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Real option value and random jumps: Application of a simulation model 

 

RUNNING TITLE: Real-options values and random jumps 

ABSTRACT. This paper studies how sensitive real option valuations are to incorrect 

assumptions about the stochastic process followed by the state variables. We design a 

valuation model which combines Monte Carlo simulation and dynamic programming 

and provides an appropriate framework to evaluate the effect of estimation errors on 

both the value of real options and their critical frontier. Although the model is 

flexible enough to value American-type options contingent on a wide range of 

stochastic processes, we focus on the analysis of the effect of stochastic jumps. We 

apply our model to the valuation of an investment in the car parts industry 

documented in previous literature. Our results clearly show that underestimating this 

type of jumps might lead to substantial misjudgements in a firm’s decision-making 

processes. For instance, it may lead to profitable projects being rejected when jump 

diffusion is low, or negative expanded net present value projects being accepted. 
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I. Introduction 

In the spring of 2000, Tom E. Copeland predicted that the real option valuation, 

henceforth ROV, would eventually replace the discounted cash flow (DCF) model in 

under ten years (Copeland, 2000). This forecast may seem an inconceivably short 

space of a time, yet it entails a process of change which has lasted over 30 years, 

beginning in 1977 with Stewart C. Myers’ proposal. This thirty year period should be 

more than enough time for the adoption of a valuation technique which is 

theoretically superior to any other known model, even more so when other more 

costly innovations have successfully been implemented in a significantly shorter 

period of time.1 

Among the reasons put forward for the limited application of ROV, Newton 

and Pearson (1994) pointed to the operational complexity of its valuation techniques, 

Myers (1996) hinted at a lack of understanding of its underlying philosophy on the 

part of managers, and Lander and Pinches (1998) referred to the failure of 

mathematical tools to fulfil certain requirements. An even greater problem needs to 

be considered, namely the paradoxical lack of flexibility arising from the lack of any 

general model –no matter how complex its understanding or application may be– to 

be employed in the valuation of, if not all, then at least the more common real 

options. 

Whereas the DCF formula may be applied directly to virtually all investment 

opportunities, ROV is bereft of any similar formula. What is more, ROV comprises a 

combination of analytical formulae and numerical techniques, each of which is 

appropriate to the valuation of a specific option on a particular underlying asset. Not 

                                                 
1 In addition to its theoretical superiority, a number of papers have found empirical insights regarding the 
relevance of real option in market values. Such is the case of Paddock et al. (1988); Berger et al. (1996); 
Danbolt et al. (2002) or Andrés-Alonso et al. (2005); among others. 
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even the binomial model, perhaps the most flexible of all traditional models for 

valuing options, allows for direct treatment of stochastic processes other than 

continuous Brownian-type motions, or multiple sources of uncertainty. 

This paper analyses the consequences arising from the use of ROV techniques 

inappropriate to the nature of the stochastic process for the state variable. We 

specifically investigate how sensitive values of American-type real options are to the 

effect of unusual discontinuities of the state variable. Valuation is approached by a 

Monte Carlo simulation model which is inspired by the proposal of Grant, Vora and 

Weeks (1996 and 1997) and Ibáñez and Zapatero (2004) for financial options. 

Our model considers the specific nature of real investments which requires 

simultaneously determining the values of both real options and their underlying 

assets, from the state variable on which its cash flows depend. The main contribution 

of our model is that it directly estimates the values of the state variable that define 

the optimal exercise frontier, and thereby provides a clear decision rule to the holder 

of the option. Namely, comparing observed values of the state variable and the 

critical value at each exercise date it is possible to know whether exercise is 

recommended. For our analysis purposes, this feature represents an advantage 

compared to other simulation-dynamic programming methods, such as the powerful 

regression based procedure proposed by Longstaff and Schwartz (2001).2 

We apply our model to the valuation of a foreign direct investment (FDI) 

undertaken by a Tier-One multinational supplier of automobile components, whose 

real options are well outlined in Azofra et al. (2004). The results of our valuation 

highlight the important consequences arising from mistakes in the estimation of the 

                                                 
2 Our model’s advantage decreases with the number of early exercise opportunities, since determining 
each critical value requires simulating new paths for the state variable, and hence the model costs -in 
terms of time and computing resources- grow exponentially. 
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state variable stochastic process. Specifically, these findings underline the existence 

of significant differences in the value of call and put options when the foreseen 

evolution of the state variable advocates consideration of random discontinuities. The 

nature and scale of the errors depend both on the influence of the continuous motion 

as well as on jump diffusion, the greatest differences being observed when the 

continuous influence is lower and the jump diffusion is higher. Excluding 

discontinuities in these cases entails the appearance of bias in the evaluation which 

may lead to erroneous investment decisions being taken.  

