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 two-step estimator that account for cross-equation correlation and use the inverse Mills ratio as correction-term are consistent only if certain restrictions apply to the true error-covariance structure. An alternative class of generalizations to the classical Heckman two-step approach is derived that condition on the entire selection pattern rather than selection in particular equations and, therefore, use modified correction-terms. It is shown that this class of estimators is consistent. In addition, Monte-Carlo results illustrate that these estimators display a smaller mean square prediction error.

avoid inconsistent estimators, even if their mean square error is small. For this reason, addressing unbiasedness and consistency of Heckman-type two-step estimators for censored systems of equations is a relevant task.

The analysis presented in this article shows that some of the estimators proposed by Tauchmann (2005) are consistent only for restrictive error-covariance structures. It also shows that a modified two-step Heckman-type estimator is generally consistent and performs well in terms of the mean square prediction error. In order to yield these results, the remainder of this paper is organized as follows: Section 2 introduces the model to be analyzed in more detail and analyzes the properties of straightforward multivariate generalizations to the [START_REF] Heckman | The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for such Models[END_REF][START_REF] Heckman | Sample Selection Bias as a Specification Error[END_REF] two-step estimator.

In Section 3 an alternative class of generalized two-step Heckman-type estimators is derived. Section 4 presents results from Monte-Carlo simulations that illustrate the theoretical results and extends the analysis to the estimators' mean square error. Section 5 concludes.

2 An analysis of sample-selection models 

y * it = x it β i + ε it (1) d * it = z it α i + υ it , (2) 
characterize the latent model, that is y * it and d * it are unobserved. Their observed counterparts y it and d it are determined by

d it =        1 if d * it > 0 0 if d * it ≤ 0
(3)

y it = d it y * it . (4) 
Here, i = 1, . . . , m indexes the m equations of the system, and t = 1, . . . , T indexes the individuals. (5)

The diagonal-elements of Σ υυ are subject to the normalization σ υυ ii = 1, i = 1 . . . m.

Inconsistency of Heckman-type estimators

For the model ( 1) through ( 4) Tauchmann ( 2005) suggests a class of system twostep estimators that -analogously to the original Heckman two-step approach -con- In order to analyze these estimators' properties, we consider α as known and focus

3 To simplify notation, E(y it |x it , d it = 1) is used as short term for E(y it |x it , υ it > -z it α i ) through- out this paper. Yet, it does not denote E z [E(y it |x it , υ it > -z it α i )]
, although z it is not explicitly mentioned in list of the conditioning variables. This analogously applies to any moment that is conditional on either

d it = 1, d it d jt = 1, d it , d it d jt , or d t .
4 Because of (4), which implies E(y it |x it , d it = 0) = 0, the original [START_REF] Heckman | The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for such Models[END_REF][START_REF] Heckman | Sample Selection Bias as a Specification Error[END_REF] estimator can well be interpreted as a procedure that conditions on d it in the full sample and, therefore, uses d it as a weighting variable rather than an estimation procedure that conditions on d it = 1 and uses the sub-sample of selected units; see Tauchmann (2005) for details. [START_REF] Heckman | The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for such Models[END_REF], the errors are heteroscedastic and SUR is not a proper GLS estimator. 

5 Because of var(ε it |d it = 1) = σ εε ii 1 -σ ευ ii 2 σ εε ii -1 + σ ευ ii 2 σ εε ii -1 1 -z it α i λ(z it α i ) -λ(z it α i ) 2 , cf.
β = (X DΩDX) -1 X DΩY. (6) 
Because of Y = D(Xβ + ε) equation ( 6) is equivalent to

β = β + (X DΩDX) -1 X Ξ, with Ξ ≡ DΩD ε. (7) F o r P e e r R e v i e w
Here, the condition E(Ξ|X) = 0 implies plim T -1 (X Ξ) = 0 and, therefore, implies consistency of β under standard regularity conditions. To check whether E(Ξ|X) = 0 holds, consider an arbitrary element from Ξ:

