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Abstract

We explore the determinants of usage of six different types of health

care services, using the Medical Expenditure Panel Survey data, years

1996-2000. We apply a number of models for univariate count data,

including semiparametric, semi-nonparametric and finite mixturemod-

els. We find that the complexity of the model that is required to fit the

data well depends upon the way in which the data is pooled across

sexes and over time, and upon the characteristics of the usage mea-

sure. Pooling across time and sexes is almost always favored, but

when more heterogeneous data is pooled it is often the case that a

more complex statistical model is required.
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1 Introduction

The demand for health care services may often be measured as the num-

ber of times that some event, for example, a doctor visit, occurs in a given

time period. Such variables, defined on the natural numbers, are referred

to as count data. There have been many recent advances in the econo-

metric analysis of count data, especially the development of flexible den-

sity functions for univariate count data. In many cases, these papers in-

clude an empirical analysis of data on demand for health care. Examples

of such contributions are Deb and Trivedi (1997), who investigate finite

mixture models; Cameron and Johansson (1997), who adapt the polyno-

mial reshaping technique of Gallant and Nychka (1987) to count data, and

Gurmu (1997), who uses a flexible density to model latent heterogeneity.

All of these approaches define densities that allow for modeling frequently

observed features of the data, such as excess zeros and overdispersion, as

well as more complicated departures from the behavior implied by stan-

dard models such as the Poisson and negative binomial.

At the same time, new sources of data have become available. One of

these is the Medical Expenditure Panel Survey (MEPS). The MEPS data is

a rich source of recent data on demand for health care, insurance coverage,

and related topics. This paper applies many of the recently developed sta-

tistical models for univariate count data to theMEPS data, years 1996-2000.

This allows comparison of models using a uniform, high quality data set.

From this we will be able to determine which models are most successful in

capturing the features of six different measures of demand for health care

services1. Since the six measures exhibit substantially different character-

1These are office-based doctor visits (OBDV), outpatient doctor visits (OPV), inpatient
visits (IPV), emergency room visits (ERV), dentist visits (DV), and number of prescription
drugs taken (RX), all measures on an annual basis.
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istics, they form an interesting test bed for the statistical models, at least

within the general area of demand for health care. We seek to learn which

of the available models seem most useful for analysis of data similar to the

usage measures in the MEPS data. We also provide information about the

usage measures in the MEPS data, upon which further research can build.

Guo and Trivedi (2002) provide a similar, though somewhat less extensive

comparison of models, using two data sets on counts of patents. Within

the literature on demand for health care we are not aware of any papers

that provide a similar comparison of models. Beyond the comparison of

the statistical models, we also investigate the stability of parameters over

time and across sexes, and we present brief estimation results for the most

favored models.

Our criterion for comparison is the consistent Akaike information cri-

terion (CAIC). The CAIC is a penalized goodness of fit criterion that is de-

creasing in the value of the likelihood function and increasing in the num-

ber of parameters. Lower CAIC values correspond to models that offer

a good fit to the data without using an excessive number of parameters.

While one might be interested in other criteria such as out-of-sample fit, or

marginal mean effects, we limit our attention to the CAIC. This is for two

reasons. The first is that we believe that the CAIC provides more informa-

tion, in a paper of limited length, than does any other criterion. Inclusion

of other information such as out-of-sample fits would multiply the already

large amount of tabular information contained in this paper. The likeli-

hood criterion is probably the most parsimonious summary information

about how well a model fits. A model that dominates another in terms of

likelihoodmust on average fit the observed counts (0,1, etc.) better than the

other model, in spite of the fact that the second model may better fit a par-
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ticular count, such as the observed number of zeros. If too many extra pa-

rameters are needed to improve fits to certain counts, the CAIC penalizes

the likelihood value to control for this, thus avoiding overparameterized

models. Features of interest such as conditional moments and their deriva-

tives are functions of the estimated probabilities of counts. The CAIC picks

the model that best assigns probabilities to the counts observed in the data,

in a certain sense. The second reason that we focus on the CAIC and not

on features such as fitted marginal effects is that we do not know the true

marginal effects, so comparisons across models are difficult to evaluate. If

we were doing Monte Carlo work, it would certainly be of interest to look

at criteria of this sort. However, with real sample data as is used here, we

believe that the fittedmarginal effects of amodel that is strongly dominated

by another in terms of the CAIC are simply not of much interest, since the

model is almost certainly very poorly specified. When a model is poorly

specified, the fitted marginal effects will in general be biased and incon-

sistent. Our focus on the CAIC is admittedly narrow, but it is an attempt

to provided as much useful information as is possible in a limited number

of pages. Future work could explore other features of interest in a Monte

Carlo context, focusing on the models that this paper identifies as the most

promising according to the penalized goodness of fit criterion.

To summarize the main results, we find that some of the newer mod-

els are useful additions to the toolbox for analysis of health care usage, but

others are almost always dominated. The complexity of the model that is

favored depends upon the type of data that is analyzed. For variables that

have relatively high means, significant overdispersion, and relatively few

zeros, relatively complex models are needed to fit the data well. For other

variables such as the number of inpatient hospitalizations, the simple neg-
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ative binomial density is perfectly adequate. Another result is that pooling

data across time and sexes leads to a parsimonious model that still fits the

data as well as separate models that allow all parameters to vary. Pooling

should be done when the data allow it. When more heterogeneous data is

pooled, it is more likely that a relatively complex statistical model will be

required. With relatively homogeneous data, the simple negative binomial

statistical model often fits well.

2 Statisticalmodels for count data dependent variables

Data on health care demand often exhibits overdispersion, which means

that the ratio of the conditional variance to the conditional mean is greater

than one (Cameron and Trivedi, 1986; Pohlmeier and Uhlrich, 1995). An-

other common characteristic is thatmany zeros are observed, possiblymore

than can be accounted for by simple count densities (Pohlmeier and Uhlrich,

1995; Gerdtham, 1997). Factors such as latent variables or latent popula-

tion groups could induce more marked departures from standard densi-

ties, leading to bimodality or especially fat right tails, for example. In this

section we briefly survey some of the newer univariate count data models

that can allow for such departures. Before surveying the recent models,

we briefly discuss the more standard models upon which the newer ap-

proaches build.

Poisson (POISSON)

The Poisson density for a count random variable Y is

fY(y|λ) =
e−λλy

y!
.
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To allow for covariates, λ is usually parameterized as λ = exβ. The Pois-

son density implies that the conditional mean and the conditional variance

of y are both equal to λ. Since data on health care demand usually exhibit

overdispersion and possibly excess zeros, the basic Poissonmodel will usu-

ally not be suitable for analyzing demand for health care.

Negative binomial (NB)

If the Poisson mean contains a latent component, marginalization, under

some assumptions, will lead to a negative binomial density (see for ex-

ample Cameron and Trivedi, 1998, pp. 100-102) . The negative binomial

density may be written as

fY(y|φ) =
Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(

ψ

ψ + λ

)ψ (

λ

ψ + λ

)y

(1)

where φ = {λ,ψ}, λ > 0 and ψ > 0.2 When ψ = λ/α we have the negative

binomial-I model (NB-I), and ψ = 1/α gives the negative binomial-II (NB-

II) model. Though other versions exist, we limit attention to these in this

paper. The moment generating function of the NB density, which is needed

below, is

MY(t) = ψψ
(

λ − etλ + ψ
)−ψ

. (2)

For the NB-I density, V(Y) = λ + αλ. In the case of the NB-II model, we

have V(Y) = λ + αλ2. For both forms, E(Y) = λ. Thus, both forms capture

overdispersion, with the NB-II model allowing for a more extreme form.