The rest of the paper is structured as follows. The next section addresses the 

problem of evaluating American options on discontinuous stochastic processes. Our 

valuation proposal is outlined in section three. Section four deals with the analysis of 

the valuation results for options to expand and contract embedded in an investment 

case in the car parts industry. The final section concludes and discusses relevant 

implications. 

II. Valuing American real options contingent on discontinuous processes  

One challenge currently facing the real option approach is the development of a 

general model to enable valuation of a wide range of both call and put options, 

involving multiple exercise dates depending on the evolution of stochastic processes 

of an extensive nature. 

The chance to exercise options at more than one future date is probably one 

of the most common features of corporate investment. For this reason, the same 

arguments put forward by the advocates of ROV when criticising DCF (McDonald 

and Siegel, 1986; Lee, 1988; Pindyck, 1991), are now applicable to “European” 

ROV. It is just as difficult to imagine a corporate investment opportunity whose 
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exercise may not be postponed in the least, as it is to imagine a growth or 

abandonment option with only one future date.3 

As for the stochastic evolution of the state variable, most ROV models 

assume geometric Brownian processes. These are processes which have been widely 

used to describe the evolution of financial asset and commodities prices, but are hard 

to upscale to other types of state variables on which real options may depend. 

Variables such as demand, output prices or input costs, may adapt better to mixed 

processes, which combine continuous Brownian motion with random discontinuous 

jumps. Depending on each variable, these discontinuities could be brought about by a 

change in customers’ preferences, technological progress, or competitors’ actions.  

The occurrence of random jumps complicates –and indeed may render 

impossible– valuation of American options by means of traditional solving 

techniques: closed-form solutions, analytical approximations and lattice approaches. 

Merton (1976) derives the analytical valuation formula for the European option when 

the price of the underlying asset follows a mixed process, comprising a continuous 

geometric Brownian motion contingent on discrete Poisson jumps. Merton’s 

proposal enables us to value options whose exercise is restricted to the expiration 

date, but may not be used in the case of American options. 

Analytical approximations together with the most common numerical 

procedures –the binomial model (Cox, Ross and Rubinstein, 1979) and finite 

differences (Brennan and Schwartz, 1978)– allow us to consider the possibility of 

early exercise, although their computational application proves more complex when 

                                                 
3 This does not reduce the advance of the ROV approach over traditional DCF models, but highlights 
interest in analysing the value to postpone the exercise of real options when possible. See 
Vandenbroucke (1999) for a comparison of the NPV approach and ROV approximations. 
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involving stochastic processes other than the geometric Brownian family and 

multiple sources of uncertainty. 

By contrast, models based on Monte Carlo simulation (Boyle, 1977) may be 

applied to the case of multiple state variables regardless of the type of stochastic 

evolution to which they are linked. The greater flexibility inherent in this method 

revolves around the fact that valuation is undertaken by directly determining the 

process of the underlying asset, meaning that the partial differential equation (PDE) 

need not be solved. The drawback is that the direct application of Monte Carlo 

simulation is not suitable for valuing American style options. At least this is what 

was believed to be true until fairly recently.4 

Restrictions in simulation valuation are due to the very nature of this 

technique. Since exercising an option at a specific date prevents its subsequent 

exercise at a later date, the strategy which dictates optimal exercise of an American 

option relies not only on the prior evolution of its underlying variables, but also on 

their future values. Considering future events can only be performed through 

procedures involving backward induction, such as dynamic programming which 

resolves binomial and trinomial trees or finite difference procedures which do 

likewise with partial differential equations. By contrast, the Monte Carlo method is a 

forward induction process, generating future values for the variables based on 

previous values and therefore offering a suitable technique for assets whose cash 

flows at a given moment do not depend on subsequent events, as is the case of 

European options (Cortazar, 2001).  