ξ it = ω iit d it ε it + m j=1 j =i ω ijt d it d jt ε jt (8) = ω iit d it [ε it -E(ε it |d it = 1)] + m j=1 j =i ω ijt d it d jt [ε jt -E(ε jt |d jt = 1)].
We apply the law of iterated expectations to (8). First, we take the expectation of ξ it conditional on x t as well as on the individual selection pattern

d t . E(ξ it |x t , d t ) = ω iit d it [E(ε it |d t ) -E(ε it |d it = 1)] + m j=1 j =i ω ijt d it d jt [E(ε jt |d t ) -E(ε jt |d jt = 1)] (9) 
Second, we take the expectation with respect to d t , yielding (1964).

E(ξ it |x t ) = m j=1 j =i ω ijt Pr(d it d jt = 1)[E(ε jt |d it d jt = 1) -E(ε jt |d jt = 1)]. ( 10 
Including these expressions and rearranging terms leads to the system of regression equations

y it = d it x it β i + d it m j=1 δ ij ψ jt φ(z jt α j ) Φ m-1 ( A jt , R jt ) Φ m (•) + d it ε it , i = 1, ..., m. (12)
As in the original Heckman-model, the coefficients δ ij attached to the correction-terms

ψ jt φ(z jt α j ) Φ m-1 ( e A jt , e R jt ) Φ m (•)
are subject to estimation. Here, φ denotes the probability density function of the univariate standard normal distribution, while Φ m denotes the cumulative density function of the m-variate standard normal distribution. ψ jt is defined as 2d jt -1 and distinguishes truncation from either below or above. A jt represents a vector which consists of m -1 elements In applied work α and Σ υυ are likely to be unknown. In order to calculate the auxiliary regressors ψ jt φ(z jt α j )

ψ lt (z lt α l -σ υυ lj z jt α j ) (1-(σ υυ lj ) 2 ) 1/2 ; l = 1 . . . m, l = j. Cor- respondingly, R jt is defined as Ψ jt R jt Ψ jt ,
Φ m-1 ( e A jt , e R jt ) Φ m (•)
, one has to replace the true parameters with estimates obtained from first-step multivariate probit estimation. In the special In order to be able to construct a proper GLS estimator, expressions for Var(ε t |d t ) are required from which one can calculate an appropriate weighting matrix Ω. Through the use of the normality assumption and the decomposition rule for variances in a joint distribution such an expression can easily be derived as 

7 Since E(y it |x it , d t , d it = 0) = 0 holds
Var(ε t |d t ) = Σ εε -Σ ευ (Σ υυ ) -1 Σ ευ + Σ ευ (Σ υυ ) -1 Var(υ t |d t )(Σ υυ ) -1 Σ ευ . (13) 

Monte-Carlo analysis

In addition to the theoretical analysis we carry out Monte-Carlo simulations. On the one hand, we want to illustrate the theoretical results derived in Section 2. Test results on the joint unbiasedness of the second-step coefficients are provided for this purpose. 10

On the other, we also want to address the estimators' performance beyond the issue of consistency. Therefore, we present estimates for the CP-conditional mean square error prediction criterion

CP( β) = E 1 T T t=1 m i=1 (β i -β i ) x it x it (β i -β i ) X , (14) 
cf. Judge et al. (1980). CP( β) measures the mean squared deviation of the estimated conditional mean from its true counterpart E(y * it |x it ) and, therefore, translates an estimator's MSE-matrix to a scalar performance measure that takes into account its variance as well as a potential bias.

is effectively required for the construction of the GLS estimator in general is short-ranked and cannot ordinarily be inverted in order to obtain individual weighting-matrices Ω t . Yet, using a generalized Moore-Penrose inverse is appropriate for this purpose.

10 Both the tables of raw coefficients' estimates as well as the LIMDEP command file used for carrying out the MC-simulations are available from the author upon request. SUR allows for estimating the first step using univariate probit models. All other estimators require simultaneous estimation of all vectors α i along with Σ υυ .