Aswith the Poissonmodels, the usual means of incorporating conditioning

variables is the parameterization λ = exβ. When this is done, the previous

2Among the numerous examples of application of the NB model to health care demand
are Cameron et al. (1988), Pohlmeier and Ulrich (1995), Geil et al. (1997) and Dismuke and
Guimares (2002).
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formulae for moment will give the conditional moments.

Hurdle negative binomial (HNB)

As noted by Pohlmeier and Uhlrich (1995) and Gerdtham (1997), health

care demand may exhibit excess zeros with respect to what a NB model

can accommodate. This leads us to consider the hurdle version of the NB

model. The hurdle3 negative binomial model first models the zero vs. posi-

tive outcome using a probit or similar model. Then, conditional on positive

visits, the count follows a zero-truncated negative binomial density. Differ-

ent parameter vectors are associated with the binary and truncated densi-

ties. Hurdle count models were introduced by Cragg (1971) and Mullahy

(1986), who also presented “with-zeros” (also known as “zero-inflated”)

models. Here we present only the hurdle model, since it seems to have

been used more widely than the “with-zeros” model for analysis of data

on on usage of health care services.4 We follow Deb and Trivedi (1997),

who use a NB model to parameterize the Bernoulli trial. For a NB random

variable,

Pr(Y = 0) = fY(0, φh) =

(

ψh

ψh + λh

)ψh

Pr(Y > 0) = 1− Pr(Y = 0),

where the parameter of the hurdle process is φh = {λh,ψh}. To achieve

identification one can set αh = 1 when parameterizing ψh, which may be

done as with the NB model. The above probabilities are used to estimate

the binary 0/1 hurdle process. Then, for the observations where visits are

3Hurdle models are also known as “two-part” models.
4Examples of applications of the HNB model to health care demand include Pohlmeier

and Ulrich (1995), Gerdtham (1997), Deb and Trivedi (1997) and Yoshida and Kim (2008).
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positive, a truncated NB density, with a different parameter φ = {λ,ψ} is

estimated. This density is

fY(y, φ|y > 0) =
fY(y, φ)

1−
(

ψ
ψ+λ

)ψ

=
Γ(y + ψ)

Γ(y + 1)Γ(ψ)

[

(

ψ

ψ + λ

)ψ

− 1

]−1
(

λ

ψ + λ

)y

Since the hurdle and truncated components of the overall density for Y

share no parameters, they may be estimated separately, which is computa-

tionally less burdensome than estimating the overall model. The expecta-

tion of Y is

E(Y) =

[

1−

(

ψh

ψh + λh

)ψh

] [

1−

(

ψ

ψ + λ

)ψ
]−1

λ.

NB-I and NB-II versions that allow for conditioning variables follow from

the appropriate parameterizations of ψh,ψ,λh and λ.

The HNB model could possibly be considered the most sophisticated

attempt to deal with the issues of excess zeros and overdispersion in the

modeling of health care demand count data, up until 1996. Shortly after,

the following models were introduced. All of these models can account for

excess zeros and overdispersion, so they can deal with the issues the HNB

model was designed to address. Some of the models are also more flexible

than the HNB model, even though they may be more parsimonious.

2.1 A semiparametric approach (PSP, HPSP)

A semiparametric approach to modeling count data has been developed

by Gurmu and Trivedi (1996), Gurmu (1997) and Gurmu et al. (1999). This

approach introduces unobserved heterogeneity in a Poisson model, and al-
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lows the unobserved heterogeneity to follow a semi-nonparametric density.

This is conceptually similar to the way that a negative binomial model is

obtained as a Poisson-gamma mixture density, but is more flexible in that

the latent variable is not restricted to follow a one parameter gamma den-

sity. The semi-nonparametric density of the latent variable is closely related

to that proposed by Gallant and Nychka (1987). The difference is that La-

guerre polynomials are used instead of Hermite polynomials. Gurmu et al.

(1999) show that, underweak assumptions, the Laguerre expansion density

can consistently estimate densities of unknown form. As such, the mixture

density is semiparametric, since the Poisson specification is parametric but

the modelization of the heterogeneity is not.

Gurmu and Trivedi (1996) found that the basic semiparametric approach

of Gurmu et al. (1999)5 did not fit data well - specifically, excess zeros were

a problem. To overcome this problem, Gurmu (1997) proposed a hurdle

version of the semiparametric model.

The original semiparametric model is based upon an infinite mixture of

a Poisson random variable and an independent random variable V which

captures unobserved heterogeneity. The assumption is that the Poisson

mean is random, so that E(Y|V = v) = λv. Integrating out the hetero-

geneity, one obtains the marginal density:

fY(y,λ, φ) =
∫

e−λv(λv)y

y!
gV(v, φ)dv (3)

=
λy

y!
M

y
V(−λ) (4)

where M
y
V(−λ) is the yth order derivative of the moment generating func-

tion of V, evaluated at−λ. M0
V(−λ) = MV(−λ), is the moment generating

5The 1999 paper is based upon a 1996 working paper, which explains the dates of these
references.
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function itself.

To model the density gV(v, φ) flexibly, Gurmu et al. (1999) use a nor-

malized Laguerre polynomial expansion around a gamma baseline density.

The gamma baseline density is

f (v, φ) =

(

vα−1βα

Γ(α)
e−βv

)

where φ = (α, β). The semi-nonparametric density for v is

gV(v|φ,γ) =

[

hp (y,γ)
]2

f (v|φ)

ηp(φ,γ)

where

hp (y,γ) =
p

∑
k=0

γkPk(v), (5)

γ = (1,γ1,γ2, ...,γp), and Pk(v) is the kth order Laguerre polynomial. The

term ηp(φ,γ) = γ′γ is the normalization factor that makes the density sum

to one. The restriction γ0 = 1 is used to achieve identification, since the

density is homogeneous in γ. This density is semi-nonparametric in the

sense that, under weak assumptions, there exist (φ,γ) such that a density

of unknown form can be approximated arbitrarily well as p goes to infinity.

Gurmu et al. (1999) provide the consistency proof, which is similar to that

of Gallant and Nychka (1987).

Next, they are able to obtain a closed form for M
y
V(−λ), which upon

substitution into equation 4 yields the semiparametric density for the count

random variable Y. In estimation, a restriction is imposed such that E(V) =

1, which leads to E(Y) = λ. In the course of the empirical work reported

below, we have found that the model is poorly identified without this re-

striction, and that it is very difficult to obtain convergence if it is not im-
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posed. The results we report always impose the restriction. We will refer

to this model as the Poisson semiparametric model (PSP). To incorporate

conditioning variables, the Poisson-style parameterization λ = exβ is used,

so that E(Y|x) = exp(xβ).

To extend this to the hurdle case, Gurmu (1997) allows a first PSPmodel

to determinewhether the zero/positive hurdle is crossed, and a second PSP

model is used to model the positives. For the hurdle crossing process, the

relevant probabilities are

Pr(Y = 0) = MV(−λh)

Pr(Y > 0) = 1− Pr(Y = 0).

