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Abstract

We develop a panel model for regional house prices, for which both the cross-section
and the time series dimension is large. The model allows for stochastic trends, coin-
tegration, cross-equation correlations, and, most importantly, latent-class clustering
of regions. Class membership is fully data-driven and based on the average growth
rates of house prices, and the relationship of house prices with economic growth.
We apply the model to quarterly data for the Netherlands. The results suggest that
there is convincing evidence for the existence of two distinct clusters of regions, with
pronounced differences in house price dynamics.
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1 Introduction

Real estate prices in many countries have experienced a dramatic boom in recent years

(IMF, 2004). At the same time, the extent of the price increase appears to vary substan-

tially across different regions within a given country. In the Netherlands, for example, it

is commonly believed that house prices in Amsterdam and the densely populated western

part of the country have increased far more than prices in the smaller cities and rural

areas in the east. As house prices are typically available per region or city, we may ana-

lyze these data at such a disaggregate level, to examine whether indeed regions or cities

behave differently, perhaps in terms of trends, but also in terms of response to outside

economic shocks. In this paper we develop a time series model that suits this purpose.

Most regional house prices have the following properties. First, they tend to display a

trend, and historical price patterns suggest that this trend probably is not deterministic

but stochastic. In particular, house prices show ‘bubble’-type behavior, where prolonged

periods of steady increases of the price level suddenly end with a sharp drop followed by a

period of low price levels, suggesting that trends are unlikely to be deterministic. Second,

for different regions within a country these stochastic trends should somehow be linked.

It is not plausible that prices in different regions would diverge indefinitely or that certain

regions would not respond to common macroeconomic shocks. So, a model for regional

house prices should allow for some form of common trends. Third, it can be expected

that adjacent regions show similar price patterns, although this may also be the case for

regions far apart geographically but with similar economic or demographic characteristics.

Hence, a suitable model should allow for similarities in the dynamic behavior of house

prices across regions. An intuitively appealing possibility is to consider a model that

allows for groups or clusters of regions, where house price dynamics in regions within a

given cluster are the same, while they are different across clusters. Preferably, such a

model should not require ex-ante or exogenous assignment of regions to specific clusters.

1
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In fact it would be best if the data themselves were allowed to indicate if clusters exist

and if so, which regions belong to which cluster.

In this paper we extend the latent-class panel time series model introduced by Paap

et al. (2005) to capture these different properties of regional house prices. The key feature

of this model is that the clustering of regions is purely data-driven, where cluster mem-

bership is based on characteristics corresponding to two specific research questions we

want to address. The first question is whether prices in all regions have the same average

growth rate. Note that a common trend specification across the regions entails that their

growth rates must be somehow compatible, but it still leaves open the possibility that

house prices in some regions grow faster than in others. The second question we consider

is the way the house prices in each region react to changes in the overall economic situ-

ation, which we measure by GDP. We examine both the size of the effect from GDP on

the house prices and the speed at which regions react to changes in GDP.

We apply our model to house price data for the Netherlands, comprising 76 regions

for which we have quarterly data for the period 1985Q1-2005Q4. We find that the 76

regions can be grouped into two clusters. The first cluster consists mainly of regions in

the east of the country. These are mainly rural areas that are close to the larger cities,

especially close to the Randstad (consisting of Utrecht, Amsterdam, Den Haag, Rotterdam

and other cities in the area). This cluster reacts both stronger and faster to changes in

GDP. The average growth rate does not vary over the regions.

There are not many studies that describe regional house prices. Cameron et al. (2006)

build a model from inverse demand equations. They have, however, only a limited number

(9) of regions, and their model would not work in our situation where we have many more

(76) regions, as we will describe below. Malpezzi (1999) constructs an error correction

model for regional house prices. The parameters of this model are however not allowed

to vary across regions. Holly et al. (2008) model US house prices at the state level. Their

model is ‘fully heterogenous’ in the sense that it has different parameters for each region.

2
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In this paper we cover the middle ground, that is, the model parameters are allowed to

vary across groups of regions but not across each region individually.

Before we propose our latent-class model, we first provide some details on the house

price data in Section 2. We consider two decades of quarterly house prices on 76 regions in

the Netherlands. We discuss their trending behavior by performing panel unit root tests

and we also show that the growth rates in different regions show strong cross-correlations.

Using multidimensional scaling techniques we get a first impression if and how these 76

regions could get clustered. Then, in Section 3, we put forward our model specification,

highlighting the underlying data-driven clustering mechanism. In addition, we describe

the method used for parameter estimation. In Section 4 we first present our estimation

results, and give interpretation to the various outcomes. Next, we take a look at impulse

response functions of the house prices with respect to a shock in GDP and in the interest

rate. In Section 5 we conclude with some limitations and we outline topics for further

research.

