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Abstract 
 

This paper presents a macroscopic model of solid oxide fuel cell (SOFC) with the aim to 
perform a simulation of the whole generator. Three sub-models have been developed to 
take into fluidic, thermal and electrical phenomena. 
The fluidic sub-model is based on an equivalent circuit based on electrical analogy. 
Pressure drops in channels are modelled by resistances and the fluid accumulation in the 
volume is modelled by capacitor. Each electrode compartment (channel+electrode) is 
represented by two resistances and one capacitor. We have used this model to calculate 
the pressure at the catalytic sites and gas flows at fuel cell input and output. 
The electrical response is based on the classical Nernst potential equation, activation, 
ohmic and concentration overvoltages. 
The thermal modelling is based on a (2D) nodal network. Two aspects are studied in this 
article (conduction and the convection heat transfer). 
Results have been validated on a 5 cell stack. 
 

Introduction 
 

The solid oxide fuel cell (SOFC) is a promising technology. It is highly efficient, tolerant to 
impurities so it is fuel flexible (methane or even gasoline and diesel), and it can provide 
internal reforming of hydrocarbon fuels, at least partially. The work presented in this paper 
is in the frame work of the European project FELICITAS which aims to increase efficiency 
and life time of FC systems for heavy duty transportation applications (marine, rail, truck). 
One of the topics is the study of the hybridization of a PEFC and a SOFC. The model 
proposed here addresses a macroscopic simulation of a SOFC stack. It aims to be 
included in the simulation of the SOFC and PEFC coupling. 
Three sub-models have been developed to compute the fluidic, electrical and thermal 
responses inside the fuel-cell stack (temperature and chemical species dynamics are 
considered). The stack cells are not modelled individually: a single average cell is 
considered, the gas flows and the voltage are related to the number of cells. 
The fluid modelling is based on electric fluid analogy. Pressure drops in channels are 
modelled by two resistances ( 1R  for the inlet pressure drop of the stack and 2R  for the 
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outlet pressure drop). The fluid accumulation in the electrode compartment volume 
(channel and electrode) is modelled by a capacitor. We have used this model to calculate 
the pressure at the catalytic sites and gas flow at fuel cell input and output [1]. 
The electrical response is based on Nernst potential equation at equilibrium, ohmic, 
activation and concentration overvoltages. 
The thermal conduction and convection phenomena are taken into account in each cell are 
modelled by nodal network. The modelling principle by nodal network consists in 
establishing a co-relation with an electrical network. The considered system is separated 
into isothermal elements of volume Vi with temperature Ti. Each element "i" has a heat 
capacity Ci applied to center i of Vi and possibly a heat power generation. The item "i" is 
called node of the system. To simplify the model, one node in the medium is selected in 
each volume (anode, cathode, electrolyte and interconnects). 
The heat balance resulting from the first principle of thermodynamics is applied to the node 
"i". Steady state and transient state thermal behaviours are presented. 
 

SOFC principles 
 

The SOFC can be operated with reformate hydrogen mixed with CO. Nevertheless, in this 
paper, operation with pure hydrogen is considered. In this case, the operation principle is 
based on the following mechanism: oxygen is dissociated with O2- in a cathode, and then 
the anion migrates through the ionic conducting electrolyte at high temperature and will 
combine with hydrogen, to form water and to release from the electrons (figure 1). 
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Figure 1 Principles of solid oxide fuel cell 
 
Following reactions are considered: 
Anode reaction: −− +→+ eOHOH 22

2
2        (1) 

Cathode reaction: −− →+ 2
2 24 OeO        (2) 

Overall reaction: OHOH 222 2

1 →+  ( 1
,2, 6.241 −⋅−=∆ molkJH vapOHf )  (3) 

The cell operates between 700°C and 850°C where ion ic conduction by oxygen ions takes 
place. So the thermal phenomena are very important. 
 
