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Abstract

In this paper, we compare standard approaches used to handle losses in logarithmic profit mod-
els with a simple novel approach. We estimate translog stochastic profit frontiers, and discuss
discriminatory power, rank stability and the precision of profit efficiency scores. Contrary to ex-
isting methods, our approach does not result in a loss of observations. Our new method enhances
rank stability and discriminatory power, and improves the precision of profit efficiency scores.

Key words: profit efficiency, stochastic frontier analysis, truncation and censoring.
JEL: G21, C24

1. Introduction

Profit models play an important role when we assess the determinants of firm prof-
itability or when we benchmark firms’ success at maximizing profits. When estimat-
ing profit models, we employ (semi-)flexible functional forms like the translog. This
is problematic if firms incur losses in our sample, since the logarithm of non-positive
numbers is not defined. Hence, we face an important inconsistency between our theo-
retical model and our empirical specification. As a result, we may lose information on
a significant part of our sample. This part, consisting of loss-incurring firms, is often of
particular concern, for example when we benchmark firm performance and try to see if
poor performance helps predict a firm’s exit from the market (see Bos et al., 2008).
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In this paper, we compare standard methods used to handle theses losses with a novel
method. 1 We compare both methods by estimating stochastic profit frontiers, where
we can compare profit efficiency (PE). When we study profit efficiency scores, we are
concerned both with the ability of specifications to discriminate between profit making
and loss incurring firms, as well as their capability of achieving rank stability.

Our paper is structured as follows. First, we explain the two most frequently used
specifications to handle negative profits as well as our suggested alternative. Then, we
introduce our data. Next, we test whether our specification improves the discriminatory
power and rank stability of our model. Finally, we conclude.

2. Methodology

Theoretically, firms maximize profits by choosing in- and output quantities at prevail-
ing prices subject to a production technology constraint. Most banking studies employ
a modified model by Humphrey and Pulley (1997), that allows for price setting power
in output markets. 2 To implement either of the two models empirically, most stud-
ies follow Hasenkamp’s (1976) early suggestion and use sufficiently flexible functional
forms with regard to curvature. The translog functional form proved particularly suited
for bank efficiency studies as it is flexible enough to fit the underlying production pro-
cess and facilitates convergence when maximizing the likelihood function (Berger and
Mester, 1997).

We use a true fixed-effect model, where inefficiency scores are i.i.d. and no particular
pattern of evolution of inefficiency is specified (see Greene, 2002):

ln πkt(w, y, z) = ak +
I

∑
i=1

ai lnmikt +
1
2

I

∑
i=1

J

∑
j=1

aij lnmikt ln mjkt + εkt. (1)

Here m consists of outputs y, input prices w, a control variable z (equity), and a time
trend t that captures technological change.

We impose the usual homogeneity and symmetry restrictions as in e.g. Lang and
Welzel (1996). Whereas the standard profit (and cost) function is the dual to the output
distance function that characterizes production technology (i.e. the transformation func-
tion), the alternative profit function is the dual to the output distance function and the
pricing opportunity set g(p, y, w) (cf. Kumbhakar and Lovell, 2003). The latter "captures
the producer’s ability to transform exogenous (y, w) into endogenous product prices p"
(p. 213). Kumbhakar and Lovell (2003, p. 213) write: "it is reasonable to assume that [the
alternative profit function] is nondecreasing in the elements of y and non-increasing in
the elements of w." Summing up, whereas imposing homogeneity of degree one on both
outputs and input prices is indeed needlessly restrictive, our restrictions on input prices
do not violate the approach suggested by Kumbhakar and Lovell (2003).

We assume that εkt consists of a noise component νkt, and an inefficiency component
ukt, where εkt = νkt − ukt. Here, νkt is normally distributed, i.i.d. with νkt ∼ N(0, σ2

ν ).
The inefficiency term ukt is drawn from a non-negative half-normal distribution and

1 For an overview and a solution to this problem for a non-parametric (DEA) model, see Färe et al. (2004).
2 The alternative profit model specifies an additional constraint: the pricing opportunity set. Banks choose
prices for given output quantities subject to this and the technology constraint.
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i.i.d. with ukt ∼
∣∣N(0, σ2

u)
∣∣. Point estimates of PE are obtained using the expected value

of ukt given εkt (Jondrow et. al, 1982).
The problem that we address in this paper arises because we assume in our theoretical

model that π ε R, whereas in our empirical specification ln(π) is not defined if π ε R−,
where π = [0,−∞〉. In the literature, we find two dominant solutions to this problem,
listed as [i] and [ii] in Table 1. 3

First, we can truncate π and estimate our model only for those firms where π ε R∗+,
since π is then (0, ∞〉. In our view, this approach suffers from two shortcomings: (a) it
prohibits us from obtaining efficiency scores for loss incurring firms, and (b) not adjust-
ing for truncation leads to biased results (for ordinary least squares (OLS) estimators,
see Greene, 2003, Chapter 20). Second, we can rescale π, to ensure that π ε R∗+ for all
firms, for example by adding the maximum loss observed in the sample plus a small
number (usually one) to each π. This appears to be the most popular solution in the lit-
erature (cf. Berger and Mester, 1997, Vander Vennet, 2002, Maudos et. al, 2002, Kasman
and Yildirim, 2006). However, we cannot control for the effect that this manipulation
may have on our error term structure. This is particularly problematic in a stochastic
frontier analysis, where we are interested in the composition of total error, rather than
coefficient estimates or marginal effects.