2 Data

The Dutch real estate agent association [NVM] publishes quarterly data on house prices

for N = 76 regions in the Netherlands. Our dataset covers the sample period 1985Q1-

2005Q4 (T = 84 quarters). Hence, we have a panel database where both the cross-section

dimension N and the time dimension T are fairly large.

The way the country is divided into 76 regions is determined by the NVM. Macroeco-

nomic data, such as output and inflation, are not available for this particular specification

of regions. Other (macro) variables that we use in our model are therefore measured at

the country level. In particular, this concerns the interest rate (obtained from the Dutch

Central Bank) and quarterly real GDP (from Statistics Netherlands). The GDP series

is available until 2005Q2. We obtain real house prices by deflating with the consumer

3
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price index [CPI] (from Statistics Netherlands). In addition, we seasonally adjust the real

GDP series using the Census X-12 algorithm (available in EViews 5.1). We denote the

real house price in region i at time t as pi,t, and real GDP as yt.

[Figure 1 about here.]

Figure 1 shows time series of log(pi,t) for three specific regions: Noordwest-Friesland,

which usually is the least expensive region, Bunnik/Zeist, which usually is the most ex-

pensive region, and Amsterdam, which is in between. On top we also plot log(yt) (scaled

to limit the size of the vertical axis in the graph). Comparing the graphs in Figure 1

suggests that real house prices increase slightly faster than real GDP. Prices in Bun-

nik/Zeist and Amsterdam show substantial variations in the trend growth rate over time,

with alternating periods of steep price increases and of stable or falling prices. Especially

the ‘hump’ in the prices around 2000 stands out clearly. This suggests that the trend

in the house prices is stochastic rather than deterministic. Furthermore, as the trending

behavior of the different price series seems quite similar regional house prices may well be

cointegrated.

2.1 Unit roots and cointegration

To test whether these visual impressions from Figure 1 can be given more formal statistical

support, we perform panel unit root tests on the regional house prices. Two of the most

popular tests in the literature are those from Levin et al. (2002) [LLC] and Im et al.

(2003) [IPS], see Breitung and Pesaran (2008). These tests have as null hypothesis the

presence of a unit root in all the series in the panel. The alternative hypotheses are

different however. Levin et al. (2002) assume that the house price dynamics are the same

for each region, and therefore the alternative hypothesis is that all regional house prices

are stationary. Im et al. (2003), however, have as alternative hypothesis that at least

4
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one regional house price is stationary. Both these tests assume that there is no cross-

correlation between different series in the panel. In fact, they are not consistent if such a

dependency is present, which is quite likely in our case. Alternative tests that do allow

for cross-section dependence are available, like the one in Moon and Perron (2004), but

these usually rely on asymptotics that require T to be much larger then N , while in our

case they are about equal.

To meet our data characteristics, we therefore employ the cross-sectionally augmented

IPS [CIPS] test, recently developed in Pesaran (2007). This allows for cross-sectional

dependence, and is also valid when N is larger than T . The idea of the CIPS test is

to add the cross-section averages of the lagged levels and first differences to the familiar

augmented Dickey-Fuller [ADF] regression equation. If it can be assumed that the cross-

correlations are caused by a common factor, then this common factor must also be present

in the cross-section averages. Adding these to the ADF equations should then get rid of

the common factor in the residuals and thus correct for the presence of cross-correlations.

As the CIPS test is known to have reduced power relative to the IPS and LLC tests

in case cross-correlation is not present, we test whether we really should use the CIPS

test instead of these simpler tests. For this purpose we use the cross-section dependence

[CD] test of Pesaran (2004) and the adjusted LM [LMadj] test of Pesaran et al. (2008).

These tests both use the cross-correlations between the residuals of the individual ADF

regressions for the different regions. The CD test takes a simple sum which is scaled such

that it has a standard normal distribution under the null hypothesis of no cross-sectional

dependence. Therefore, the CD test has little power in case there are both positive and

negative correlations such that the average is close to zero. The LMadj test, however, is also

valid in this case as it employs the squares of the cross correlations in the construction of

the test statistic. However, the LMadj test is less robust against non-normally distributed

error terms and exhibits size distortions, especially when N is much larger than T .

5
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[Table 1 about here.]

Table 1 gives the result of these tests for the panel of quarterly growth rates in house

prices ∆ log(pi,t), where ∆ denotes the first-difference filter, and of log(pi,t) − log(p34,t),

which is the difference of each series with the log house prices in Amsterdam (region 34,

see Appendix A). The number of lagged (first) differences is allowed to vary across each

(C)ADF equation and is determined by minimizing BIC. Adding a lagged variable means

losing one observation, therefore we actually minimize BIC/T , see Cameron and Trivedi

(2005, pp. 279) or the definition of BIC given in Franses and Paap (2001). Each (C)ADF

regression equation contains an intercept and a trend.

