppose that a is not central, then [3, Lemma
3.1.1 p.70] there exists x in D such that xax−1 = ai 6= a. If x has finite order,
then all elements in the multiplicative group 〈x, a〉 have finite order. Hence 〈x, a〉
is commutative [3, Lemma 3.1.3 p.72], contradicting xax−1 6= a. So x has infinite
order. Conjugating m times by x, we get xmax−m = ai

m

. But a and ai have same
order n, with gcd(n, i) = 1. Put m = φ(n). By Fermat’s Theorem, im ≡ 1[n], so
xm and a commute. Then L = Z(CD(a, xm)) is a definable infinite commutative
subfield of D which contains a. Let Lx be {l ∈ L, x−1lx = l}. This is a proper
subfield of L. Moreover 1 < [Lx(a) : Lx] ≤ n. But Lx is infinite as it contains x.
By Fact 2.1, it is algebraically closed and cannot have a proper extension of finite
degree. �

Proposition 2.3. Every element of D has a nth root for each n ∈ ω.

Proof. Let a ∈ D. If a has infinite order, Z(CD(a)) is an infinite commutative
definable subfield of D. Hence it is algebraically closed, and a has an nth root in
Z(CD(a)). Otherwise a has finite order. According to Lemma 2.2 it is central in
D. Let x ∈ D have infinite order. Then a ∈ Z(CD(a, x)), a commutative, infinite,
definable, and thus algebraically closed field. �

Remark 2.4. Note that since D× is divisible, it has elements of arbitrary large finite
order, which are central by Lemma 2.2. TakingD omega-saturated, we can suppose
Z(D) infinite.

Let us now show that a small skew field is connected, that is to say, has no definable
proper subgroup of finite index.

Proposition 2.5. D is connected.

Proof. Multiplicatively : By Proposition 2.3, D× is divisible so has no subgroup
of finite index. Additively : Let H be a definable subgroup of D+ of finite index
n. In zero characteristic, D+ is divisible, so n = 1. In general, let k be an infinite

finitely generated subfield of D. Consider a finite intersection G =
⋂

i∈I

diH of left

translates of H by elements in k such that G ∩ k is minimal ; this exists by the
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chain condition. By minimality, G ∩ k =
⋂

d∈k

dH ∩ k, so G ∩ k is a left ideal of k.

Furthermore, G is a finite intersection of subgroups of finite index in D+ ; it has
therefore finite index in D. Thus G ∩ k has finite index in D ∩ k = k, and cannot
be trivial, so G ∩ k = k = H ∩ k. This holds for every infinite finitely generated k,
whence H = D. �

Now we look at elements of infinite order.

Lemma 2.6. a ∈ D have infinite order. Then CD(a) = CD(an) for all n > 0.

Proof. Clearly CD(a) ≤ CD(an). Consider L = Z(CD(an)). It is algebraically
closed by Fact 2.1, but L(a) is a finite commutative extension of L, whence a ∈ L
and CD(an) ≤ CD(a). �

Now suppose that D is not commutative. We shall look for a commutative central-
izer C and show that the dimension [D : C] is finite. This will yield a contradiction.

Lemma 2.7. Let a ∈ D, t ∈ D \ im(x 7→ ax − xa) and ϕ : x 7→ t−1 · (ax − xa).
Then D = imϕ⊕ kerϕ. Moreover, if k = dcl(a, t, x), where x is a finite tuple, then

k = imϕ ∩ k ⊕ kerϕ ∩ k.

Proof. Let K = kerϕ = CD(a). Put I = imϕ; this is a right K−vector space,
so I ∩ K = {0}, since 1 ∈ K ∩ I is impossible by the choice of t. Consider the
morphism

ϕ̃ :
D+/K −→ D+/K

x 7−→ ϕ(x)

ϕ̃ is an embedding, and D+/K is small ; by Corollary 10, ϕ̃ is surjective and
D/K = ϕ̃(D/K), hence D = I ⊕ K. Now, let k = dcl(a, t, x) where x is a finite
tuple of parameters in D. I and K are k−definable. For all α ∈ k there exists a
unique couple (α1, α2) ∈ I × K such that α = α1 + α2, so α1 and α2 belong to
dcl(α, a, t) ≤ k, that is to say k = I ∩ k ⊕K ∩ k. �

Lemma 2.8. For every a /∈ Z(D), the map ϕa : x 7→ ax− xa is onto.

Proof. Suppose ϕa not surjective. Let t /∈ imϕa, and k = dcl(t, a, x) be a non
commutative subfield of D for some finite tuple x. Consider the morphism

ϕ :
D+ −→ D+

x 7−→ t−1.(ax− xa)

Set H = imϕ, and K = CD(a) = kerϕ. By Lemma 2.7 we get k = H ∩ k ⊕K ∩ k.
Let N =

⋂
I aiH be a finite intersection of left-translates of H by elements in k,

such that N ∩ k be minimal. We have

N ∩ k =
⋂

i∈I

aiH ∩ k =
⋂

d∈k

dH ∩ k,

soN∩k is a left ideal. Moreover,H∩k is a rightK∩k vector-space of codimension 1.
Then N ∩k has codimension at most n =| I |. If N ∩k = k, then H∩k = k, whence
K ∩ k = {0}, a contradiction. So N ∩ k is trivial and, k is a K ∩ k-vector space of
dimension at most n. By [2, Corollary 2 p.49] we get [k : K ∩k] = [Z(k)(a) : Z(k)].
But Z(k) = Z(CD(k)) ∩ k with Z(CD(k)) algebraically closed. Note that every
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element of k commutes with Z(CD(k)), so a ∈ Z(k), which is absurd if we add
b /∈ CD(a) in k. �

Theorem 2.9. A small field in non-zero characteristic is commutative.

Proof. Let a ∈ D be non-central, and let us show that x 7→ ax−xa is not surjective.
Otherwise there exists x such that ax − xa = a, hence axa−1 = x + 1. We would
then have apxa−p = x + p = x, and x ∈ CD(ap) \ CD(a), a contradiction with
Lemma 2.2. �

3. Open problems

3.1. Zero characteristic. Note that we just use characteristic p in proof of theo-
rem 19 to show that there exist a /∈ Z(D) such that x 7→ ax− xa is not surjective.
Thus questions 1 and 2 are equivalent :

Question 1. Is a small skew field D of zero characteristic commutative ?

Question 2. Is every x 7→ ax− xa surjective onto D for a /∈ Z(D) ?

3.2. Weakly small fields. Weakly small structures have been introduced to give a
common generalization of small and minimal structures. Minimal fields are known
to be commutative.

Definition 3.1. A structure M is weakly small if for all finite set of parameters A
in M , there are only countably many 1-types over A.

Question 3. Is a weakly small field algebraically closed ?

Question 4. Is a weakly small skew field commutative ?

Note that a positive answer to question 3 implies a positive answer to question 4, as
all the proves given still hold. In general, one can prove divisibility and connectivity
of an infinite weakly small field.

Proposition 3.2. Every element in an infinite weakly small field D has a nth root

for all n ∈ ω.

Proof. Let a ∈ D. In zero characteristic, Z(CD(a)) is an infinite definable com-
mutative subfield of D, hence weakly small. According to [5, Proposition 9], every
element in Z(CD(a)) has a nth root. In positive characteristic, we can reason as
in the proof of Lemma 12, and find y with infinite order which commutes with a.
Apply one more time [5, Proposition 9] to Z(CD(a, y)). �

So D× is divisible and the proof of Proposition 2.5 still holds.

Proposition 3.3. An infinite weakly small field is connected.
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