The truncated version of the PSP density is

fY(y|y > 0,λ, φ) =

λy

y! M
y
V(−λ)

1− MV(−λ)
.

Just as in the case of the HNBmodel, the binary and truncated components

of the hurdle Poisson semiparametric (HPSP) model may be estimated sep-

arately. Notationally, we will let PSP(k) or HPSP(k) refer to a model that

uses a k-order expansion.

2.2 Semi-nonparametric approaches (PSNP, NBSNP)

Cameron and Johansson (1997) directly adapt Gallant and Nychka’s (1987)

semi-nonparametric density to the count data case. They reshape a Poisson

baseline density using a squared polynomial, and then normalize the re-

sult to sum to one. We shall refer to this as the Poisson semi-nonparametric

(PSNP) approach, though there has been no formal proof of the condi-
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tions under which the density has nonparametric properties.6 The PSP and

HPSP models embed the semi-nonparametric density in a parametric den-

sity to obtain a semiparametric model, after marginalization of the latent

variable. As such, one expects that the approach of Cameron and Johans-

son should be able to capture more extreme departures from the baseline

model, though perhaps at the cost of needing to estimate many parameters.

For example, the PSNP model can accommodate bimodal densities, while

the PSP density cannot.

The PSNP density is

fY(y|λ,γ) =

[

hp (y|γ)
]2

ηp(φ,γ)

e−λλy

y!
, (6)

where

hp (y|γ) =
p

∑
k=0

γky
k, (7)

and ηp(φ,γ) is a normalizing factor to make the density sum to one. The

normalizing factor is

ηp(λ,γ) =
∞

∑
y=0

[

hp (y|γ)
]2 e−λλy

y!
.

Cameron and Johansson show that this has the closed form

ηp(λ,γ) =
p

∑
k=0

p

∑
l=0

γkγlmk+l (8)

where mr(λ) is the rth noncentral moment of the Poisson density. Because

6The consistency proofs of Gallant and Nychka (1987) and Gurmu et al. (1999) are for
continuous random variables. While it seems reasonable to expect that the proofs could be
adapted to discrete random variables, this has not yet been done, to our knowledge.
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the term
[

hp (y|γ)
]2

ηp(λ,γ)

that reshapes the baseline density in equation 6 is a homogeneous function

of γ, it is necessary to impose a normalization to achieve identification: γ0

is set to 1. The moments of Y may be calculated using the closed form ex-

pression in Cameron and Johansson’s equation 4. The typical Poisson-style

parameterization of themean is used to incorporate conditioning variables.

Since theNBmodel usually fits health care data dramatically better than

does the Poisson model, using only one more parameter, one might sus-

pect that changing the baseline model to the NB might allow the model

to fit well using fewer parameters. What we shall refer to as the negative

binomial semi-nonparametric (NBSNP) model is obtained by making this

change. The density is

fY(y|φ,γ) =

[

hp (y|γ)
]2

ηp(φ,γ)

Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(

ψ

ψ + λ

)ψ (

λ

ψ + λ

)y

,

where hp (y|γ) and ηp(φ,γ) are defined as in equations 7 and 8, respec-

tively, and the raw moments mr(λ,ψ) are obtained from equation 2. The

moments of Y are again obtained from Cameron and Johannson’s equation

4, substituting the NB raw moments for those of the Poisson density.7 The

model can use either the NB-I or the NB-II as the baseline model. We in-

vestigate both versions in what follows. Notationally, let NBSNP-I(3), for

example, indicate the NBSNP model using a NB-I baseline density, and a

3rd order polynomial expansion. To our knowledge, this is the first paper

that applies this model to data on health care demand. Guo and Trivedi

(2002) apply a version of this model based upon an NB-II base density to

7We used MuPAD version 2.51 to perform these calculations.
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patent data.

2.3 A finite mixture approach (MNB, CMNB)

The finite mixture approach to fitting data on health care demand was in-

troduced by Deb and Trivedi (1997). The mixture approach can be inter-

preted as allowing for latent groups in the population. The data for each

group may be characterized by a parameter vector. Since the group to

which an individual belongs is not observed, a mixing probability is used

to classify individuals probabilistically. There may be two or more latent

groups. The mixture approach has been also applied by Gerdtham and

Trivedi (2000), who find that it performs better than the HNB approach.

The mixture negative binomial (MNB) model has the virtue of being

conceptually simple. The density is

fY(y, φ1, ..., φp,π1, ...,πp−1) =
p−1

∑
i=1

πi f
(i)
Y (y, φi) + πp f

p
Y(y, φp),

where πi > 0, i = 1, 2, ..., p, πp = 1 − ∑
p−1
i=1 πi, and ∑

p
i=1 πi = 1. The

f
(i)
Y (y, φi), φi = {λi,ψi} are p separate NB-I or NB-II densities, as in equa-

tion 1. Identification requires that the πi be ordered in someway. We follow

Deb and Trivedi (1997) by imposing π1 ≥ π2 ≥ · · · ≥ πp and φi 6= φj, i 6= j.

This is simple to accomplish post-estimation by rearrangement of the com-

ponent densities. Another issue is how to consistently estimate the number

of component densities, supposing that the true density is in fact a mix-

ture density (see James, et al. 2001, for example). We skirt this issue by

considering only the possibility of 2 component densities.

The properties of the mixture density follow in a straightforward way

from those of the components. In particular, the moment generating func-
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tion is the same mixture of the moment generating functions of the compo-

nent densities, whence E(Y) = ∑
p
i=1 πiλi.

The MNB density may suffer from overparameterization, since the to-

tal number of parameters grows rapidly with the number of component

densities. To address this problem, Deb and Trivedi propose a constrained

mixture negative binomial model (CMNB) which restricts all the slope pa-

rameters in λj = exβ j to be the same across all component densities. The

constants and the overdispersion parameters αj are allowed to differ.

3 The MEPS data

3.1 Data Sources

The Medical Expenditure Panel Survey composed of four surveys of indi-

viduals, nursing homes, health care providers, and employers in the United

States. We use only the Household Component, which is a survey of a na-

tionally representative sample of households. The Household Component

uses an overlapping panel design where individuals are interviewed five

times over the course of 2.5 years, such that complete data for two calendar

years is collected. Each year, a new series of contacts is initiated. Thus,

data for a given individual will appear in the data files for two consecu-

tive years, and the samples for consecutive years are not independent. The

raw MEPS data files are available at the site �������������	������

��������
���������
������ .

The data files used are the Household Component Full-Year files for years

1996-2000, which are files HC-012, HC-020, HC-028, HC-038 and HC-050,

respectively. These data files collect responses to many questions related to

health care usage, health, insurance coverage, income, etc.
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3.2 Variables

From these files we use six different measures of annual health care usage,

for each of the five years. These are office-based doctor visits (OBDV), out-

patient doctor visits (OPV), emergency room visits (ERV), inpatient hospi-

tal visits (IPV), dental visits (DV), and number of prescription drugs taken

(RX).