From the second column of Table 1 we see that for the first difference of the log house

prices there is substantial cross-sectional dependence, according to both the CD and LMadj

tests. Next, we see that all three unit root tests reject the presence of a unit root in these

growth rate series. Results for the difference between the log price in a region and the log

price in Amsterdam (region 34) appear in the third column of Table 1. The reason for

examining the log price differences with respect to Amsterdam is that finding these to be

stationary, we can conclude that the house prices in each region are cointegrated. Again,

the CD and LMadj tests indicate that there is substantial cross-sectional dependence.

Next, the LLC and IPS unit root tests do not reject the presence of a unit root, but

the CIPS test does. Since the LLC and IPS tests are not valid in case of cross-sectional

dependence, we rely on the CIPS test and conclude that the log house prices in each

region are cointegrated. Note that the (1, −1) cointegration relationships suggested by

the results in Table 1 are quite plausible. It means that the difference between the log

of house prices, or, equivalently the ratio of house prices, in each region is a stationary

process. This constrains the long-term growth of house prices in each region to be about

the same.

[Figure 2 about here.]

6
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2.2 Clusters

[Figure 3 about here.]

Before we turn to our conditional clustering analysis using latent class techniques

we consider unconditional clustering based on the correlations of the house price growth

rates or of the residuals of the ADF regressions used above. For this purpose, we use

multi-dimensional scaling [MDS], which results in the graphs shown in Figure 2 and 3.

Although the graphs in these figures are rather different, they basically lead to the

same conclusion that there are no apparent clusters. Hence, dividing the regions into

different groups based only on the cross-correlations of the regional house prices is not

a meaningful possibility. Apparently, we need a more sophisticated clustering method,

perhaps based on latent classes, as we will propose in the next section.

3 The model

In this section we put forward the specification of the latent-class panel time series model

for describing the regional house prices. We first discuss the characteristics of the model,

and then we outline the parameter estimation procedure.

3.1 Representation

Our starting point is the latent-class panel time series model developed by Paap et al.

(2005). The crucial idea behind this model is that the individual time series may be

grouped into a limited number of clusters. Within each cluster, a linear model is assumed

to describe the dynamic behavior of the time series. The clusters are defined such that the

model parameters are the same for all time series within a cluster, but they are different

across clusters. Hence, this model covers the middle ground between a pooled regression

model, where the model parameters are constrained to be the same for all regions, and

7
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a ‘fully heterogenous’ model, where the parameters are allowed to be different for each

individual region. Whereas a pooled regression model may be too restrictive, a fully

heterogenous model may be too flexible and ignores the possible similarities between

regions. Finally, the key feature of the model of Paap et al. (2005) is that the number

of clusters in the model as well as the allocation of the individual time series to different

clusters is purely data-based. This avoids ex ante, and necessarily subjective, grouping

of regions according to geographical location or economic or demographic characteristics,

for example.

In our model for quarterly growth rates of house prices we allow for more flexibility

than was done in Paap et al. (2005). As mentioned, there are two research questions we

want to answer with our model and each question corresponds to different parameters that

can vary across the latent classes. The first is whether the mean growth rates of house

prices are the same across all regions. We therefore allow the clusters to have a different

average growth rate by allowing for a class-specific intercept. To facilitate interpretation,

we demean all other variables in the model such that the intercept is equal to the average

growth rate of the house prices in the regions in a cluster.

The second question we wish to answer with our model is whether the house prices in

regions follow the trend in real GDP. We add an error correction variable linking regional

real house prices and real GDP, where the long-run parameter should be estimated. This

long-run parameter determines the size of the effect of GDP on the house prices. The

adjustment parameter indicates how fast the house prices in a region react to changes in

GDP.

Based on the above discussion, we propose the following latent-class panel time series

model for regional house prices in the Netherlands

∆ log(pi,t) = β0,ki
+ β1,ki

[log(pi,t−1) + γki
log(yt−1)] + ηi,t. (1)

8
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The β and γ parameters are class-specific parameters, where the subscript ki = 1, . . . , K

denotes the latent class which region i belongs to with K being the number of latent

classes. We denote the probability that a region belongs to latent class k, or the mixing

proportions, as πk. Naturally it must hold that, 0 < πk < 1 and that
∑K

k=1 πk = 1.