                                                 
4 A good example of this view is the second edition of Hull’s handbook on financial options (Hull, 
1993), which on page 334 explains that “one of the drawbacks of the Monte Carlo approach is that it 
may only be used for European style derivatives”. In this same sense, Hull and White (1993) postulate 
that “Monte Carlo simulation cannot deal with early exercise since there is no way of knowing whether 
this is optimal when a specific price is reached at a given moment”. 
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In order to overcome this restriction, recent research has proposed combining 

simulation with some backward induction procedure that may lead to a valuation 

model applicable to both European and American type options, whatever the number 

of state variables and the nature of the stochastic processes. The earliest attempt to 

apply simulation in American style options valuation may be found in Tilley (1993)5, 

who proposes a model for valuing financial options dependent on the stochastic 

evolution of a single state variable coinciding with its underlying asset. Tilley 

proposes sorting the simulated values of the underlying asset for each exercise date 

into groups or “bundles” for which a single value of keeping the option alive until the 

next period is assigned, as the mean of the continuation value of the whole of these 

paths.6 

Tilley’s approach has been followed by a growing number of papers that 

propose different combinations of simulation and backward induction procedures for 

valuing American-type financial derivatives. The resulting models approximate the 

early exercise frontier or conditional expectation function for the derivative. 

Prominent within this approach are the works of Barranquand and Martineau (1995) 

and Raymar and Zwecher (1997), who propose the use of a partitioning algorithm on 

the unidimensional space of the cash flows yielded by the option, rather than 

considering the multidimensional space of the underlying assets defined in Tilley 

(1993). Grant, Vora and Weeks (1996) as well as Ibáñez and Zapatero (2004) 

directly estimate the values of the state variables for which the value of keeping the 

                                                 
5 Some authors cite Bossaerts’ (1989) working paper as the earliest reference to the analysis of early 
exercise of American options through simulation.  
6 This procedure entails certain significant drawbacks, such as the need to store all the simulated paths –a 
time-consuming exercise– as well as the complexity linked to the sorting process when dealing with 
multiple sources of uncertainty. 
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option alive until the following period matches the value of its immediate exercise at 

each exercise date. 

As an alternative proposal, Broadie and Glasserman (1997, 2004) and 

Broadie, Glasserman and Jain (1997) advocate use of non-recombinatory simulated 

trees7 and stochastic meshes to determine two estimates of the option value, one 

biased “upward” and another biased “downward”, both asymptotically unbiased and 

convergent towards the certain value. Finally, Longstaff and Schwartz (2001) opt for 

least square regressions as a method for approaching the expected value of keeping 

the option alive at each decision point. 

In the light of this type of proposal, recent corporate finance literature has 

welcomed Monte Carlo simulation procedures for valuing real options. The 

Barranquand and Martineau (1995) model and its subsequent development by 

Raymar and Zwecher (1997) have been used to value American-type options where 

the state variables evolve following conventional mean reverting and geometric 

Brownian processes. Such is the case of Cortazar and Schwartz (1998) who resolve 

optimal timing of oil reserves, and Cortazar (2001) who evaluates optimal operations 

in a copper mine. Other papers apply the Longstaff and Schwartz (2001) algorithm in 

valuing real options linked to patents and R+D projects (Schwartz, 2004; Miltersen 

and Schwartz, 2004), dot-com companies (Schwartz and Moon, 2000; Schwartz and 

Moon, 2001) and pharmaceutical companies (León and Piñeiro, 2003). 

III. The model 

After reviewing previous literature, we address the problem of valuing real options –

both growth (call) as well as abandonment (put)– of limited duration, TO, which may 

                                                 
7 Unlike binomial and trinomial trees, the values that appear at each node are placed in the order in 
which they are generated and not following a hierarchic order. 
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be exercised at one or more future points, τ < 2τ < ... < Nτ = TO, during the also 

limited life of the underlying investment, T.8 This investments yields cash flows 

dependent on an uncertain variable, St, whose evolution over time we suppose to 

follow a mixed process, comprising a geometric-Brownian type motion subject to 

random jumps spread over a Poisson variable. This implies that the infinitesimal 

variation of the state variable dSt is given by: 

( ) ( ) dqSdzSdtSkdS tttt 1−++−= πσλα  

where α and σ represent, respectively, the expected drift and volatility of the 

continuous motion; λ is the mean frequency of discontinuous jumps per unit of time; 