The experimental setup

The design of the Monte-Carlo experiment is equivalent to the one used by Tauchmann (2005). 11 We consider the case m = 2. 12 The sample size is 4000. The size of the Monte Carlo experiment is 1000 iterations. The vectors of exogenous variables each consist of three elements:

z it = [1 z 1,it z 2,it ] , x it = [1 x 1,it x 2,it ] , i = 1, 2.
Here z 1,1t , z 2,1t , z 1,2t , and x 2,1t are independently drawn from the standard normal distribution, while z 2,2t = z 2,1t , x 1,1t = z 1,1t , x 1,2t = z 1,2t and x 2,2t = x 2,1t . These variables are drawn only once and then kept fixed. For the coefficient vectors

β i = [1 1 1] ,
11 In contrast to the analysis presented here, Tauchmann (2005) imposes restrictions on the coefficients' estimates β i . This does not allow for directly comparing estimated CP-measures.

12 For m ≥ 3, simulated ML were required for estimation the first-step multivariate probit models.

This would increase computing time for the Monte-Carlo experiments enormously. The value √ 0.5 is assigned to all coefficients α attached to z 1,it and z 2,it . In order to allow for different unconditional censoring probabilities Pr (d * it ≤ 0), the constants α 0,i are varied. We run two simulations with unconditional censoring probabilities that are uniform across equations, in particular 0.25 and 0.5, which corresponds to constants 0.9539 and 0, respectively. Another simulation is carried out for mixed unconditional censoring probabilities, i.e. 0.25 for equation one and 0.75 for equation two, which corresponds to constants 0.9539 and -0.9539, respectively. The errorcovariance structure is specified as

Σ εε =    1.5 -1 2    , Σ υυ =    1 -0.5 1    , Σ ευ =    0.75 -0.25 -0.25 0.75    .
As an alternative specification, the value zero is assigned to all off-diagonal elements of Σ υυ and Σ ευ everything else remaining unchanged, i.e.

Σ εε =    1.5 -1 2    , Σ υυ =    1 0 1    , Σ ευ =    0.75 0 0 0.75    .
This defines the four-variate N (0, Σ) distribution, from where the random components are drawn separately for each model. After drawing the error vector, the dependent variables are calculated as defined by model ( 1) through (4). Subsequently, the generated data serves as input to the estimators. 13 We do not vary these parameters, since -in contrast to the estimator proposed by Shonkwiler & Yen (1999) -the performance of generalized Heckman estimators does not depend on the true value of β, c.f. Tauchmann (2005). 

  x it and z it are vectors of observed exogenous variables. The vector d t = [d 1t . . . d mt ] describes the entire individual selection pattern. Finally, ε t = [ε 1t . . . ε mt ] and υ t = [υ 1t . . . υ mt ] are normally distributed, zero-mean error vectors with the covariance matrix Var (ε t , υ t ) =

5

  Page d it equation-by-equation. That is, after first-step estimation of the vectors α i by univariate or multivariate probit, the second-step regressions yielding estimates for the vectors β i are based on the conditional expectations3 E(y it |x it , d it ) = d it x it β i + d it σ ευii λ(z it α i ). Each regression equation, therefore, includes the inverse Mills ratio λ(z it α i ) as an auxiliary regressor and the parameters σ ευ ii are estimated as regression coefficients. Note that d it serves as a weighting variable, i.e. censored observations are weighted by zero and are therefore effectively excluded from the regression. 4Tauchmann (2005) distinguishes three variants of this estimator: The first one uses ordinary least squares (OLS) and ignores cross-equation correlation of ε it , another variant accounts for it in a simplified SUR fashion, and a third accounts for crossequation correlation and heteroscedasticity using a proper generalized least squares (GLS) approach. 5