The explanatory variables used are months of public insurance cover-

age during the year, divided by 12 (PUB), sex (SEX - coded as 0 for men and

1 for women), age (AGE), years of schooling (EDUC), and family income

in thousands of dollars (INC). Since health care issues change considerably

with age, we limit the sample to individuals between the ages of 40 and 65,

inclusive. Work not reported here revealed that models that pool data for

broader age groups often do not pass specification tests. Also, extremely

few younger people have publicly provided insurance coverage. This fact

causes problems in obtaining convergence of models that use data limited

to that for younger people. We also suspect that women’s and men’s health

issues are different enough to warrant the consideration of models that

allow the form of the model and all parameters to differ by sex. We in-

vestigate the possibility of pooling the form of the model or some of the

parameters across sexes.

We limit the sample to people who have private health insurance cover-

age during the entire year. Originally we used months of private coverage

as an explanatory variable. This variable is very likely to be endogenous

in a model for health care usage, since latent health status will likely si-

multaneously affect choices regarding health care usage and purchase of

health care insurance.8 The econometric problem is to find convincing in-

8Exploratory work with Hausman-type tests suggested that endogeneity of private in-
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strumental variables for private coverage, that can reasonably be excluded

from the equation that explains health care usage. Since wewere not able to

find such variables in the survey data, we prefer to simply estimate mod-

els conditional on full private insurance coverage, and avoid the issue of

possible endogeneity entirely. The analysis is more limited, but the results

are sharper and more reliable. Depending upon the year and the value of

SEX, we loose between 20% and 35% of the available sample due to this

decision. We include the measure of publicly provided insurance, PUB,

to investigate the effects of double coverage. We believe that PUB and the

other explanatory variables may be safely considered as exogenous, a priori.

All the variables with the exception of PUB and INC are directly avail-

able from the survey data. PUB is simply the sum of the monthly indica-

tors of public health care coverage, divided by 12. Thus, it runs from 0 to

1, with 1 indicating that a person enjoys publicly provided insurance cov-

erage during the full year. INC was constructed by summing the incomes

of all members of the family. In the MEPS data, total personal income is

the sum of many different sources of income, which may or may not be

directly reported. Observations for which any source of any family mem-

ber’s incomewas “hot decked”were dropped, since hot decking introduces

measurement error which leads to inconsistent estimation in the context of

regression analysis.9,10

We do not use any information on health status, and instead treat health

surance coverage is in fact a problem, especially for the OBDV and RX use variables. These
results are not entirely reliable, however, due to the problem of poor instruments, discussed
in the body of the paper, and thus we do not present them in detail.

9“Hot decking” is a term used in the MEPS documentation to describe a method of
replacing missing data with conditional or unconditional sample means of the variable.
See the documentation at ����� � � 	�� � ��������������������	��
���
�������
� ������� for more details.

10The programs used to process the raw data, as well as the resulting data files are avail-
able upon request from the authors.
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status as entirely latent. This is in contrast to many studies that have in-

corporated objective and/or subjective indicators of health status. The

health status information in the MEPS data include measures of perceived

health status as well as objective measures of limitations to activities. The

recorded data is based upon one family member’s assessment of all family

members’ healths. We have the problem that individual A and individual

B may evaluate individual B’s health very differently, which at a minimum

implies that this data will be subject to measurement errors which can lead

to inconsistency if not properly addressed (Windmeijer and Santos Silva,

1997). In the case of limitations to activities, many variables are recorded in

the data sets. These include, for example, indicators of whether or not indi-

viduals have difficulty standing 20 minutes, or difficulty in reaching over

the head, and a number of similar variables, and again, one family member

reports for the entire family. These variables are likely to be highly collinear,

and none of them seems suitable as a single measure of overall health sta-

tus. Furthermore, it is not clear that results that are conditional on such

measures of health status are directly useful for many sorts of economic

analysis. Since an economic analysis would likely need to marginalize re-

sults that are conditional on these variables, and since the only means of

marginalizing them is using the sample information itself, we prefer sim-

ply not to condition on them from the outset. Thus, we treat health status

as a purely latent source of heterogeneity, and we model it as such. The

primary concern in treating health status in this way is the possibility that

latent health status might be correlated with conditioning variables such as

private insurance coverage, which would induce problems of endogeneity.

Our solution, as noted above, is to condition on full private insurance cov-

erage, so that its level disappears as a regressor. We think that the other
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conditioning variables may safely be assumed to be exogenous.

3.3 Descriptive Statistics

As noted above, we limit the data used in this paper to people between 40

and 65 years of age, and initially we estimate separate models for women

and men. The sample sizes by year and sex are found in Table 1.

To obtain a first idea of the characteristics of the six measures of use,

Tables 2 through 5 give descriptive statistics for women’s and men’s health

care usage, for the the years 1996 and 200011. Studying these tables, we can

make a few observations:

• Women, on average, use all six forms of health care more frequently

than do men. This result is very uniform and is stable over time. This

suggests that models that pool across sexes will require a dummy

variable for sex.

• Men are more likely than women never to use forms of care. The

difference is especially notable in the cases of OBDV, DV, and RX,

which are probably more elective forms of care than are the other

three measures.

• There is considerable temporal stability of the statistics, for all six

measures of usage. However, there are some temporal variations that

are notable. For example, the mean of ERV for women is 50% higher

in 1996 than in 2000. This suggests the use of dummy variables for

years in models that pool across time.

• Most measures of health care use exhibit considerable unconditional

overdispersion. The IPV and ERV measures are in some cases rea-

11Results for the other years are very similar and are omitted to save space.
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sonably close to unconditional equidispersion. For these measures

it is possible that conditional equidispersion might hold, and that a

Poisson model might be adequate. In the other cases the models that

allow for overdispersion will likely be preferred.

• The percentage of zeros for the OPV, IPV and ERV measures is usu-

ally around 90% or higher. The OBDV, DV, and RX measures have

positive usage by a much larger proportion of the sample.

Next, to obtain an idea of the characteristics of the explanatory variables,

Tables 6 and 7 present descriptive statistics for the four conditioning vari-

ables, for women andmen. We present these statistics only for the year 2000

data, since the other years are substantially similar. Highlights include:

• The means of AGE and EDUC are quite similar across sexes.

• There is a notable difference in the mean of INC, which presumably

is due to a sex differential in the incomes of single people (recall that

INC is defined as family income). The fact that maximum values of

INC are the same is because INCwas top-coded during the execution

of the survey.

• Only a small part of the population has access to publicly-provided

health care insurance.

4 Model selection

We have under consideration 6measures of health care usage, 2 sex groups,

and 5 years of data. For each of these 60 data sets we wish to determine

which of a number of statistical models is most appropriate. Some of the

statistical models require determination of the specific parameterization
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(e.g., whether to use an NB-I or NB-II base model, or the degree of the

polynomial expansion for the PSNP, PSP, HPSP and NBSNP models). In

the face of so many comparisons to make we use an information criterion

approach, concretely the consistent Akaike information criterion (CAIC).

The CAIC is defined as CAIC = −2lnL + p(lnn + 1), where lnL is the log-

likelihood value, p is the number of parameters of the model, and n is the

sample size. The CAIC is a penalized goodness of fit criterion. Additional

parameters usually allow for better fit, in terms of the log-likelihood value,

but the penalty term prevents selection of overparameterized models. The

CAIC is a consistent model selector, in the sense that the correct model in

a set of models will have the lowest CAIC value, as the sample size tends

to infinity (Sin and White, 1996)12. The simple Akaike information crite-

rion (AIC), which has been used in some of the related literature, is not

consistent, in that it can favor overparameterized models. The Bayes (or

Schwartz) information criterion (BIC) that also appears in the literature can

be expressed as BIC = CAIC− p. This criterion is also consistent. It may

favor a somewhat more highly parameterized model than the CAIC. The

BIC can be calculated using the information we provide in our results, but

we do not report it here, to save space.