As the house prices of each regions are cointegrated with GDP, they are also cointe-

grated amongst themselves. This can easily be seen in the following way. Both pi,t−γki
yt

and pj,t − γkj
yt are stationary series. Now, consider the following expression,

(pi,t − γki
yt)− δ(pj,t − γkj

yt) = (pi,t − δpj,t)− (γki
− δγkj

)yt. (2)

The LHS of (2) is stationary, therefore the RHS is also a stationary series. For δ = γki
/γkj

the second term on the RHS of (2) will disappear, therefore regions i and j must have a

(1,−δ) cointegration relationship. Two regions in the same cluster will therefore have a

(1,−1) cointegration relationship, because they share the same γ parameter. As we have

seen in Section 2.1, there is support for exactly this relationship.

Even though model (1) includes log(yt−1), which is the same for all regions, there

may still be some cross-section correlation among the house prices that is not captured.

Therefore, following Holly et al. (2008), we allow the error term ηi,t in (1) to be correlated

across regions, but assume that this correlation is due to dependence on certain common

factors. To be precise, we consider the specification

ηi,t = α1,i∆ log(yt−1) + α2,iIt−1 + α3,i∆ log(pt−1) + εi,t, (3)

where It−1 denotes the interest rate at time t− 1, pt−1 denotes the average house price in

the Netherlands at time t− 1 and where αl,i for l = 1, 2, 3 are region-specific parameters.

The residuals εi,t are now assumed to be independently normally distributed with a region-

specific variance σ2
i .

In the application below, we demean all variables in (1) and (3) and hence the inter-

9

Page 11 of 37

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

cepts β0,ki
in (1) are equal to the average growth rates of the house prices in the latent

classes ki for ki = 1, . . . , K.

3.2 Estimation

The parameters in our model (1) with (3) can be estimated as outlined in Paap et al.

(2005), using the EM algorithm of Dempster et al. (1977). This makes use of the full data

log-likelihood function, that is, the joint density of the house prices and the latent classes

ki, which we specify in detail below. The EM algorithm is an iterative maximization

algorithm, which alternates between two steps until convergence occurs. In the first

step (E-step) we compute the expected value of the full data log-likelihood function with

respect to the latent classes ki, i = 1, . . . , N , given the house prices and the current values

of the model parameters. In the second step (M-step) we maximize the expected value

of the full data log-likelihood function with respect to the model parameters. As the

model given the class memberships can be written as a standard linear regression, the

M-step amounts to a series of (weighted) regressions. As the EM algorithm maximizes

the log-likelihood function, the resulting estimates of the model parameters are equal to

the maximum likelihood [ML] estimates. We can therefore compute standard errors of

the estimates using the second derivative of the log-likelihood function.

Note that due to the presence of the term β1,ki
[log(pi,t−1) + γki

log(yt−1)] the model

in (1) is actually nonlinear in the parameters. To deal with this issue, we follow Boswijk

(1994) and rewrite the model as

∆ log(pi,t) = β0,ki
+ β1,ki

log(pi,t−1) + β2,ki
log(yt−1) + ηi,t, (4)

where β2,ki
= β1,ki

γki
. Note that (4) is linear in the parameters, which facilitates estima-

tion. The ML estimate γ̂ki
can be obtained from the ML estimates of β1,ki

and β2,ki
as

β̂2,ki
/β̂1,ki

.

10
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The full data likelihood function, that is, the joint density of P = {{∆ log pi,t}T
t=1}N

i=1

and K = {ki}N
i=1 is given by

l(P ,K; θ) =
N∏

i=1

(
K∏

k=1

(
πk

T∏
t=1

1

σi

φ(εk
i,t/σi)

)I[ki=k])
, (5)

where φ(·) denotes the probability density function of a standard normal random variable

and θ is a vector containing all model parameters. The error term at time t for region i

belonging to cluster k is defined as

εk
i,t = ∆ log pi,t − x′i,tβk − w′

tαi, (6)

where xi,t is the (3 × 1) vector with the regressors appearing in (4) and βk contains

the corresponding parameters for cluster k. Similarly, wt is the (3 × 1) vector with

common factors in the specification for ηi,t in (3), and αi = (α1,i, α2,i, α3,i)
′ containing the

parameters for region i.

The expectation of the full data log-likelihood function with respect to K|P , θ [E-step]

is given by

L(P ; θ) =
N∑

i=1

(
K∑

k=1

π̂i,k

(
ln πk +

T∑
t=1

−1

2
ln σ2

i −
1

2
ln 2π − (εk

i,t)
2

2σ2
i

))
, (7)

where π̂i,k denotes the conditional probability that region i belongs to class k. This is

equal to

π̂i,k =
πk

∏T
t=1

1
σi

φ
(
εk

i,t/σi

)
∑K

l=1 πl

∏T
t=1

1
σi

φ
(
εl

i,t/σi

) . (8)

In the M-step, we need to maximize (7) with respect to the parameters βk, πk, k =

1, . . . , K and αi, σ2
i for i = 1, . . . , N . We perform this maximization step sequentially.