  -step regression. Let X denote the stacked, mT × mk regressor-matrix 6 consisting of rows 0 1×k(i-1) x it λ(z it α i ) 0 1×k(m-i) . Note that inverse Mills ratios are included to the list of regressors. Let D denote a mT × mT matrix with diagonalelements d it and zero off-diagonal elements. This matrix allocates zero weight to censored units. Ω denotes the mT × mT block-diagonal weighting-matrix with elements ω ijt . It coincides with the identity-matrix if the model is estimated using the classical Heckman approach equation-by-equation, i.e. OLS. In the case of SUR estimation, the individual m × m sub-matrices Ω t are uniform across all t. In the case of GLS estimation, these weighting matrices are individually derived through matrix-inversion from estimates for var(ε it |d it = 1) and cov(ε it , ε jt |d it d jt = 1). Finally, let Y denote the stacked mT × 1 vector of dependent variables y it and ε denote the corresponding mT × 1 error-vector. Because of the inclusion of λ(z it α i ) to the list of regressors and E(ε it |d it = 1) = σ ευ ii λ(z it α i ), the error vector ε consists of elements ε it -E(ε it |d it = 1) rather than ε it . Now the generalized Heckman-estimators for β proposed by Tauchmann (2005) can be written

  where R jt denotes the partial conditional correlation-matrix Cor(υ t |υ jt ) and Ψ jt denotes a diagonal-matrix with diagonal elements ψ lt , l = j. Finally, Φ m (•) denotes the joint probability of the observed pattern d t . Note that the regression equations are still weighted by d it . 7

  , the ith equation of the tth observation still receives zero weight if y it equals zero because of censoring. m = 2 the regression equations are equivalent to the one used by Poirier (1980), except for the fact that Poirier (1980) conditions on d 1t d 2t = 1 rather than d 1t and d 2t , i.e. ψ jt equals one for all j and t. 8 For m = 2, δ ij = σ ευ ij holds for the auxiliary regression coefficients. One may estimate the system (12) equation-by-equation using OLS. Yet, the simple equation-by-equation Heckman-estimator is consistent as well in this case. So, conditioning on d t makes sense only in the context of simultaneous estimation. As a simple variant, one can construct such a system-estimator in the standard SUR fashion. However, this ignores the heteroscedasticity of the individual conditional error-variances.
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  jt |d it d jt = 1) equals E(ε jt |d jt = 1) for any pair i = j and any t; that is E(ε it |d t ) exclusively depends on d it , yet does not depend on any d jt , j = i.weights ω ijt is inconsistent, unless Σ υυ as well as Σ ευ are diagonal matrices. Clearly, the inconsistency of β originates from conditioning on d it equation-by-equation. it -E(ε it |d t ) rather than ε it -E(ε it |d it = 1), the condition E(ξ it |x t , d t ) = 0
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  for the latter ones are provided byTallis (1961). Therefore, with estimates for α and Σ υυ in hand, one can calculate these auxiliary regressors.
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Obviously, any element of Var(ε t |d t ) is a linear function of all elements of the truncated m-variate normal variance-covariance matrix Var(υ t |d t ). Therefore, estimates for the elements of Var(ε t |d t ) can be obtained as fitted values from regressing squared residuals and residual cross-products -which, in turn, have been obtained from initial OLS regressions -on a constant and on estimates for all elements of Var(υ t |d t ). 9 Results 8 See Vella (1997) for other related models. 9 Because of var(d it ε it |d it = 0) = 0, the variance-covariance matrix Var(d 1t ε 1t . . . d mt ε mt |d t ) that 11 Page 11 of 56 Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK
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  Unknown values for α and Σ υυ rather than known ones appear to be the relevant case from the viewpoint of applied econometrics. In our Monte-Carlo simulations, therefore, these parameters are estimated by first-step probit models. We consider six different estimators. In particular, conditioning on either d it or d t is combined with OLS, SUR and, finally GLS estimation. Conditioning on d it combined with OLS or
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  Results for Wald-tests on the unbiasedness of the six estimators are displayed in
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Table 1 .

 1 These simulation results are consistent with the theoretical ones, obtained in Section 2. If Σ υυ and Σ ευ are dense matrices, unbiasedness is clearly rejected for those estimators that condition on d it equation-by-equation and use SUR or GLS.