We report CAIC values starting with the models that allow parameters

to vary by both sex and year, then we report results where parameters are

constant across sexes (except for the coefficient of a dummy variable for

sex) but vary by year, and finally we report results that pool both across

sexes and time. The pooling across time is only for the years 1996, 1998 and

2000, so that no individual enters the sample in more than one year. In this

12If none of the models is the correct model, then the model that is closest to the correct
model in the sense of the Kullback-Leibler information criterionwill have the smallest CAIC
value, asymptotically.
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way, the observations are independent of one another. MLE estimation of

models with dependent observations would require specifying the nature

of the dependence, which is a step we prefer to avoid in this work.

It may be shown that, for two models that share no parameters and use

disjoint data sets, the overall CAIC value is simply the sum of the CAIC

values of the two models. Thus, one can compare the sum of the CAIC val-

ues for separate models for men and women in a given year with the CAIC

value of a model that pools across sexes using the data of the same year.

If the CAIC of the pooled model is lower, pooling is supported, otherwise,

separate models are favored. Likewise, we can compare models that pool

across time with analogous models that allow coefficients to vary by time.

In this way we can determine what level of pooling is supported by the

data, for each of the 6 measures of use.

With regard to estimation details, some of the models lead to a log-

likelihood function that may have local maxima. For the models that do

not have a globally concave log-likelihood function, we used simulated

annealing to find a rough maximizer which satisfied convergence of the

log-likelihood function out to 2 decimal places, then iterated to conver-

gence using a BFGS maximizer. For the other models we used the BFGS

maximizer directly. All estimation routines were programmed using GNU

Octave ( ������
���� � ������
������ ) and are available from the authors.

Separate models by sex and year We begin with the CAIC values of the

various models, for the year 2000 data. For the other years we only re-

port (below) the results for the favored models, to avoid overwhelming

the reader with details. Tables 8 and 9 report the relative CAIC values, for

women andmen, respectively, for the statistical models that were discussed
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in Section 2. For themodelwith theminimumCAIC value, the tables report

this value. For the other models the tables report the CAIC value relative to

that of the favored model, to facilitate comparisons. For the OBDV, DV and

RX measures of use (which are those with higher sample means), we can

see that there are a number of models that reach a CAIC within 1% of that

of the favored model, while for the OPV, IPV and ERVmeasures of use, the

distances between the favored model and the other models are often larger.

Tables 10 and 11 report which are the CAIC-favored models for each of

the five years, for women and men, respectively. Some points to note:

• The numbers of times models are favored are: NB - 44 times; PSP - 8

times; NBSNP - 6 times; and CMNB and HPSP, one time each. The

other models are never favored.

• Some use measures exhibit considerable variation over time in the

models that are favored (e.g.,OBDV andDV). TheCAIC-favoredmodel

for these use measures has “close competitors” in Tables 8 and 9. The

favored model is very stable over time for the IPV and RX use mea-

sures.

• One result that stands out is that the simple Poisson-style specifica-

tion of the conditional mean, E(y|x) = exβ, is used by the favored

model in 52 of 60 cases (86.6%).

With relatively homogeneous data that are for single sex groups and single

years, simple models work well in the great majority of cases.

Pooling across sexes Table 12 reports the CAIC values for models that

pool the coefficients across sexes, and add a dummy variable that allows

the constant to vary by sex, for the year 2000. In the last row we present
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the sum of the CAIC values of the models that allow all parameters to vary

by sex, relative to the CAIC value of the favored model. We do not present

such detailed results for the other years, but instead only report the favored

models for this level of pooling, for each of the five years, in Table 13. In

this table we can observe that:

• Pooling across sexes is favored in all cases except for ERV in 1998. In

all other cases, use of a dummy variable and a common model and

slope coefficients is favored.

• Only four models (apart from parameterization details) are ever fa-

vored: they are NB (14 times), NBSNP (8 times), PSP (6 times), and

CMNB (3 times).

• The simple Poisson-style specification of the conditionalmean E(y|x) =

exβ is implied by the favored model in 20 of 31 cases (the NB and PSP

models) which is 64.5% of the cases, down from the 86.6% for sepa-

rate models by sexes. Pooling is supported in all cases but 1 out of

30 (ERV, 1998), but pooling seems to require more flexible densities to

capture the greater heterogeneity of the data.

• There is considerable stability over time. For example, the NBSNP

model is favored in 4 of 5 years for the DV use measure, and the PSP

model is favored 4 of 5 times for the OPV use measure.

• The Poisson model and the more highly parameterized hurdle and

mixture models (HPSP, MNB) are never favored.

• When the NBSNP model is favored, it is always the version that uses

a NB-I base density.
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Pooling across years We have seen that pooling across sexes is almost al-

ways favored. Next we present CAIC results for models that pool across

the years 1996, 1998 and 2000, adding dummy variables that allow the con-

stant to vary by both sex and year. We do not use the data from 1997 and

1999 so that a given individual appears only once in the sample, and thus

the data consists of independent observations.13 Table 14 presents the re-

sults. We note that

• Pooled models are always favored. Time-wise heterogeneity seems

to be adequately captured by a dummy variable.

• Relatively complicated, newer models (PSP, NBSNP, CMNB) are fa-

vored in 5 of 6 cases. However, for the ERV data where the PSPmodel

is favored, the NB-I and NB-II models have only slightly higher CAIC

values.

• The simple Poisson-style mean function E(y|x) = exβ is favored in

only 2 of 6 cases (for IPV and ERV). Again, as we pool more hetero-

geneous data, more complicated densities are required to fit the data

well. Thesemore complicated densities imply more complicated con-

ditional moments. Note that the cases where the simple mean func-

tion is accepted are thosewhere the unconditional mean of the depen-

dent variable is lowest, and the percentage of zeros is highest, and the

mean/variance ratio is closest to 1 (see Tables 2-5).

The overall conclusion is that pooling by age and sex is almost always fa-

vored, when data is available to make it possible. Simpler models often

work well when the data is relatively homogeneous (for example, separate

13If we were to include the data from 1997 and 1999, but still treat the observations as
independent, the estimators would not truly be maximum likelihood estimators, and thus
the use of the CAIC to compare models would not be valid.
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models by sexes, for a single year) and more complex models are often re-

quired when more heterogeneous data is pooled. Of the statistical models

compared in this paper, some (the Poisson, PSNP, HNB and MNB) are al-

ways dominated, and the HPSP model is likely too highly parameterized

for all but exceptional cases. Of the more complicated newer models, the

NBSNP, PSP and CMNB models are found to be useful contributions for

analysis of this sort of data and probably deserve consideration in future

work.

5 Estimation results

Though a detailed economic analysis of estimation results for the favored

models is beyond the scope of this paper, Table 15 presents estimation re-

sults for the CAIC-favoredmodels for the pooled 1996-1998-2000 data, with

pooling across sexes. The Table contains results for all six use measures.