 
 



 3

R-design Stack: specifications and operation condit ions 
 

Experimental results have been provided by HTceramix company on their stacks. 
HTceramix produces its own unique stack design based on its SOFConnex technology 
and HTc cells. The R-design stack uses an internal manifolding through feeding holes and 
is fuelled in a counter-flow configuration. ; 
The stacks are operated with a nominal power density higher then 0.4W/cm² at a 
temperature below 800°C. Electrical efficiencies of  40% have been commonly reached. 
The stacks can be fuelled with hydrogen, reformed hydrocarbons and synthesis gas 
mixtures, but the results provided in this article have been obtained with pure hydrogen. 
The stack R-design is composed of 5 repeating cells (figure 2). 
 

 
 

Figure 2 R-design stack developed by HTCermaix company 
 
The following table illustrates the specifications and operation conditions: 
 
Number of cells in stack 5  
Size of cells 80*80 mm×mm 
Active area per cell 50 cm² 
Stack’s dimensions Depth                 125.5 

Length                132 
Height                 Cells*3 
Weight                Cells*75 

mm 
mm 
mm 
g 

Minimum operating voltage 
per cell 

0.6 V 

Ideal operating voltage per 
cell 

0.7 V 

Ideal operating temperature 750 °C 
Max. operating temperature 830 °C 
Operating pressure Atmospheric  
Fuel  Hydrogen or reformate  
Hydrogen volume flow rate 
per cell 

200-400 (4-8 ml/min.cm²)  

Oxidant flow rate ratio 
(lambda) 

2-4  

Pressure drop on air side 20 mbar 
Pressure drop on fuel side 10 mbar 

 
Table 1 R-design stack, specifications and operation conditions 
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Macroscopic Model of SOFC 
 

Model assumptions 
 
The stack model will be based on the following assumptions: 
 � The stack is fed with hydrogen and air. 
 � The gases are ideal. 
 � The gas flowing in anode side and cathode side have the same direction. 
 � The channels (anode and cathode) have a fixed volume. 
 � The effect of radiation between gas and solid in the channels is neglected. 
 

Fuel cell fluid modelling 
 
The fluidic behaviour in anode and cathode side has been modelled using an electric fluid 
analogy [1]. In a formal approach, the flow is related to a current and the pressure is 
related to a voltage. It is considered that the pressure drop on air side and fuel side is 
linear with the air flow and fuel flow. 
So, each electrode of volume V is modelled with an electric circuit (figure 3): 
 

PoutPin
R1 R2

Fcon C

Fin FoutPcs PoutPin
R1 R2

Fcon C

Fin FoutPcs

 
 

Figure 3 principle of fluidic modelling 
 
Where: 
Pin : electrode inlet pressure (mbar)  
Pout : electrode outlet pressure (mbar) 
Fin : inlet flow (mol/s) 
Fout : outlet flow (mol/s) 
Fcon : consumed flow of each species in the electrode 
R1 : upstream fluidic resistance of the electrode  
R2 : downstream fluidic resistance of the electrode 
C : fluidic capacity of the electrode 
Pcs : pressure in the catalytic sites 
 

Anode fluidic modelling 
 
The stack is at atmospheric operating pressure, so the outlet partial pressure of hydrogen 
and water are given by equation 4: 

atmpp OHsHs 1)()( 22
=+          (4) 

Flows of each species: 

2222 conHaHinHoutH FFFF ++=         (5) 

OprHOaHOinHOoutH FFFF 2222 ++=         (6) 

Where: 
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2inHF , 2outHF  : Hydrogen Inlet and outlet flow. 

OinHF 2 , OoutHF 2  : Water inlet and outlet flow. 

2aHF  , OaHF 2  : Hydrogen flow and water flow in anodic fluid capacity. 

2conHF  : Hydrogen consumed flow in reaction (1). 

OprHF 2  : Water produced flow in reaction (1). 