(π-1) and k are, respectively, the random variable measuring the size of the 

proportional jump and its mean value;9 and dzt and dqt represent stochastic Wiener 

and jump processes, which we assume to be independent and characterised by their 

usual expressions: 

(0,1), Nξdtdz →⋅=     ξ  

[ ]λ
λ

λ
Poissonq

dt
dt

dq →
⎩
⎨
⎧

⋅=
⋅−=

= ,
prob1

1prob0
 

Regarding the discontinuous variation, we assume each jump size to be 

independent and log(π) to follow a normal distribution with mean µπ and deviation 

σπ, such that:  

[ ] 1
2

exp1
2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=−= π

π
σ

µπEk  

Discontinuities are linked to “unusual” and significant events, which give rise 

to upward and downward variations in the uncertain variable, while the continuous 

                                                 
8 The equidistance (τ) of the exercise dates, derived from this formula, is assumed for clarification and 
explanation purposes only and does not condition the model in any way. Logically, TO<T. 
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process –the geometric Brownian motion– is linked to the idea of “normal” events. 

Following common practice, we suppose the direction of the jump to be unknown a 

priori and hence the effect of the jump in the trend to be zero, and therefore 

µπ = –σπ
2/2 y k = 0 

 The method we propose to value both European and American style real 

options requires calculating, at each early exercise point, τ < 2τ < ... < Nτ = TO, the 

successive “critical” values Sτ*, S2τ*, ..., SNτ* of the state variable. These critical 

values represent the exercise frontier, since for these values the payoff resulting from 

exercising the option is equal to the payoff of maintaining it until the next period. 

The exercise frontier is used to estimate both the option and underlying project 

values for a series of simulated paths. Solving the valuation problem is thus performed 

in two stages: i) an initial phase which consists of estimating the successive “critical” 

values by combining Monte Carlo simulation with dynamic programming; and ii) a 

second phase which involves determining the value of the option from the previous 

critical values and which merely requires the use of simulation techniques. 

III.I. Stage one: Estimating the critical value frontier 

Assuming complete markets, the expression for the future equilibrium value for the 

state variable is the following:10 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+∆+∆−−= ∑

=

q

i
it ztztrSS

1

2

0
2

0 25.0exp π
π

σσσσδ  

where r and δ represent, respectively, the continuous risk-free rate of return and the 

convenience yield,11 z0 represents a standard normal random variable linked to the 

                                                                                                                                          
9 Hence, the mean growth rate caused by the discrete jumps is λk. 
10 This expression derives from applying the risk-neutral valuation approach to the “twin” financial asset, 
which is perfectly correlated to the state variable. 
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continuous diffusion process; zi are standard normal independent variables 

determining the size of each jump and, as mentioned, q reflects the number of 

discrete jumps generated by a Poisson distribution with frequency λ.12 

Each of the paths of the state variable determines a pair of values for the 

underlying project contingent on the decision to exercise, ( )i
t

i
exerciset SV , , and to 

continue without exercise, ( )i
t

i
not SV , , where the superscript i indicates the number of 

simulations performed. The value of the project when the option is exercised at t 

(with t ≤ TO) is obtained adding the cash flow generated at that point, i
exercisetF , , to the 

expected value of the project at the following period, [ ]i
exercisetVE ,τ+ , also taking into 

account the exercise price, X, obtained or paid for the sale or purchase of the project, 

depending on whether it is a put or a call option: 

( ) [ ] )exp(,,, ττ rVEFXSV i
exerciset

i
exerciset

i
t

i
exerciset −++±= +  

where τ is the time interval into which the lifespan of the option has been divided. 

To calculate the value of the underlying project should the option not be 

exercised, we need to distinguish between the option expiration date and the 

remaining points at which early exercise is allowed. Hence, when t is the expiration 

date (t = TO), the value of the underlying is the present value of cash flows derived 

from expiration of the option without exercise, 

( ) [ ] )exp(,,, τ
τ

rVEFSV i
noT

i
noT

i
T

i
noT OOOO −+=

+
 

                                                                                                                                          
11 Following Merton (1976) we assume the risk associated to the discontinuous jump of the state variable 
to be diversifiable. The risk-neutral simulation would then show a continuous modified drift, r-δ, rather 
than the initial α. This is the equivalent of subtracting from the continuous drift the risk premium of the 
corresponding asset (Trigeorgis, 1996: 102).  
12 The simulation of the number of discrete jumps at a time interval, ∆t, is obtained from applying the 
Monte Carlo method to the accumulated probability function P[q≤ X]. 
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When t is a point prior to expiration, t < TO, the project value is determined 

by considering the possibility of adopting a new contingent decision at a later point. 