The models are the favored models that appear in Table 14.

Examining the estimation results, we can make several notes:

• With respect to time trends, DV usage has declined significantly over

the 1996-2000 period. Consumption of prescription drugs (RX) has

increased significantly. No other trends are clear.

• For all usage measures except DV, holding publicly-provided health

care insurance (PUB) has a positive and strongly significant effect on

usage levels.

• The dummy variable that indicates that the individual is a woman

is positive in all cases, and is highly significant except for the IPV

and ERV measures. The IPV and ERV measures are often associated
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with events such as serious illness or accidents that are in a large part

beyond the control of the individual.

• Age always has a positive coefficient, and is highly significant in all

cases except the ERV usage measure.

• Income is negative and significant for the IPV, ERV and RX use mea-

sures. It is positive and significant for the DV measure.

• Education has a positive and significant effect upon the OBDV and

DV measures, and it has a negative and significant impact upon the

IPV and ERV measures.

• There is evidence that low-income, low-education individuals use

IPV and ERV services more than the average individual. They make

less use of dental care visits than average. Other effects are not so

clear.

• The CMNB model used for the OBDV, OPV and RX use measures is

characterized by mixing two NB densities, both of which are overdis-

persed, and at least one of which is highly overdispersed. The mix

(π) parameter is estimated with poor precision in all three cases. The

constant shifter for the second NB density is highly significant.

• The α and γ parameters of the PSP(1) density for the ERV usage mea-

sure are estimated imprecisely. It appears that they are not well iden-

tified separately for this data set, but that their joint impact is impor-

tant (since the model had the best CAIC score).

• The α and one of theγ parameters are significant for theNBSNPmodel

used for the DV use measure. There appears to be a problem of poor

separate identification similar to that of the PSP(1) model for the ERV
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data. This problem was noted by Cameron and Johansson (1997) for

the PSNP model.

Of the forms of health care under consideration, OBDV and DV are those

that are most likely to include preventive visits such as checkups. We can

see that more educated, and in the case of DV, higher income individu-

als, use these two forms of care more frequently than average. Likewise,

IPV and ERV may be used more than average by people who have not

taken care of their health through preventive care, or who are seeking to

use emergency room visits in place of ordinary doctor visits in an attempt

to avoid insurance copayments. The fact that poorer, less educated people

use these forms of care more frequently than average might be explained

by such factors.

6 Conclusions

This paper has surveyed a number of statistical models for univariate count

data and has applied them data on health care usage from the Medical Ex-

penditure Panel Survey, years 1996-2000. The objective of the paper has

been to attempt to determine which models are most appropriate for this

sort of data. A secondary objective has been to determine which level of

pooling across time and sexes is supported by the data.

We have found that some of the newer models are quite useful and

warrant serious consideration when undertaking empirical work with this

sort of data. In particular, depending upon the usage measures and the

level of pooling, the NBSNP, PSP, and CMNB models are found to fit the

data better than more traditional models such as the NB and especially the

HNB. Other newer models such as the MNB and HPSP are found to be
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excessively parameterized for the usage measures in the MEPS data used

here, according to the CAIC criterion.

Another result is that pooling the data, both across time and across

sexes, is almost always favored. There is enough parameter stability so

that dummy variables can be used to capture the important variations in

a simple and parsimonious way, without imposing overly strong restric-

tions on the model. As more heterogeneous data is pooled, more com-

plex statistical models become necessary so that the assumption of param-

eter constancy (except changes in the constant captured by dummy vari-

ables) can be maintained. The basic finding of the paper is that it is more

parsimonious to use a relatively complex statistical model with parameter

constancy than to use simple statistical models with parameters that vary

across data groups. The degree of complexity of the statistical mode re-

quired for adequate fit to the data depends upon the usage measure under

consideration. Factors that lead to more complicated models being needed

are a high mean, low proportion of zeros, and overdispersion.

This paper has not focused upon estimation results or economic anal-

ysis of the such results. Nevertheless, we have presented some limited re-

sults using the pooled by time and sex data, which is the favored approach

in all cases. We have seen that the coefficients of the variables have signs

that can be given a plausible economic interpretation. However, the dis-

cussion has not been deep, since this sort of analysis is not the focus of this

paper.

Some directions for further work are quite clear. Given that pooling

across time has been found to be desirable, it would be useful to develop

models that allow for dependent observations, so that the entire data set

for all years could be used. This will require explicit modeling of the de-
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pendency of use measures over time, which will lead to the consideration

of multivariate count data densities and issues of estimation of such non-

linear models with panel data. Another direction for work would to be to

try to tackle the endogeneity of private health care insurance in a convinc-

ing way. This may not be possible using the MEPS data due to lack of good

instruments, but with other data sets it could be undertaken.
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Table 1: Sample Sizes

1996 1997 1998 1999 2000

Women 737 1205 477 830 817
Men 680 1104 478 802 800

Table 2: Descriptive Statistics, Use Variables, Women, 1996

OBDV OPV IPV ERV DV RX

mean 4.970 0.288 0.117 0.156 1.640 13.323
st. dev. 6.965 1.597 0.423 0.474 2.432 20.377
mean/var 0.102 0.113 0.651 0.696 0.277 0.032
min 0.000 0.000 0.000 0.000 0.000 0.000
max 93.000 37.000 4.000 5.000 32.000 142.000
% zero 0.195 0.870 0.913 0.877 0.392 0.187

Table 3: Descriptive Statistics, Use Variables, Men, 1996

OBDV OPV IPV ERV DV RX

mean 3.240 0.253 0.099 0.106 1.481 7.684
st. dev. 5.665 1.395 0.410 0.388 2.234 19.270
mean/var 0.101 0.130 0.585 0.702 0.297 0.021
min 0.000 0.000 0.000 0.000 0.000 0.000
max 54.000 19.000 4.000 4.000 17.000 296.000
% zero 0.309 0.893 0.929 0.915 0.488 0.349

Table 4: Descriptive Statistics, Use Variables, Women, 2000

OBDV OPV IPV ERV DV RX

mean 4.721 0.279 0.072 0.109 1.515 14.034
st. dev. 6.680 2.741 0.307 0.366 1.887 18.379
mean/var 0.106 0.037 0.768 0.813 0.425 0.042
min 0.000 0.000 0.000 0.000 0.000 0.000
max 89.000 77.000 4.000 3.000 11.000 124.000
% zero 0.170 0.864 0.936 0.906 0.424 0.176
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Table 5: Descriptive Statistics, Use Variables, Men, 2000

OBDV OPV IPV ERV DV RX

mean 3.027 0.161 0.083 0.130 1.100 8.810
st. dev. 4.532 0.734 0.344 0.588 1.639 16.566
mean/var 0.147 0.299 0.697 0.376 0.410 0.032
min 0.000 0.000 0.000 0.000 0.000 0.000
max 50.000 13.000 3.000 11.000 12.000 160.000
% zero 0.314 0.909 0.936 0.911 0.515 0.354

Table 6: Descriptive Statistics, Explanatory Variables, Women, 2000

mean st. dev. min max

PUB 0.045 0.197 0.000 1.000
AGE 50.770 7.140 40.000 65.000
INC 69.682 44.486 0.000 323.033
EDUC 13.542 2.521 0.000 17.000