Table 1
Specifications

Specification Left-hand side adjustment (π) Right-hand side adjustment (NPI)

π ε R∗+ π ε R− π ε R∗+ π ε R−

[i] Truncated π exclude − −
[ii] Rescaled π + |min(π−)|+ 1 π + |min(π−)|+ 1 − −
[iii] Indicator π 1 1 |π− |

Summing up, these approaches either (i) result in a loss of crucial observations, or (ii)
they neglect the available information about the truncated part of the distribution of the
dependent variable ln π. We therefore propose an alternative solution, that is in fact sim-
ilar to censoring and attempts to make use of the available information on the censored
part of π. We also left-censor π, but assign a value of one to those banks with π ε R−.
We aim to include all information available on the censored part of π and to this end
specify an additional independent variable NPI (for Negative Profit Indicator). Conse-
quently, we define NPI to be equal to one for observations where π ε R∗+ and equal to
the absolute value of π for a loss incurring bank. We expect and find a negative coeffi-
cient for this variable. Table 1 summarizes the resulting three specifications, including
our "Indicator" approach. 4

3 Other solutions include of course the use of a so-called distribution free approach, as in e.g. Fernandez de
Guevara and Maudos (2002). Also, some earlier studies aggregate firm-level data, before estimating a profit
frontier, e.g. Maudos and Pastor (2001). Nonparametric linear programming techniques are used in Färe et al.
(2004).
4 As a caveat we point out that we do not aim to combine ML functions derived for (OLS) limited dependent
regressions with ML functions derived for SFA with a composed error term. In our view, this would certainly
be the econometrically most correct way to tackle the problem of losses in PE research. To our knowledge no
such efforts have been undertaken in the econometric literature and we deem the issue out of the scope of our
paper.
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3. Data

To estimate our alternative profit frontier, we use balance sheet and profit and loss
account data for all German banks that reported to the Deutsche Bundesbank between
1993 and 2004.

Table 2
Descriptive statistics

Variable π ε R∗+ π ε R−

π 1) Profit before tax 10.6 (67.4) -6.9 (41.9)

y1
1) Interbank loans 377.2 (4,364.7) 648.7 (7,249.6)

y2
1) Customer loans 753.0 (6,724.4) 967.8 (13,683.0)

y3
1) Securities 357.0 (3,635.0) 783.0 (10,789.3)

w1
2) Price of fixed assets 21.8 (454.3) 91.6 (963.9)

w2
3) Price of labor 51.2 (152.7) 64.0 (36.3)

w3
2) Price of borrowed funds 3.9 (25.5) 5.7 (24.1)

z 1) Equity 57.8 (498.9) 87.3 (809.7)

N Observations 33,533 658
Means (standard deviations); 1) In millions of Euros; 2) In percentages; 3) In thousands of
Euros; w1 is depreciation and other expenditures on fixed assets/fixed assets; w2 is personnel
expenses/number of full-time equivalent employees; w3 is interest expenses/total borrowed
funds.

We follow the intermediation approach and report our descriptive statistics for prof-
its, input prices, output quantities, and equity in Table 2. In our sample, around 2% of
observations (658) exhibit losses. Although our approach can also be used for firms with
zero profits, there are no such firms in our data set.

4. Results

We start by comparing the efficiency distributions from all specifications. Figure 1
shows kernel density plots. We observe that the rescaled specification yields a distribu-
tion of PE scores that exhibits the lowest standard deviation and is located the closest
to full efficiency. Since the maximum loss in the sample equals 989 million Euros, the
impact of rescaling the dependent variable for all banks (averaging 10.2 million Euros)
appears to be substantial. However, the high density may largely be due to the inability
of unadjusted output quantity and input price variables to explain these profits and,
more importantly, discriminate between production plan choices of banks.

However, it is important to note that we have no baseline, ‘correct’ specification. Put
differently, we have to accept the fact that PE scores cannot be validated when com-
paring our specifications and drawing conclusions. In our comparisons, we test two
hypotheses which we reflect what we expect from a ’good’ specification:

Hypothesis 1
The efficiency levels of firms with positive profits are on average higher than those of firms with
negative profits.

4
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This hypothesis is easily explained, since profits are maximized and profit efficiency

should therefore - ceteris paribus - be increasing in profit.

Hypothesis 2
The relative efficiency ranking for firms with positive profits is insensitive to the inclusion of
firms with negative profits.

This hypothesis merits somewhat more explanation. As discussed above, rescaling
profits before taking logs is a so-called non-neutral transformation. The relative distance
between profits (pi) has been changed. In particular, due to the composed error term in
stochastic frontier analyses, it is far from obvious that the efficiency ranking of profit
making banks (π ε R∗+) is not affected by this transformation.