The value of the underlying would be calculated from the expected value of the 

project at the following period –including optimal decisions taken up to expiration of 

the option– and the cash flow generated at that point.  

( ) [ ] )exp(,, ττ rVEFSV i
t

i
not

i
t

i
not −+= +  

We initiate the estimation of the critical values series by simulating M values 

of the state variable at the option expiration date, Mi
T OS ,...,2,1= , taken from the initial 

value, S0, and according to the stochastic process assumed.13 By definition, the 

critical value at the option expiration date *
oTS , is the one for which the value of the 

underlying, assuming immediate exercise of the option, ( )*
, OO TexerciseT SV , coincides 

with the value of non-exercise, ( )*
, OO TnoT SV . 

Estimating these critical values requires simulating K paths of the state 

variable up to expiration of the underlying project, T, ji
T OS ,

τ+
, ji

T OS ,
2τ+

, … , ji
TS ,  for 

i=1, 2, …, M and j=1, 2, …, K, as Fig. 1 details: 

[Insert Fig. 1] 

Each of these paths enables us to estimate both cash flows derived from the 

exercise and non-exercise generated from the option expiration date up to the end of 

the project (TO, T). Discounting each of these cash flows at the option expiration 

date, TO, yields the corresponding contingent value of the investment, 

                                                 
13 The simulation may begin at any moment and for any value of the state variable (Grant, Vora and 
Weeks, 1996). However, when dealing with American options, whose optimal exercise at each moment 
depends on future expectations, the first critical value to be calculated must correspond to expiration. 
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( )i
TdecisionT OO SV , , and the comparison of these M pairs allows us to pinpoint the 

required critical value, *
OT

S . 

Having calculated the critical value of the state variable at the option 

expiration date, we go back to the immediately prior exercise point, TO-τ, for which 

we repeat the process of estimating the critical value of the state variable, *
τ−OT

S . The 

procedure for determining *
τ−OTS  again requires generating a new set of M state 

variable values, Mi
T OS ,...,1=

−τ
, from which other K paths are simulated up to the end of the 

project –values of ji
T OS , , ji

T OS ,
τ+
, ji

T OS ,
2τ+

, … , ji
TS ,  for i=1, 2, …, M and j=1, 2, …, K. 

These paths in turn serve to determine the cash flows generated from that date and 

for both exercise and non-exercise cases. 

The optimization process requires not only considering whether the option is 

exercised or not at TO-τ, but also possible exercise at a later date, which will mainly 

affect the future expected value of the project. If the option is exercised at TO-τ, the 

expected value of the project at the following point, [ ]i
exerciseT OVE

, , must be calculated 

considering the exercise which has already occurred, in turn preventing any new 

exercise decisions at subsequent dates. However, if the option is not exercised at TO-

τ, the expected value of the project at the following period requires comparing the 

simulated value of the variable ji
T OS ,  with the critical value obtained during the 

previous step, *
OTS  in order to incorporate the possibility of adopting a new decision. 

Hence, determining the value of the project at TO-τ, assuming non-exercise at 

this date, merely involves adding the current cash flow to the discounted expected 

value of the project at TO, [ ]i
T OVE , which is calculated by averaging the K simulated 

values for both exercise or non-exercise at TO cases. Finally, it just remains to 
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compare the value of the exercise of the option, i
exerciseT OV ,τ− , with the value of 

keeping it alive until the following period, i
noT OV ,τ− , so as to identify the critical value 

at TO-τ, *
τ−OT

S . 

 The procedure to determine *
τ−OT

S , is repeated for each of the prior dates where 

exercise is possible until the remaining values that make up the optimal exercise 

frontier are found. Logically, as we go back to the initial moment and although the 

logic for estimation always remains the same, the complexity and number of 

operations involved in determining critical values multiplies. 

III.II. Stage two: Estimating the current value of the option 

Having determined the critical values of the state variable at the different moments 

when early exercise is possible, *
τS , *

2τS , ..., *
τ−OT

S , *
OT

S , the value of the American 

option may be estimated by conventional simulation as if it were a European option. 