	In contrast, the classical Heckman estimator employed equation-by-equation does not

display a significant bias. The estimators that condition on the entire selection pattern do not display a significant bias either. If, instead, Σ υυ and Σ ευ are diagonal-matrices, neither of the estimators display a bias that is significant at the 0.05-level. Therefore, the Monte-Carlo simulation confirms that system-estimators that condition on d t are consistent, while system-estimators that condition on d it equation-by-equation are biased, unless certain restrictions apply to the true error-covariance matrix.

< insert Table 1 about here >

In order to analyze the estimators' performance beyond the issue of unbiasedness, estimates for the CP-conditional mean square error prediction criterion are displayed in

Table 2 .

 2 Comparing the SUR estimator that conditions on d t with its counterpart that conditions on d it yields the following plausible result: If the true covariance-matrix is dense, the consistent estimator that conditions on d t yields smaller CP-measures than the inconsistent one that conditions on d it . If Σ υυ and Σ ευ are diagonal-matrices -in estimated CP-measures are statistically insignificant at the 0.05-level.The comparison of OLS estimators that either condition on d t or d it yields similar results. If the error-covariance matrix is dense, the first estimator seems to perform better, though both are consistent. If, instead, Σ υυ and Σ ευ are diagonal-matrices the latter displays smaller CP-measures. However, these differences never are statistically significant, except for one simulation. mean square error and computational simplicity are a researcher's main criteria, while consistency is of secondary relevance, one might even argue in favor of the inconsistent SUR estimator that conditions equation-by-equation on the outcome of the upstream choice problem. Finally, if both consistency and a small mean square error are desired, and the computational burden of full information maximum likelihood is to be avoided, then the GLS estimator that conditions on the entire selection pattern appears to be Judge G.G. et al. (1980): The Theory and Practice of Econometrics, 2nd ed., John Wiley, New York.
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i.e. both estimators are consistent -the more parsimoniously parameterized one that conditions on d it performs better except for one simulation. Yet, the latter differences 15 Page 15 of 56 Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK < insert Table
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about here > Finally, we examine the performance of GLS estimators. Here, we observe substantial deviations in estimated CP-measures. While GLS conditional on d t yields the smallest mean square prediction error among all considered estimators in any simulation, GLS conditional on d it , except for two simulations, displays the largest one.

Moreover, the deviations in CP-measures between both GLS estimators always are significant. In fact, if the error covariance-matrix is dense, GLS conditional on d t significantly outperforms any other estimator in any simulation. As the only exception to this result, in some cases SUR conditional on d t displays CP-measures which are not significantly lager.

Our key simulation result -that GLS conditional on d t displays the best performance in terms of the mean square prediction error -fits theory. Among the considered estimators, GLS conditional on d t is the only one that not only is consistent, but also properly accounts for cross-equation correlation and heteroscedasticity. 16 Page 16 of 56 Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK step estimator that condition on the entire selection pattern rather than the selection of particular single equations -and, therefore, use generalized correction-terms -are shown to be generally consistent. Moreover, these estimators display a smaller mean square prediction error. These new estimators are computationally more demanding since they generally require simultaneous estimation of a multivariate probit model. Nowadays, however, hard-coded procedures for this estimation problem are provided by econometric software packages, rendering computational complexity a minor obstacle to the practical application of the suggested estimation procedure. concern, then equation-by-equation Heckman appears to be the best choice. If a small 17 Page 17 of 56 Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Table 1 :