First, we optimize over βk keeping the other parameters fixed. This can be done by a

simple weighted regression of ∆ log(pi,t) − w′
tαi on xi,t with weights given by

√
π̂i,k/σi.
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Clearly, we want regions with a larger probability of belonging to class k to have a larger

weight in estimating βk. At the same time, regions with a larger standard deviation of

the error term σi should get a smaller weight, as their house prices contain relatively more

noise and less information about βk. Each βk, k = 1, . . . , K is estimated in a separate

weighted regression.

Second, we optimize the log-likelihood function over αi for i = 1, . . . , N . We do

this by regressing
∑K

k=1 π̂i,k [∆ log(pi,t)− xi,tβk] on wt. The dependent variable in this

regression is the conditional expectation of ηi,t. We perform these regressions for each

region separately.

Next, the new estimate of σ2
i is given by

σ2
i =

1

T

T∑
t=1

K∑

k=1

π̂i,k

(
εk

i,t

)2
(9)

for i = 1, . . . , N . Finally, the mixing proportions are updated by averaging the conditional

class membership probabilities, that is,

πk =
1

N

N∑
i=1

π̂i,k (10)

for k = 1, . . . , K.

As we maximize over the parameters sequentially in the M-step, we do not reach the

optimum of the expected full data log-likelihood function (7) in each iteration of the EM-

algorithm. We can repeat the individual update steps until convergence, but this is not

necessary. Indeed, Meng and Rubin (1993) have shown that an increase in the full-data

log-likelihood function in the M-step is sufficient for the EM algorithm to converge to the

maximum of the log-likelihood function.

Determining the appropriate number of latent classes is not straightforward. We

cannot use a standard statistical test, due to the Davies (1977) problem of unidentified

12
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nuisance parameters under the null hypothesis. The usual approach is using a criterion

function balancing the fit and the complexity of the model, where the model fit is mea-

sured by the value of the log-likelihood function while the number of model parameters

provides a measure of complexity. The most well-known criteria are the Akaike infor-

mation criterion [AIC] and the Bayesian information criterion [BIC]. Bozdogan (1994)

suggests that the AIC should have a penalty factor of 3 instead of 2 in the case of mixture

models. Indeed, Andrews and Currim (2003) show that this AIC-3 criterion outperforms

other criteria. Bozdogan (1987) modifies the AIC into the so-called consistent Akaike in-

formation criterion [CAIC], which is almost equal to BIC. He shows that when the sample

size is large the CAIC and BIC criteria perform better than AIC. We will consider all

four criteria below.

4 Empirical results

In this section we discuss the results of applying our model to the regional house price

data for the Netherlands described in Section 2. The effective sample period ranges from

1985Q3 (because we have ∆ log(pt−1) = log(pt−1) − log(pt−2) in our model) to 2005Q2

(because we only have real GDP data until 2005Q2), giving T = 80 data points in the time

series dimension. To obtain a first impression of the extent of similarities across regions,

we start by estimating a fully heterogenous model allowing for different parameters for

each region. Next, we provide estimation results for the model with a limited number

of latent classes. Finally, we consider impulse-response functions for three interesting

scenarios to provide further interpretation of the model.

4.1 A fully heterogenous model

We first estimate the parameters in a fully heterogenous model, that is, we estimate the

model in (1) with (3) allowing for different parameters for each individual region. This

13
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essentially is a model with K=76 latent classes, in which case each region forms a separate

class.

[Table 2 about here.]

[Figure 4 about here.]

The mean, minimum and maximum of each parameter of the 76 regions can be found

in Table 2. Figure 4 displays the histograms for the 76 estimated values for each of the

parameters βj, j = 0, 1, and γ in (1). The top panel shows the intercepts, β0, which

equal the quarterly growth rates. These are all positive, reflecting the upward trend in

the house prices, and range between 0.6% and 1.3% per quarter. The middle panel of

Figure 4 shows the results for the adjustment parameter for the cointegration term with

GDP. We find some positive values, which is not as expected, as these imply divergence

between GDP and the house prices in that region. Finally, the histogram in the bottom

panel shows the parameter γ in the cointegration relationship with GDP, which we expect

to be negative as we expect the house prices and GDP to move in the same direction.

Table 2 also shows the results for the α parameters from (3). Again we find that they

show some counterintuitive signs and a relatively large spread.

We can see from these results that some form of aggregation may be useful, as we now

get a wide variety of parameter estimates, with sometimes quite implausible results. At

the same time, this variety also suggests that we should perhaps better not restrict the

parameters to be the same across all regions. Hence, it may be optimal to allow for a

limited number of different clusters.