In this case, simulation involves estimating a sufficient number of state 

variable paths from the current moment to the project expiration date and we 

estimate the moment of optimal exercise along each path in accordance with the 

optimal early exercise frontier. Finally, we obtain the present value of the option 

discounting the resulting payoff form each path, and then taking the average of all 

the paths.  

IV. Valuation of an investment in the car parts industry 

In order to evaluate both interest in flexibilising valuation of real options and the 

proposed simulation model, we analyse the results of its application to the case of an 

investment undertaken by a Tier-One multinational supplier of automobile 

components. A previous valuation of this investment and its real options, using the 

Page 14 of 30

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

-15- 

binomial model, is documented in Azofra et al. (2004). The project involves a 

foreign direct investment in the acquisition of production capacity in Brazil. As 

evidenced in Azofra et al. (op. cit.), the project is one of those opportunities which 

despite yielding a negative NPV is undertaken due to their strategic value, which is 

shown to emerge from its real options. 

Through this commitment, the investing firm aimed to cater for the demand 

for car parts manufacturers in Brazil and, at the same time, achieve a strategic 

foothold in the South American car parts market so as to access future growth 

opportunities. The initial outlay of 38 million dollars was enough to meet sales 

forecasts for the initial five years, leading to the supply of components for some 

500,000 vehicles during the first year of operations and nearly 850,000 units in each 

of the next four. 

Table 1 shows the expected cash flows for these five years. The 

corresponding NPV varied between a loss of seven million dollars, in the case of a 

five year period and capital cost of 13.66%, and a loss of 21 million dollars, in the 

case of perpetual life and a capital cost of 28.4%. In either case, DCF valuation 

advised against the investment. 

[Insert Table 1] 

Considering growth and flexibility options offers quite a different valuation 

result. Azofra et al. (op. cit.) value European growth options, capabilities to 

redistribute resources towards more profitable uses, and early abandonment of the 

project –the latter as an American-type option–. Estimation is performed by applying 

a binomial model, in which the uncertain variable is defined as the number of cars 

produced in Brazil, which is assumed to follow a geometric Brownian process. The 

study confirmed the significance of these options in different scenarios for future 
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evolution of the state variable, providing empirical evidence to support the relevance 

of real options when explaining the investment decision. 

Taking the information from this case as a reference, we explore the 

consequences of neglecting possible discontinuities in the future evolution of the 

state variable when valuing American-type options. Our analysis focuses on valuing 

options to expand and contract the initial size of the project. The expiration date of 

these options coincides with the end of the fourth year of operations and may be 

exercised at three different dates, at the end of the second, third and fourth annual 

periods. 

The option to expand the project resembles a call option with a strike price 

equal to the cost of the required assets. Exercising the option involves an increase of 

50% of both the market share and the maximum production capacity and entails an 

outlay equal to 40% of the initial investment.14 The option to contract resembles a 

put option with a strike price equal to the book value of the assets affected. 

Exercising the option entails the reducing the maximum production capacity by 50%. 

The values of these options are estimated using two different stochastic 

processes for the state variable: a pure geometric Brownian motion, on the one hand, 

and a mixed process comprising the previous Brownian process and discontinuous 

jumps linked to a Poisson type motion, on the other. The values of the parameters 

used in the evaluation are: i) for the pure geometric Brownian process, we assayed 

with alternative volatilities of 7%, 13% and 20% and annual average growth rates of 

0%, 7% and 15%; and ii) for the discontinuous part of the mixed process, the 

volatility values of the jump considered are 25%, 50%, 200%, 400% and 500% 

                                                 
14 In order to simplify the analysis we have not considered the car-makers’ control of the value chain and 
its implications for the option valuation. For a detailed study, see Azofra et al. (op. cit.). 
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which are combined with a single value of the expected number of jumps equal to 

0.2 (λ = 0.2).15 

We also assume that the jumps belong to the category of diversifiable or non-

systematic risk. Following Azofra et al. (2004), the initial value of the state variable 

is 1 629,000 vehicles, for which there is a maximum value acting as an absorbing 

barrier at 4 000,000 units. Besides, initial configuration of the project implies a 

maximum production capacity of 1 200,000 vehicles that can be modified by its 

options to expand and contract. Based on S&P-500, the beta coefficient of the state 

variable is 1.035, and the risk-free return and the market premium are 6.59% and 

6.85%, respectively. 