The mole quantity of hydrogen in the chemical reaction is equal to the quantity of water 
produced: 

F

IN
FF cell

OprHconH ×
×

−=−=
222         (7) 

Where:  

cellN  : Number of cells in stack 
I  : Stack current (A) 
F  : Faraday’s constant  
 
Every individual gas will be considered separately, and the perfect gas equation will be 
applied to it, hydrogen will be considered as an example [2] [3], 
 

AHAH TRnVp ⋅⋅=⋅ 22           (8) 
 
Where, AV  is the volume of the anode, 2Hn  is the hydrogen mole numbers in the anode 
channel; R  is the universal gas constant and AT  is the absolute anode temperature. 
 

A

A

H

H

TR

V

p

n

⋅
=

2

2            (9) 

 
Thus, the hydrogen fluidic capacity is given by the following relation: 
 

A

A
H TR

V
C

⋅
=2            (10) 

 
Where: 

2Hp  : Hydrogen partial pressure  

AT  : Anode temperature 

2HC : Fluidic capacity for hydrogen 
 

Cathode fluidic modelling 
 
The underlying equations make it possible to model the fluidic cathode side: 

22 NOair nnn +=           (11) 

2222 conOcOinOoutO FFFF ++=          (12) 

22 inNoutN FF =            (13) 

F

IN
F cell

conO ×
×

−=
42           (14) 

C

C
O TR

V
C

⋅
=2            (15) 

 
Where: 

2On  : Oxygen mole number 
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2Nn  : Nitrogen mole number 

2inOF , 2outOF  : Oxygen Inlet and outlet flow. 

2inNF , 2outNF  : Nitrogen inlet and outlet flow. 

2cOF  : Oxygen flow in cathodic fluid capacity. 

2conOF  : Oxygen consumed flow in reaction (1). 

CC TV ,  : Cathode volume and temperature  
 

Calculation of stack voltage 
 
Applying Nernst’s equation and Ohmic, activation, concentration overvoltages, the stack 
output voltage is represented by the following expression [2] [4] [5] [6] [7]: 
 



















−−×−



















 ⋅
+⋅=⋅= conact

OCV

OH

OH
cellcellcellstack Ir

p

pp

F

RT
ENVNV ηη

4444 34444 21
2

5.0
220

2
  (16) 

 
Where: 

0E  : Standard reversible cell potential [V] 
T : Temperature of the stack [K]. 

2Hp , OHp 2 : Partial pressure for hydrogen and water vapour at the electrolyte/anode 
interface [bar]. 

2Op : Partial pressure of oxygen at electrolyte/cathode interface [bar]. 
r  : Ohmic resistance of one cell [ Ω ]. 

actη : Activation overvoltage of one cell[V]. 

conη : Concentration overvoltage of one cell [V]. 
 

Open circuit voltage 
 
The OCV is given by equation 17.  
 

( ) 






 ⋅
+=

OH

OH

p

pp

F

RT
TEOCV

2

5.0
220

2
        (17) 

 
The function )(0 TE  is empirical equation and is calculated from the comparison of the 
experimental OCV curve versus temperature measured on the stack (figure 4) and the 
theoretical OCV expression (equation 17). 
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Figure 4 5-cell stackOCV variation with temperature related to one average cell 

 
The variation of the OCV is given by the following expression 
 

5
5

4
4

3
3

2
210 TaTaTaTaTaaOCV ⋅+⋅+⋅+⋅+⋅+=      (18) 

 
The ohmic overvoltage is due to the flow of ions in the electrolyte and to the resistance to 
the flow of electrons through the electrode materials. Ohmic resistance is given by 
expression 19: 
 

A

ASR
r =            (19) 

 
Where : 
A  : Active area [ ²cm ]. 
ASR  : Area specific resistance [ ².cmΩ ] 
 
A special instrumentation was used for this stack in order to separate area specific 
resistance (ASR) contribution from each component. 
The figure 5 shows the variation of the ASR with temperature 
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Figure 5 ASR variation with temperature related to one cell of the stack 

 
The ASR function with temperature is interpolated by a polynome (equation 20): 
 

3
3

2
210 TbTbTbbASR ⋅+⋅+⋅+=         (20) 