4.2 A model with latent classes

[Table 3 about here.]

14

Page 16 of 37

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

A major issue for successful application of the latent-class panel time series model is of

course determining the appropriate number of latent classes. As discussed in Section 3.2,

we consider four different information criteria for this purpose. Table 3 shows the values

of these criteria for models with one to four and 76 classes. For all criteria, we see that

going from a homogenous model (with a single class) to two classes amounts to a relatively

large improvement in the balance of model fit and complexity. After this, adding more

classes does not improve any of the criteria. We therefore focus on the model with two

latent classes.

[Table 4 about here.]

The estimation results for the model with two latent classes are given in Table 4.

Additionally, Table 5 gives the results for a series of Wald tests which we use to examine

whether the parameters for the different classes are significantly different from each other.

The estimation results show that the regions in the two latent classes do indeed differ from

each other in several important respects. First, the estimated intercepts show that the

average growth rate in class 1 is slightly higher than in class 21. This difference is not

significant though, as can be seen from the second row of Table 5. The average growth

rate in class 1 is equal to 1.2% per quarter, or 4.8% annually, while the house prices in

class 2 grow with 1.1% per quarter, or 4.4% annually.

Second, examining the cointegration relationship with GDP, we find that class 1 has

a significantly larger adjustment parameter. Thus, the house prices in regions belonging

to cluster 1 react faster to changes in GDP than the house prices in class 2.

[Table 5 about here.]

Finally, The cointegration relationship between house prices and GDP itself, is also

significantly different across the classes. For class 1, it is (1, −1.89), meaning that in the

1Recall that we demeaned all other variables the model, so the intercepts represent the average growth
rates.
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long run the house prices in the regions in this cluster grow almost twice as fast as GDP.

In class 2 the cointegration relationship is (1, −1.68). These long term relationships may

not be very plausible, however, as we could already see from Figure 1, they are a good

description of the development of house prices and GDP in the sample period.

[Table 6 about here.]

As we showed in Section 3, the cointegration relationship of each region with GDP

entails that the regions are also cointegrated among themselves. The long term parameter

is only influenced by the γ parameters of the two regions involved, and thus only depends

on the class membership of the two regions. Table 6 shows these cointegration relation-

ships between the house prices of regions from any of the two clusters. First, we see that

two regions that belong to the same cluster are (1,−1) cointegrated. This is actually very

intuitive, as they have follow the same trend relative to the trend of GDP, they must

follow the exact same trend themselves. Next we find that a region from cluster 1 is

(1,−1.12) cointegrated with a region from cluster 2. This corresponds with the slightly

higher growth rate in class 1.

The parameters in (3) are region-specific, and full estimation results are not reported

to save space. Only 11% of the α1,i parameters is significant, suggesting that the impact

of GDP on the house prices is mostly captured by the cointegration term. Moreover, only

22% has the expected positive sign. The α2,i parameters are mostly negative, and only one

region has an (insignificant) positive value. Furthermore, for 63% of the regions the α2,i

parameter is significant at the 5% level, indicating that the interest rate indeed influences

the house prices in the expected direction. The α3,i parameters, relating the growth of

the house price in a region to growth of the average house price in the Netherlands in the

previous quarter, is positive for 88% of the regions, but only significant for 42% of these

regions.
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The latent classes

[Figure 5 about here.]

The parameter estimation results obviously become more interesting if we know which

regions belong to each of the two classes. Therefore, we compute the conditional class

membership probabilities using (8). The resulting classification of the regions is shown

in Figure 5. Regions are colored based on π̂i,1, the probability of belonging to class 1.

Regions are colored in four shades of grey. For the regions that are colored in the lightest

shade it holds that π̂i,1 ≤ 0.2. For regions colored in subsequently darker shades of grey

it holds that 0.2 < π̂i,1 ≤ 0.4, 0.4 < π̂i,1 ≤ 0.6, or 0.6 < π̂i,1 ≤ 0.8. There were no

regions with π̂i,1 > 0.8. It can be seen that most regions are either very dark or very light,

suggesting that the classification is very clear for most regions. In fact, the average value

of max(π̂i,1, π̂i,2) is equal to 0.83.

We find that class 1 contains mainly rural regions surrounding the big cities in the

Netherlands. The regions in this class mainly cover parts of Noord-Brabant and the

Veluwe. Even though the East belongs almost completely to class 1, the larger cities of

the East, like Zwolle, Almelo, Hengelo, Enschede, and Arnhem are part of class 2.