 1 Tests on joint unbiasedness of regression coefficients

		Submitted Manuscript		
		OLS	SUR	GLS	OLS	SUR	GLS
		conditional on d it	conditional on d t
	dense error variance-covariance matrix				
	censoring prob. 0.25	0.800 0.000 0.000 0.449 0.484 0.155
	censoring prob. 0.5	0.545 0.000 0.000 0.964 0.070 0.642
	censoring prob. 0.25 and 0.75 0.446 0.000 0.000 0.117 0.929 0.259
	Σ υυ and Σ ευ with zero off-diagonal elements			
	censoring prob. 0.25	0.320 0.415 0.052 0.805 0.208 0.082
	censoring prob. 0.5	0.595 0.659 0.610 0.900 0.760 0.807
	censoring prob. 0.25 and 0.75 0.832 0.620 0.604 0.963 0.634 0.215

Note: P-values for Wald-tests reported. Page 22 of 56 Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Table 2 :

 2 Estimated conditional mean square prediction errors

		OLS	SUR	GLS	OLS	SUR	GLS
		conditional on d it	conditional on d t
	dense error variance-covariance matrix			
		6.499	6.038	6.455	5.826	5.468	5.357
	censoring prob. 0.25	(0.154) (0.149) (0.169) (0.130) (0.137) (0.140)
		12.810	13.444	15.816	12.275	11.776	11.178
	censoring prob. 0.5	(0.342) (0.377) (0.483) (0.309) (0.335) (0.330)
		23.747	23.129	35.492	23.095	21.877	19.387
	cens. prob. 0.25 & 0.75 (0.806) (0.755) (1.391) (0.784) (0.762) (0.786)
	Σ υυ and Σ ευ with zero off-diagonal elements			
		6.420	5.520	5.872	6.304	5.452	5.269
	censoring prob. 0.25	(0.156) (0.135) (0.212) (0.147) (0.138) (0.140)
		13.451	11.776	15.880	13.533	11.932	11.702
	censoring prob. 0.5	(0.386) (0.346) (1.601) (0.364) (0.324) (0.352)
		23.219	20.627	28.690	24.156	21.091	17.748
	cens. prob. 0.25 & 0.75 (0.768) (0.744) (2.733) (0.853) (0.710) (0.655)
	Notes: Standard errors in parenthesis.				
	Displayed CP-measures are scaled by the factor 1000.		

Table 1 :

 1 Estimated coefficients: censoring prob. 0.25, dense error variance-covariance matrix . dev. mean st. dev. mean st. dev. mean st. dev. mean st. dev. mean st. dev.

		GLS
	t conditional on d	SUR
		OLS
		GLS
	it conditional on d	SUR
		OLS	mean st
		true value

Table 2 :

 2 Estimated coefficients: censoring prob. 0.5, dense error variance-covariance matrix . dev. mean st. dev. mean st. dev. mean st. dev. mean st. dev. mean st. dev.

	conditional on d it conditional on d t	true value OLS SUR GLS OLS SUR GLS	1 0.9963 0.0596 0.9886 0.0586 0.9670 0.0641 0.9993 0.0587 1.0014 0.0604 0.9994 0.0586 mean stβ 0,1	1 1.0016 0.0351 1.0036 0.0339 1.0079 0.0346 1.0006 0.0361 0.9992 0.0334 1.0008 0.0327 β 1,1	1 1.0006 0.0250 1.0001 0.0249 1.0000 0.0234 0.9995 0.0256 1.0013 0.0245 0.9999 0.0239 β 2,1	0.75 0.7543 0.0783 0.7579 0.0763 0.7793 0.0846 0.7507 0.0759 0.7455 0.0765 0.7507 0.0736 σ ευ 11	σ ευ 12

Table 4 :

 4 Estimated coefficients: censoring prob. 0.25, diagonal-matrices Σ . dev. mean st. dev. mean st. dev. mean st. dev. mean st. dev. mean st. dev.

	ευ
	υυ and Σ
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MU11,MU12/MU21,MU22] $ CALC ; cor= MUU(1,2) YD2,X1Y2,X2Y2,M2Y2 $ MATR ; OL= L1'L1 ; OR= Init(4,4,0) ; UL= Init(4,4,0) ; UR= L2'L2 $ MATR ; YO= L1'YS1 ; YU= L2'YS2 ; XW= [OL,OR/UL,UR] ; YW= [YO/YU]