Table 7: Descriptive Statistics, Explanatory Variables, Men, 2000

mean st. dev. min max

PUB 0.056 0.223 0.000 1.000
AGE 50.300 7.247 40.000 65.000
INC 71.963 43.813 0.000 323.033
EDUC 13.504 2.926 0.000 17.000
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Table 8: CAIC Values, Women, 2000
OBDV OPV IPV ERV DV RX

POISSON 1.6320 1.8007 1.0103 1.0094 1.1131 2.8494
PSNP(1) 1.5060 1.7249 1.0227 1.0189 1.1162 2.5116
PSNP(2) 1.3932 1.5585 1.0066 1.0126 1.0222 2.2547
PSNP(3) 1.2782 1.5037 1.0230 1.0250 1.0250 2.2560
PSP(1) 1.0019 1.0234 1.0119 1.0129 1.0032 1.0017
PSP(2) 1.0080 1.0582 1.0774 1.0927 1.0097 1.0069
PSP(3) 4332.1958 1.0126 1.0262 1.0253 1.0060 1.0030
HPSP(1) 1.0103 1.0638 1.1030 1.1175 1.0152 1.0092
HPSP(2) 1.0005 1.0096 1.0415 1.0372 1.0085 1.0028
HPSP(3) 1.0139 1.0732 1.1290 1.1407 1.0197 1.0118
NB-I 1.0031 1.0530 1.0008 622.1461 2752.9661 5844.7338
NB-II 1.0027 1.0514 471.1805 1.0021 1.0051 1.0012
HNB-I 1.0047 1.0864 1.0598 1.0551 1.0042 1.0032
HNB-II 1.0040 1.0616 1.0539 1.0574 1.0034 1.0032
MNB-I 1.0115 1.0289 1.0990 1.0729 1.0158 1.0048
MNB-II 1.0125 1.0234 1.1045 1.0841 1.0169 1.0069
CMNB-I 1.0014 1.0007 1.0400 1.0357 1.0053 1.0008
CMNB-II 1.0015 911.6805 1.0400 1.0367 1.0090 1.0033
NBSNP-I(1) 1.0057 1.0128 1.0200 1.0139 1.0027 1.0023
NBSNP-I(2) 1.0014 1.0212 1.0236 1.0258 1.0006 1.0036
NBSNP-I(3) 1.0031 1.0010 1.0456 1.0367 1.0032 1.0038
NBSNP-II(1) 1.0056 1.0139 1.0175 1.0155 1.0028 1.0062
NBSNP-II(2) 1.0031 1.0040 1.0236 1.0277 1.0045 1.0039
NBSNP-II(3) 1.0049 1.0125 1.0482 1.0367 1.0067 1.0033
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Table 9: CAIC Values, Men, 2000
OBDV OPV IPV ERV DV RX

POISSON 1.4931 1.2675 1.0317 1.1393 1.1277 3.1952
PSNP(1) 1.4693 1.2760 1.0439 1.1486 1.1307 2.7935
PSNP(2) 1.2857 1.0421 1.0143 1.0342 1.0254 2.4597
PSNP(3) 1.1948 1.0532 1.0309 1.0463 1.0287 2.4614
PSP(1) 1.0071 1.0054 1.0218 1.0005 1.0130 1.0065
PSP(2) 1.0118 1.0621 1.1195 1.0710 1.0242 1.0122
PSP(3) 1.0051 1.0164 1.0372 1.0099 1.0153 1.0071
HPSP(1) 1.0140 1.0795 1.1526 1.0908 1.0308 1.0136
HPSP(2) 1.0033 1.0274 1.0528 1.0221 1.0170 1.0074
HPSP(3) 1.0153 1.1010 1.1856 1.1144 1.0364 1.0168
NB-I 3564.8823 693.6498 463.0455 1.0027 2298.0098 4589.4350
NB-II 1.0051 1.0025 1.0064 634.1129 1.0097 1.0057
HNB-I 1.0056 1.0439 1.0748 1.0512 1.0129 1.0066
HNB-II 1.0083 1.0490 1.0706 1.0532 1.0141 1.0077
MNB-I 1.0099 1.0710 1.1045 1.0677 1.0170 1.0102
MNB-II 1.0138 1.0678 1.1128 1.0695 1.0313 1.0161
CMNB-I 1.0018 1.0261 1.0477 1.0244 1.0096 1.0032
CMNB-II 1.0032 1.0275 1.0545 1.0230 1.0185 1.0083
NBSNP-I(1) 1.0018 1.0125 1.0167 1.0167 1.0036 1.0022
NBSNP-I(2) 1.0005 1.0186 1.0324 1.0140 1.0066 1.0036
NBSNP-I(3) 1.0027 1.0293 1.0489 1.0260 1.0099 1.0049
NBSNP-II(1) 1.0069 1.0140 1.0233 1.0106 1.0127 1.0066
NBSNP-II(2) 1.0079 1.0239 1.0398 1.0195 1.0159 1.0081
NBSNP-II(3) 1.0100 1.0340 1.0553 1.0300 1.0192 1.0097

Table 10: CAIC-Favored Models, Women, 1996-2000
OBDV OPV IPV ERV DV RX

1996 PSP(3) NB-II NB-II NB-I NBSNP-I(3) NB-I
1997 NBSNP-I(2) NB-II NB-I NB-I NBSNP-I(3) NB-II
1998 NB-I NB-I NB-II NB-II PSP(1) NB-II
1999 HPSP(2) NB-II NB-I NB-II NB-I NB-II
2000 PSP(3) CMNB-II NB-II NB-I NB-I NB-I
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Table 11: CAIC-Favored Models, Men, 1996-2000
OBDV OPV IPV ERV DV RX

1996 NBSNP-II(2) PSP(1) NB-I NB-I NB-I NB-I
1997 PSP(3) PSP(1) NB-II PSP(2) NBSNP-I(3) NB-I
1998 NB-I NB-II NB-I NBSNP-I(3) NB-I NB-I
1999 NB-I PSP(1) NB-I NB-I NB-I NB-II
2000 NB-I NB-I NB-I NB-II NB-I NB-I