Class 2 contains different types of regions. First, it contains many large cities in

different parts of the country, like Breda and Groningen, as well as almost all of the

regions in the Randstad, the densely populated western part of the country. At the same

time some rural regions, like Zeeland, Zuid-Limburg and regions in the North belong to

this class with high probability. Note that these rural regions are not as close to the

Randstad as most of those in class 1.

A possible explanation for our results is the increased number of commuters that live

in the regions belonging to class 1 and who work in the large western cities. If the number

of commuters increases, it is likely that they move to regions in cluster 1, as these are still

at traveling distance from the Randstad. This development has two consequences for the
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regions in class 1. First, the average income in these regions is likely to increase, as the

individuals who move away from the cities are relatively wealthy. The second consequence

is an increase of housing quality in these regions, as wealthier people leaving the cities

will increase the demand for more luxurious houses.

These potential structural changes within the regions of cluster 1 are consistent with

all of our findings. First, the increase in housing quality will result in a larger increase

in the average house prices in class 1 as compared to class 2. Our second finding is that

house prices in these regions react faster to changes in GDP. This may be caused by tha

fact that the increase of their income may influence the decision of these individuals to

move and start commuting. Our last and most striking finding is that the house prices

in class 1 increase almost twice as fast as GDP. Note however that the increase is not

corrected for higher housing quality.

4.3 Impulse-response functions

To give further interpretation to our estimation results we compute impulse-response

functions for two interesting scenarios, each occurring in the second quarter of 2005. In

the first scenario real GDP receives a shock of 1%. In the second scenario real GDP

stays the same, but the interest rate receives a shock of 1%-point. We forecast the house

prices for each of the scenarios and compare with a no-change scenario, for the subsequent

three-year period from 2005Q3 until 2008Q2.

In order to compute the impulse responses up to 12 quarters ahead, we also need

forecasts for GDP and the interest rate, as these variables also affect house prices, see

(1). Here we assume that the interest rate stays the same during the forecast period. In

scenario 3, the interest rate is higher, but still assumed to be constant over the whole

forecast period. To obtain forecasts for GDP we construct a simple AR(q) model with

intercept for ∆ log yt. We choose q based on out-of-sample forecasting performance, where
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we use the last 3 years as a hold-out sample. It turns out that q = 8 gives the best

performance.

[Figure 6 about here.]

Figure 6 shows the impulse-response functions of the log house prices with respect

to the log of GDP. The y-axis gives the relative change in house prices between the two

scenarios, that is, a value of 0.01 means that the house price is 1% higher than the

reference forecast. We calculate the impulse response functions for each of the 76 regions.

We then aggregate these to average responses in the two clusters.

We find that the effect of an increase in GDP is initially negative in both clusters,

which is caused by the many negative α1,i parameter in both clusters. However, this

negative effect lasts only one quarter, and after that the house prices are higher compared

to the reference forecasts. As expected, we find that the house prices in cluster 1 react

both faster and more on the change in GDP.

[Figure 7 about here.]

In the second scenario, the interest rate receives a shock, and increases from 2.06% to

3.06%. We find that the house prices are falling. After three years the house prices are

about 2% lower in lower in cluster 2 and almost 3% lower in cluster 1, as compared to

the reference forecasts.

5 Conclusions

In this paper we developed a latent-class panel time series model for describing several

key characteristics of regional house prices in the Netherlands between 1985 and 2005. An

important feature of the model is that we cluster the regions in separate classes, where

the price dynamics of house prices in regions within the same class are similar, while they

19

Page 21 of 37

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

are different across the classes. For the 76 regions in the Netherlands we find that two

classes are sufficient. The first class contains mainly rural regions close to large cities.

The second class contains both the larger cities and some more remote rural regions.

The house prices in regions in the first class are characterized by slightly higher average

growth rates, and stronger and faster reactions to changes in GDP. These findings may

be caused by the increased number of commuters. Indeed, the number of people working

in the larger cities, but living in the regions of class 1, has increased substantially during

our sample period.

Our model allows for the analysis of rather detailed data. To fully exploit its properties

one would want to analyze even further disaggregated data. The collection of such more

detailed series is left to further research. Another issue for further research is to make the

class probabilities dependent on certain explanatory variables.
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A Regions by number

1 Noordoost-Groningen 27 Kop v. Noord-Holland 52 Dordrecht
2 Slochteren +s 28 Noord-Kennemerland 53 Gorinchem
3 Grootegast +s 29 West-Friesland 54 Culemborg/Dodewaard
4 Stad Groningen +s 30 Midden-Kennemerland 55 Ede +s
5 Zuidoost-Groningen 31 Waterland 56 Arnhem
6 Noord-Drenthe 32 Zaanstreek 57 Duiven/Westervoort
7 Opsterland 33 Zuid-Kennemerland 58 Elst +s
8 Oost-Friesland 34 Amsterdam 59 Nijmegen
9 Noordwest-Friesland 35 De Bollenstreek 60 Noordoost-Brabant