Simulation is undertaken in annual subintervals, valuing the possibility of 

early exercise of the option at each of the three exercise dates considered. The 

number of simulated paths to obtain the present value of each option amounts to 

400,000, the result of 200,000 direct runs plus another 200,000 estimations using the 

“antithetical variates” technique16 and M and K parameter values equal to 250. 

IV.I. Valuing the option to expand 

Table 2 shows the estimated values of the option to expand for the scenarios within 

the parameters established by the pure geometric Brownian process and the mixed 

process.17 These results highlight the significant differences in the value of the option 

and, therefore, the impact of possible mistakes made by conventional ROV models, 

                                                 
15 The parameter λ = 0.2 implies that, on average, only one discrete jump will occur during the five-year 
life span of the underlying project. We feel it is more interesting to show the valuation results assuming a 
highly volatile and low frequency process of random jumps, as opposed to multiple smaller jumps, 
which may prove hard to distinguish from continuous evolution itself. On the choice of parameters see 
http://www.puc-rio.br/marco.ind/stoch-a.html#jump-dif.  
16 The technique of antithetical variates consists of generating two symmetrical observations at zero for 
each of the random simulations of the normal distribution. 
17 It should be noted that the 0% level of the volatility of the discontinuous jump corresponds to the pure 
geometric Brownian process. 
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particularly when the influence of continuous motion is smaller. Hence, in the 

scenario with least volatility and continuous variation (α = 0% and σ = 7%), the 

value of the option to expand increases ten fold when a jump with a 50% dispersion 

is introduced, and is reduced by almost 63% when jump dispersion reaches 500%.  

[Insert Table 2] 

These results underscore the fact that the sign of the relation between the 

value of the option and the volatility of the jump depends on the latter’s level. Thus, 

the value of the option increases in those scenarios in which jump dispersion is 

lowest, as a consequence of the rise in total volatility to which the variable is subject. 

These differences are more significant in the case of lower continuous volatility (σ = 

7%), since in this case the increase which the total volatility undergoes when there is 

a jump of equal dispersion is much greater, in relative terms, than at levels of 

permanently high volatility. Thus, for example, a jump dispersion equal to 100% 

implies a total volatility in the process of 53.9% or 50.5% depending on whether the 

standard deviation of the continuous motion is either 20% or 7% respectively.18 

As jump volatility increases, this relation is inverted and gains in significance 

at higher levels of continuous volatility. This result will remain the same provided 

the mean size of the jumps, k, is zero and does not affect the trend of the process. 

This case implies that the average taken by the distribution of the jump logarithm 

inversely depends on the value allocated to the jump volatility (µπ = –σπ
2/2) and, 

therefore, an increase in these values of over 100% reduces this average and thereby 

the value of the underlying project. Moreover, the upper limit of the cash flows 

imposed by the maximum production capacity reinforces the inverse reaction 

between the value of this option and jump volatility.  
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As regards the continuous evolution of the state variable, the expected 

positive relation between the growth rate and the value of the option for the various 

levels of volatility and stochastic processes considered is confirmed. Evidently, the 

more favourable the scenario foreseen vis-à-vis the growth in car production the 

more likely and profitable will be the expansion of the initially planned investment.  

This is not the case, however, for the continuous volatility of the state 

variable, which evidences a negative relation with the value of the option to expand, 

which is contrary to the ceteris paribus relation established by the theory of financial 

options. Yet, this result concurs both with the nature of the investment project and 

the discretisation method used for the state variable. On the one hand, the maximum 

production capacity of the project leads to an asymmetrical effect of the volatility on 

the net cash flow probability distribution. Greater volatility implies greater dispersion 

of the lower values, whereas the higher values remain bounded by the maximum 

production capacity and, as a result, the increase in volatility will diminish the value 

of expanding, particularly at those levels where growth of the state variable is 

highest.19 

The assumption that the state variable evolves in the continuous field 

following a lognormal diffusion process leads to its relative variation being 

distributed normally with a tendency reduced 0.5 times the variance of the process. 

As a result, the volatility parameter not only affects the deviation of future values, 

but also the expected value in its simulation. Hence, the increase in volatility not 

only widens the range of possible future values of the underlying, but also reduces its 

                                                                                                                                          
18 The estimation of the total volatility for the mixed process was performed using the expression 
obtained in Navas (2003), who amends the one initially obtained in Merton (1976). 
19 In fact, the reader can note that this negative relation disappears in cases of zero jump volatility and α 
values equal to 0 and 7%. 
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average simulated value and, thus, the possibilities of optimal exercise of the option 

to expand. 