 
The numerical values are available in Table 2. 
 

 a   b  
1 7.3500E004-  1 265.0306 
2 352.8520 2 0.7281-  
3 0.6772-  3 004-6.6900E  
4 004-6.4941E  4 007-2.0523E-  
5 007-3.1121E-    
6 011-5.9621E    

 
Table 2 Numerical values 

 
Activation overvoltage 

 
The activation overvoltage is directly related to the rates of electrochemical reactions [6] 
[8], the expression of the activation overvoltage is given by: 
 









=

0i

i
Ln

nF

RT
act α

η           (21) 

 
Where: 
α : Electron transfer coefficient 
n : Number of electron 
i : Current density [A/cm²] 

0i : Exchange current density [A/cm²] 
We can write this overvoltage of an empirical equation: 
 

( ) biaLnact +=η           (22) 
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With: 

nF

RT
a

α
=            (23) 

( )0iLn
nF

RT
b

α
−=           (24) 

The coefficients a and b are function of temperature, they are calculated in an empirical 
way at each temperature. 
 

Concentration overvoltage 
 
In limiting performance of stack the concentration overvoltage appears in form [6] [8]: 
 









−=

L
con i

i
Ln

nF

RT
1η           (25) 

 
Where: 

Li : Limiting current ( Li =45A) 
 

Thermal modelling 
 
A SOFC is submitted to three fundamental heat transfers (conduction, convection and 
radiation). The heat transfer by radiation is neglected in this article. The species 
transportation and electrochemical effects are also considered. In order to make the model 
easy to solve, a model 2D by nodal network of one cell is developed. 
Figure 6 shows a 2D nodal network representation of the studied cell. This last is 
composed with seven isothermal control volumes, all represented with a temperature 
node. It permits to consider heat transfers by convection and conduction and by the mass 
transportations as well through the conserved volumes. The volumes are the electrolyte 
between the anode and cathode channels, the fluid channels (air, H2) and the anodic and 
cathodic interconnects. 
The  three kinds of heat and mass transfers which are taken into account are gathered in 
table 3 with the specific equivalent thermal resistances. Then, knowing these expressions, 
each heat and mass transfer can be written as an expression of the difference of 
temperature between two nodes and the thermal resistance [9] [10] [11].  
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Figure 6 Heat transfer in cell SOFC 

 
Heat flux Heat flow (W) and  

heat resistance (K.W-1) 
Heat transfer by conduction heat between 
T1 and T2 

� )( 21 TT
e

S −= λφ  

λ : Thermal conductivity (W.m-1.K-1) 
S : Heat transfer area (m²) 
e : Length (m) 

�
S

e
Rth λ

=  

Heat transfer by convection heat � )( 21 TThS −=φ  
h  : Heat convection coefficient (W.m².K-1) 

�
hS

Rth

1=  

Heat and mass fluxes 
� )( 21 TTcm −=

•
φ  

•
m  : mass flow of gas (kg.s-1) 
c  : mass specific heat at to constant 
pressure (J.kg-1.K-1) 

� •=
mc

Rth

1
 

 
Table 3 Calculation of the heat flow and the heat resistance 

 
Thermal model of one cell 

 
The modelling of the transient thermal state of the cell is also realized thanks to the nodal 
network shown in figure 7. Heat capacity at particular nodes (for which the thermal inertia 
is not neglected) gives the transient duration of the modelling. 
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Figure 7 Cell thermal modelling 

 
The thermal energy balance issued from the first thermodynamic low is then computed at 
each node of the network. It permits to obtain a transient analytical equation for each 
node. Then, the system of equations is expressed as a matrix system easily solved. 
We obtain, at the anode interconnexion: 
 

( ) ( )
0

____

=+
+
−

+
+
−

dt

dT
Cp

RR

TT

RR

TT Ia
Ia

ConvaICondaI

AIa

ConvIaexCondIaex

exIa      (26)  

 
At the anode: 
 