10 Zuidwest-Friesland 36 Haarlemmermeer 61 Uden +s
11 Zuid-Friesland 37 Almere 62 Oss +s
12 Zuidwest-Drenthe 38 Het Gooi 63 Den Bosch
13 Zuidoost-Drenthe 39 Amersfoort 64 Waalwijk/Drunen
14 Hardenberg +s 40 Barneveld 65 Zeeuwse Eilanden
15 Kop van Overijssel 41 Bunnik/Zeist 66 Zeeuws-Vlaanderen
16 Zwolle +s 42 Utrecht 67 Bergen op Zoom +s
17 Raalte +s 43 Woerden 68 West-Brabant
18 Almelo Tubbergen 44 Alphen 69 Breda
19 Hengelo Enschede 45 Leiden 70 Tilburg/Oirschot
20 Ruurlo Eibergen 46 Den Haag 71 Eindhoven +s
21 Doetinchem +s 47 Gouda 72 Zuidoost-Brabant
22 Zutphen +s 48 Delft +s 73 Noord-Limburg
23 Apeldoorn +s 49 Rotterdam 74 Weert +s
24 Nunspeet +s 50 Westland 75 Roermond +s
25 Lelystad 51 Brielle/Goeree 76 Zuid-Limburg
26 Den Helder/Texel
Note: +s means including surrounding area.
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Figure 1: Log house prices for 3 distinct regions, and log GDP.
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Figure 2: Multidimensional scaling plot of the regions, based on the correlations of the
first differences of the log house prices over the period 1985Q1-2005Q4.
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Figure 3: Multidimensional scaling plot of the regions, based on the correlations of the
residuals of the ADF regressions for the log house prices over the period 1985Q1-2005Q4.
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Figure 4: Histograms of the estimated values of the parameters βj, j = 0, 1, and γ in (1)
in the fully heterogenous model with 76 classes.
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Figure 5: Clustering of regions. Regions with a high probability of belonging to class 1
are colored dark, regions with a low probability of belonging to class 1 are colored lighter.
The numbers inside the regions correspond to the ones in Appendix A.
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Figure 6: Impulse-response function of log(pi,t) with respect to log(yt) for 3 regions.
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Figure 7: Impulse-response function of log(pi,t) with respect to log(It) for 3 regions.
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Table 1: Results of the CD test, the LMadj

test and three different tests for a unit root
for two series (boldface numbers indicate re-
jection of the null hypothesis).

Test Series ∆[log(pi,t)] log(pi,t)− log(p34,t)
CDa 92.0 144.2
LMadj

a 60.4 175.1

LLCa -61.2 2.0
IPSa -55.9 1.9
CIPSb -8.9 -3.5
a Test statistic is asymptotically distributed as nor-

mal
b Tables with critical values for various values for N

and T are given by Pesaran (2007), in the presence
of an intercept and a trend in the CADF equations
and for N = T = 70 the critical value at the 95%-
level is −2.58, for N = T = 100 it is −2.56.
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Table 2: Results for the fully heterogenous
model.
Parameter Mean Minimum Maximum
β0 0.011 0.006 0.013
β1 -0.363 -0.692 0.125
γ -0.591 -7.601 2.127
α1 -0.271 -1.851 0.703
α2 -0.004 -0.013 0.004
α3 0.277 -0.340 0.739
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Table 3: Criteria values for different numbers of latent
classes (boldface numbers indicate the optimum).

Criterion \ K 1 2 3 4 76
AIC -3.937 -4.059 -4.058 -4.057 -3.962
AIC-3 -3.887 -4.008 -4.006 -4.004 -3.862
BIC -3.598 -3.716 -3.710 -3.704 -3.292
CAIC -3.584 -3.665 -3.658 -3.652 -3.192
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Table 4: Estimation results for
K = 2 latent classes.
Class Estimate Standard error

intercept β0,k

1 0.012 0.001
2 0.011 0.000

adjustment parameter GDP β1,k

1 -0.178 0.019
2 -0.131 0.007

cointegration relationship GDP γk

1 -1.888 0.083
2 -1.684 0.035

mixing proportions πk

1 0.202 0.159
2 0.798 .
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Table 5: Wald tests for equality
of the parameters across the two
classes in (1).

Restriction Wald statistic p-value
β0,1 = β0,2 0.61 0.41
β1,1 = β1,2 7.10 0.01
γ1 = γ2 6.90 0.01
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Table 6: Cointegration rela-
tionships between the regions
from clusters i and j.

i \ j 1 2
1 (1, -1) (1, -1.12)
2 (1, -0.89) (1, -1))
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