In sum, we aim at a specification that can both discriminate between firms making a
profit and firms incurring a loss and has stable efficiency ranks. Clearly, specification [i]
is of little direct use to us, as it has no information on loss incurring firms.

Figure 1. Kernel density of mean PE per specification

0
5

10

0 .5 1

truncated rescaled indicator

Table 3 therefore lists our comparative statistics for specifications [ii] and [iii]. In both
specifications, outliers can influence the overall distribution of efficiency. In fact, we ob-
serve that mean efficiency is lower for our indicator approach than for the rescaled spec-
ification. To see whether outliers explain this difference, we also present bootstrapped
results in Table 4. More importantly, we observe that mean PE scores are always higher
for profit making firms than for loss incurring firms. These differences are statistically
significant, both with and without assuming equal variances. Hence both specifications
appear to have sufficient discriminatory power.

Our second hypothesis concerns the ability of specifications to rank profit making
firms’ efficiency in a stable manner. As several studies have shown, the ability of stochas-
tic frontier models to yield stable ranks is very important (e.g. Bauer et. al, 1998). We
calculate ranks for banks with π ε R+ only as our prime interest is the stability of ranks
across specifications. Note that the scatterplots are for a comparison vis-à-vis the trun-
cated specification. Also, note that applying truncation to our Indicator approach results
in the truncated specification.
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Table 3
Comparative statistics for non-truncated specifications

[ii] Rescaled [iii] Indicator

PE for π ε R+ 0.755 (0.062) 0.326 (0.102)

PE for π ε R− 0.670 (0.141) 0.175 (0.162)

Independent sample test, equal variances 33.16*** 37.19***

Independent sample test, no equal variances 15.35*** 23.74***

ρ 0.4698*** 0.9717***

KW 375.5*** 584.4***
N = 33,533 (π+), 658 (π−); IST = Independent samples test, with (1) and without (2)
equal variance assumption; ρ = Spearman rank correlations; KW = Kruskal Wallis
chi-squared; *** denote significant at the 1% level;. Piecewise correlation between
truncated and indicator ranks is 0.971 and significant at the 1% level.

From the plots in Figure 2, we observe that ranks change significantly with the rescaled
specification. Many banks are ranked markedly different by the truncated and rescaled
specification, respectively. In contrast, our indicator specification ranks much more con-
sistently. The Spearman rank order correlation ρ with the truncated specification is 0.97
and significantly different from zero. Finally, we also perform Kruskal Wallis rank tests,
which confirm that profit-making and loss-incurring banks are ranked significantly
different from each other. Note, that our indicator specification exhibits substantially
higher chi-squared values compared to the rescaled specification.

Figure 2. Correlation

(a) Rescaled (b) Indicator

In addition to testing whether estimated efficiency distributions are identical, we also
conduct a bootstrap analysis along the lines of Atkinson and Wilson (1995) to obtain
standard errors of mean efficiency estimates (cf. Koetter, 2006). Thereby we can test the
precision of PE estimates obtained with the three alternative approaches to handle neg-
ative profits, respectively. We follow their suggestion and draw j = 1, .., J bootstrap
samples with replacement of the original size N, i.e. 34,191 observations, where J '
1000. For each draw j, we estimate mean PE∗j for the three approaches, respectively.
For specification [i], the truncation approach, we obviously only sample 33,533 obser-
vations. We denote the mean statistic obtained with the original sample as PEobs and

6
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calculate standard errors. 5

Table 4
Bootstrapped standard errors of mean PE

Specification PEobs
1) PE∗ 2) SE 3) LB 4) UB 5)

Truncated 39.3 38.1 0.24 38.9 39.8

Rescaled 75.3 81.1 4.65 66.2 84.4

Indicator 32.3 32.3 0.27 31.8 32.8
Notes: Bootstrapping results for 1,000 repetitions of full resampling with
replacement; 1) Mean PE with original full sample; 2) Average mean effi-
ciency after bootstrapping; 3) Standard errors; 4) Lower bound; 5) Upper
bound.

In Table 4 we report bootstrapped standard errors and according confidence inter-
vals at the five percent level for all profit models, respectively. 6 Bootstrapped standard
errors are largest for the rescaled model. In contrast, the precision of efficiency esti-
mates obtained from our indicator approach closely resembles that obtained for the
case when loss-making banks are excluded from the sample. Hence, with our approach
we gain discriminatory power without a loss of precision and possible outliers do not
bias (mean) efficiency.

5. Conclusion

In this paper, we compare a novel approach to handling losses in translog profit mod-
els with specifications that rely on truncation [i] or rescaling [ii] of the dependent vari-
able. We study the effect on stochastic frontier profit efficiency scores. The latter specifi-
cations either do not yield any efficiency scores for loss incurring firms [i], or yield effi-
ciency scores which are discriminatory but not stable [ii]. Censoring is shown to greatly
improve the rank stability of efficiency scores. In addition, our indicator specification
improves the discriminatory power of our translog profit model. Finally, bootstrapped
standard errors show that the precision of the indicator approach is substantially higher
than for the certainty of efficiency estimates obtained after scaling up all data.
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