Table 12: CAIC Values, Pooling Across Sexes, 2000

OBDV OPV IPV ERV DV RX

POISSON 1.5736 1.5941 1.0273 1.0767 1.1222 3.0133
PSNP(1) 1.5727 1.5688 1.0346 1.0821 1.1240 2.6808
PSNP(2) 1.3665 1.3916 1.0085 1.0143 1.0231 2.6816
PSNP(3) 1.2445 1.3309 1.0177 1.0211 1.0247 2.3243
PSP(1) 1.0036 1.0100 1.0087 1233.0104 1.0094 1.0083
PSP(2) 1.0053 1.0329 1.0729 1.0452 1.0096 1.0064
PSP(3) 1.0001 1.0052 1.0179 1.0048 1.0100 1.0091
HPSP(1) 1.0048 1.0376 1.0905 1.0588 1.0129 1.0069
HPSP(2) 1.0012 1.0041 1.0270 1.0116 1.0087 1.0099
HPSP(3) 1.0062 1.0478 1.1089 1.0650 1.0150 1.0085
NB-I 1.0026 1.0274 912.9064 1.0025 5019.8251 10405.3000
NB-II 1.0046 1.0297 1.0004 1.0009 1.0078 1.0084
HNB-I 1.0034 1.0503 1.0469 1.0369 1.0044 1.0024
HNB-II 1.0028 1.0387 1.0452 1.0308 1.0052 1.0040
MNB-I 1.0096 1.0276 1.0613 1.0403 1.0103 1.0035
MNB-II 1.0091 1.0233 1.0646 1.0393 1.0157 1.0130
CMNB-I 7865.6354 1581.2384 1.0270 1.0121 1.0038 1.0002
CMNB-II 1.0009 1.0013 1.0268 1.0121 1.0110 1.0085
NBSNP-I(1) 1.0042 1.0331 1.0102 1.0104 1.0009 1.0014
NBSNP-I(2) 1.0003 1.0061 1.0191 1.0061 1.0025 1.0022
NBSNP-I(3) 1.0013 1.0027 1.0270 1.0129 1.0033 1.0023
NBSNP-II(1) 1.0062 1.0091 1.0101 1.0047 1.0093 1.0104
NBSNP-II(2) 1.0056 1.0144 1.0193 1.0113 1.0070 1.0110
NBSNP-II(3) 1.0066 1.0087 1.0284 1.0181 1.0085 1.0117
Separate Models 1.0040 1.0152 1.0234 1.0189 1.0062 1.0028
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Table 13: CAIC-Favored Models, Pooling Across Sexes, 1996-2000

OBDV OPV IPV ERV DV RX

1996 NBSNP-I(2) PSP(1) NB-I NB-I NBSNP-I(3) NBSNP-I(2)
1997 NBSNP-I(2) PSP(1) NB-I NB-I NBSNP-I(3) NB-I

1998 PSP(3) PSP(1) NB-I
Women: NB-II

Men: NBSNP-I(3)
NBSNP-I(3) NB-I

1999 CMNB-I PSP(3) NB-I NB-I NBSNP-I(3) NB-I
2000 CMNB-I CMNB-I NB-I PSP(1) NP-I NB-I

Table 14: CAIC Values, Pooling across 1996-1998-2000 and Sexes

OBDV OPV IPV ERV DV RX

POISSON 1.6126 1.5517 1.0515 1.0583 1.1692 2.9997
PSNP(1) 1.5255 1.5465 1.0547 1.0608 1.1699 2.6795
PSNP(2) 1.4060 1.3059 1.0033 1.0076 1.0537 2.3916
PSNP(3) 1.2867 1.1573 1.0073 1.0106 1.0544 2.3920
PSP(1) 1.0047 1.0042 1.0050 3051.3255 1.0074 1.0057
PSP(2) 1.0055 1.0158 1.0390 1.0283 1.0008 1.0029
PSP(3) 1.0045 1.0005 1.0076 1.0019 1.0076 1.0051
HPSP(1) 1.0020 1.0203 1.0469 1.0344 1.0021 1.0024
HPSP(2) 1.0037 1.0000 1.0115 1.0050 1.0083 1.0055
HPSP(3) 1.0030 1.0241 1.0548 1.0399 1.0033 1.0032
NB-I 1.0043 1.0217 2338.3952 1.0003 1.0010 1.0004
NB-II 1.0061 1.0231 1.0003 1.0001 1.0081 1.0053
HNB-I 1.0040 1.0285 1.0272 1.0212 1.0031 1.0014
HNB-II 1.0042 1.0247 1.0274 1.0209 1.0030 1.0019
MNB-I 1.0077 1.0183 1.0350 1.0272 1.0046 1.0022
MNB-II 1.0044 1.0211 1.0362 1.0240 1.0097 1.0070
CMNB-I 19541.3171 4029.5548 1.0099 1.0052 1.0005 25190.7329
CMNB-II 1.0004 1.0002 1.0115 1.0052 1.0059 1.0050
NBSNP-I(1) 1.0050 1.0242 1.0043 1.0037 1.0016 1.0010
NBSNP-I(2) 1.0000 1.0112 1.0083 1.0027 13100.3787 1.0010
NBSNP-I(3) 1.0005 1.0054 1.0121 1.0057 1.0005 1.0011
NBSNP-II(1) 1.0068 1.0221 1.0042 1.0033 1.0088 1.0059
NBSNP-II(2) 1.0054 1.0117 1.0080 1.0044 1.0085 1.0060
NBSNP-II(3) 1.0058 1.0140 1.0117 1.0072 1.0092 1.0064
Separate Models 1.0057 1.0192 1.0354 1.0125 1.0039 1.0029
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Table 15: Estimation Results, Overall CAIC-Favored Models, 1996-1998-
2000

OBDV OPV IPV ERV DV RX
Const. 0.2098 -3.8315 -2.6857 -1.7703 -1.6691 -0.1809

(0.210) (0.673) (0.549) (0.561) (0.200) (0.172)

[0.318] [0.000] [0.000] [0.002] [0.000] [0.294]

1998 0.0215 0.0038 -0.2639 -0.0865 -0.0112 0.0498
(0.044) (0.127) (0.168) (0.218) (0.049) (0.049)

[0.627] [0.976] [0.115] [0.692] [0.818] [0.306]

2000 -0.0163 -0.0603 -0.1818 -0.0635 -0.1732 0.1048
(0.038) (0.110) (0.138) (0.133) (0.044) (0.041)

[0.672] [0.582] [0.187] [0.633] [0.000] [0.011]

Pub 0.2804 0.4658 1.0211 0.6232 -0.1300 0.5118
(0.076) (0.208) (0.202) (0.333) (0.102) (0.104)

[0.000] [0.025] [0.000] [0.061] [0.205] [0.000]

Woman 0.3794 0.3271 0.1028 0.1323 0.2581 0.5490
(0.034) (0.097) (0.125) (0.114) (0.038) (0.037)

[0.000] [0.001] [0.410] [0.244] [0.000] [0.000]

Age 0.0279 0.0394 0.0260 0.0132 0.0185 0.0412
(0.002) (0.007) (0.009) (0.010) (0.003) (0.002)

[0.000] [0.000] [0.004] [0.178] [0.000] [0.000]

Income -0.0004 -0.0007 -0.0042 -0.0037 0.0017 -0.0012
(0.000) (0.001) (0.002) (0.002) (0.000) (0.000)

[0.315] [0.594] [0.026] [0.044] [0.000] [0.009]

Education 0.0175 0.0200 -0.0660 -0.0643 0.1115 0.0078
(0.007) (0.020) (0.022) (0.024) (0.009) (0.008)

[0.012] [0.318] [0.003] [0.006] [0.000] [0.305]

alpha 9.8375 0.4879 0.4579 0.4146 2.8892 12.7021
(0.224) (0.590) (0.173) (1.151) (0.078) (0.313)

[0.000] [0.408] [0.008] [0.719] [0.000] [0.000]

gam1/Const2 1.0000 -1.5483 na 0.2949 -0.0948 2.3131
(0.096) (0.732) (0.323) (0.055) (0.131)

[0.000] [0.034] [0.361] [0.084] [0.000]

gam2/alpha2 2.5659 17.5843 na na 0.0030 56.6040
(0.166) (0.546) (0.036) (0.400)

[0.000] [0.000] [0.934] [0.000]

mix 0.2278 0.5515 na na na 0.6577
(0.461) (1.354) (0.933)

[0.621] [0.684] [0.481]
( ) = standard errors; [ ] = p-values
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