( ) ( ) ( ) ( ) 2

1

1

__

IR
dt

dT
Cp

R

TT

R

TT

R

TT

RR

TT
A

A
a

outa

AoutA

ina

AinA

a

A

ConvaICondaI

IaA ×=+
−

+
−

+
−

+
+
−

   (27) 

 
For the Electrolyte Anode Interface: 
 
( ) ( )

vapOHfea
ConvelecCondelec

elec

a

A Q
dt

dT
Cp

RR

TT

R

TT
,2,

1

_1_1

1

1

1 =+
+

−
+

−
     (28) 

 
Concerning the electrolyte: 
 

( ) ( ) 2

_2_2

2

_1_1

1 IR
dt

dT
Cp

RR

TT

RR

TT
E

elec
elec

ConvelecCondelec

elec

ConvelecCondelec

elec ×=+
+
−

+
+
−

   (29) 
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At the Electrolyte Cathode Interface: 
 

( ) ( )
=+

−
+

+
−

dt

dT
Cp

R

TT

RR

TT
ec

C

C

ConvelecCondelec

elec 2

2

2

_2_2

2       (30) 

 
For the cathode: 
 
( ) ( ) ( ) ( ) 2

__2

2 IR
dt

dT
Cp

R

TT

R

TT

RR

TT

R

TT
C

c
c

outC

CoutC

inC

CinC

ConvIcCondIc

IcC

C

C ×=+
−

+
−

+
+
−

+
−

  (31) 

 
Finally, for the cathode Interconnexion: 
 

( ) ( )
0

____

=+
+
−

+
+
−

dt

dT
Cp

RR

TT

RR

TT Ic
Ic

ConvIcondIc

exIc

ConvIcexCondIcex

CIc      (32) 

 
The system equations (26-32) can be written with matrix and vector expressions: 
 

[ ] [ ] [ ] [ ]ii Q
dt

dT
CpTG =




⋅+⋅          (33) 

Where: 
 
[ ] [ ]t

IccelecaIa TTTTTTTT 21=        (34) 
 





























=

7776

676665

565554

454443

343332

232221

1211

00000

0000

0000

0000

0000

0000

00000

GG

GGG

GGG

GGG

GGG

GGG

GG

G       (35) 

 
jiij GG =            (36) 

 
Table 3 illustrates the conductance ijG used in matrix (35): 

 

11G  

convaIcondaIconvIaexcondIaex RRRR ____

11

+
+

+
 

2112 GG =  

convIaexcondIaex RR __

1

+
−

 

22G  

outainaaconvaIcondaI RRRRR

1111

1__

+++
+

 

3223 GG =  

1

1

aR

−
 

33G  

conveleccondeleca RRR _1_11

11

+
+  

4334 GG =  

conveleccondelec RR _1_1

1

+
−
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44G  

conveleccondelecconveleccondelec RRRR _2_2_1_1

11

+
+

+
 

5445 GG =  

conveleccondelec RR _2_2

1

+
−

 

55G  

2_2_2

11

Cconveleccondelec RRR
+

+
 

6556 GG =  

2

1

CR

−
 

66G  

outCinCconvICcondICC RRRRR

1111

__2

++
+

+  

7667 GG =  

convICcondIC RR __

1

+
−

 

77G  

convIccondIcconvIcexcondIcex RRRR ____

11

+
+

+
−

 

 
Table 3 Calculation of the conductance 

 
The matrix [ ]iCp  of the heat capacities is a diagonal matrix expressed with relation (37). 
 

[ ]





























=

I

c

elec

a

I

i

Cp

Cp

Cp

Cp

Cp

Cp

Cp

Cp

000000

000000

000000

000000

000000

000000

000000

2

1

     (37) 

 
[ ]iQ  is the vector of internal power generation. 

[ ]







































+

×++

×

×++

+

=

convIcexcondIcex

ex

C
out

outC

inC

inC

E

vapOHf

A
outa

outa

ina

ina

convIaexcondIaex

ex

i

RR

T

IR
R

T

R

T

IR

Q

IR
R
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Where: 

AR  : The anode resistance  

CR  : The cathode resistance 

ER  : The electrolyte resistance 
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vapOHfQ ,, 2
 : The water formation energy at anode side, is given by flowing relation: 

OHfHconvapOHf HFQ
222 ,,,, ∆×=          (39) 

Results and discussion 
 
The three models (fluidic, thermal and electric) are coupled. Simulation at constant current 
is performed. Thermal dynamic effect is heat capacity. 
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Figure 8 The complete model developed with Matlab Simulink 

 
Expeimentals have been performed at three temperatures of the ambient air in the 
furnace: a low operating temperature (700°C), high operating temperature (800°C) and 
nominal operating temperature (750°C). For all temp eratures, the inlet mass flow in anode 
and cathode are taken constant ( cellcmmlDH ²..min/82 = , cellcmmlDair ²..min/5.30= ). 
In the model, the temperature of the cathode is very closed to the temperature of the 
furnace, because the conduction and convection between the interconnect and the 
cathode are low. So, these two temperatures are taken equal in the simulation. 
Figure 9,10 and 11 show the polarization and power curves. At average current range 
where the ohmic drop is dominating, the model follows exactly the experimental results. At 
low current, where activation overvoltages are dominating, a light difference can be 
noticed between the model and the experimental because of the low acquisition frequency 
of the test bench which does not give enough points at low current. 
At 800°C, concentration overvoltage has a noticeabl e contribution to the voltage drop at 
high current. A 700°C and 750°C, experimental resul ts aren’t available because tests 
haven’t been performed for stack safety reasons. 
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Figure 9 Polarization and power curves at 700°C 
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Figure 10 Polarization and power curves at 750°C 
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Figure 11 Polarization and power curves at 800°C 

 
To observe the effect of the temperature on the stack voltage, the figure 12 shows the 
three polarization curves. 
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Figure 12 Polarization curve 

 
In order to compare the partial pressures of the chemical species in the anode and 
cathode side, figure 14 shows the partial pressures of chemical species at 700°C. 
On the anode side, the water formation reaction increases the partial pressure of water 
and the reduction of the hydrogen mole number due to the reaction (1) in the 
Anode/electrolyte Interface causes a reduction of the hydrogen partial pressure. 
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In the cathode side, the oxygen is consumed in the chemical reaction (2) which justifies 
the diminution of the oxygen partial pressure in the cathodic compartment and the nitrogen 
is not consumed in cathode side, so its partial pressure increases. 
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Figure 13 Species partial pressure at 700°C 

 
At high temperature, the heat transfer between the solid parts and fluid (air or hydrogen) of 
the cell becomes important. The figure 15 shows the anode and cathode temperature 
simulation with null current and another with not null current. 
The anode and cathode have the same time-constant because they have the same heat 
capacity and the same volume. 
The temperature of the anode and cathode are close with null current because there is no 
convection exchange between electrolyte and electrodes due to the absence of the O2- 
migration in the electrolyte. 
With not null current, the temperature of the anode becomes higher than the temperature 
of cathode due to the energy of water formation in the Anode/Electrolyte Interface and also 
the ohmic energy ( 2IRA ⋅ ). 
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Figure 14 Anode and cathode temperature 

 
Conclusion 

 
In this paper, a simulation of a SOFC combining thermal, fluid and electrical models is 
developed to study its steady-state and thermal transient behaviour. The thermal model is 
based on nodal network with seven nodes in each cell. The energy balances in each node 
are taken and solved by Matlab Simulink. In this model, conduction, convection heat, 
species transportation and electrochemical effects are taken into account. 
The fluid model is based in electric fluid analogy. The electric model is based in Nernst 
equation, Ohmic, activation and concentration overvoltages. 
Experimental results on the 5 cell stack have been supplied by the HTceramix company 
for validation. 
In the future, the radiation effect will be also considered and the electrical transient as well. 
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