[Insert Fig. 2] 

Finally, Fig. 2 shows the behaviour of the critical values at the three exercise 

dates depending on the parameter values of the stochastic process. These values 

logically reflect the relation between the value of the option and the previously 

described characteristics of the state variable evolution. The figure also highlights the 

expected positive trend of the critical values together with their lower dispersion as 

the option expiration approaches.20 This positive trend ceases to be apparent in the 

higher levels of jump dispersion, since the joint volatility increase undergone by the 

state variable process delays optimal exercise of the option.  

IV.II. Valuing the option to contract 

The valuation results of the option to contract are shown in Table 3. Once again, 

different scenarios are considered with regard to the parameters of the pure 

geometric Brownian motion and the mixed process. The inclusion of discontinuous 

jumps impacts the value of the option, although the relative variation which this 

option undergoes is noticeably lower than in the option to expand. The lower relative 

influence in the option to contract is a consequence of the stochastic process nature. 

Positive growth levels in the state variable mean that the likelihood of exercising the 

option hardly varies when there is an increase in the discrete volatility despite the fall 

in the value of the underlying.  

[Insert Table 3] 

                                                 
20 It should be noted that, as the project presents a finite life span, approaching the option expiration 
implies less time to compensate for the cost of additional investment through the higher cash flows 
arising from expansion. 
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It can also be seen that the greater the influence of the continuous component 

(high α and σ values) the lower is the influence of the jump in the option value. By 

contrast, when the effect of the continuous motion is barely relevant, the increase in 

the jump dispersion significantly reduces the value of the option. This result reflects 

the nature of the state variable, whose lower limit is bounded at zero such that the 

jump dispersion produces an asymmetric effect on the cash flow probability 

distribution. Jump volatility implies greater dispersion in the underlying project 

higher values, whereas lower values remain bounded and, thus, it diminishes the 

chances of optimal exercise of this option.  

The results also confirm the expected negative relation between the drift of 

the state variable and the value of the option for the different levels of volatility 

analysed. The less favourable the expected evolution for the state variable, the more 

valuable is any action aimed at reducing the size of the initial project. The same 

happens with the continuous volatility of the state variable, which displays a positive 

relation with the value of the option to contract, resulting not only from the expected 

asymmetrical increase of possible gains for the option, but also the “implicit” 

reduction of the mean simulated value of the underlying, already mentioned for the 

option to expand. Only when the state variable shows a flat trend (α = 0%), does the 

increase in volatility favour the value of the underlying asset without affecting the 

probability of exercise, once again due to the lower boundary inherent in the nature 

of the state variable. 

Finally, Fig. 3 shows the evolution of critical values at exercise dates in terms 

of the stochastic process parameters. The figure bears out the expected upward trend 

of the optimal exercise frontier and the lower dispersion of the critical values 

approaching expiration of the right. Given the finite lifespan of the investment, the 
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reduction in the present value of its cash flows is lower as the expiration date of the 

right approaches, and as a result, exercising the option will be advisable on a greater 

number of occasions. Only when the jump dispersion is extremely high –and thus the 

volatility of the joint process– can any reduction be seen in the critical values 

corresponding to the point prior to the expiration date indicating deferment in 

exercising the right. 

[Insert Fig. 3] 

V. Conclusion 

This paper identifies some potential problems in the application of ROV. Traditional 

ROV models work well when the state variable follows a Brownian-type continuous 

motion. As this may not always be the correct assumption about the stochastic 

process followed by the state variable, understanding how sensitive real option 

values are to failures becomes a critical issue. 

We focus on the valuation of American options whose state variable evolves 

following a mixed process, comprising continuous random walks together with 

random discontinuous jumps. The presence of random discontinuities complicates 

valuation of American options in commonly used numerical techniques –binomial 

trees and finite differences– thus making simulation the only technique applicable 

with any degree of simplicity and generality. We specifically propose a flexible 

model by merging Monte Carlo simulation and dynamic programming which allows 

us to weigh up the potential errors when omitting the possible occurrence of random 

jumps.  

We have applied the model to value a real investment case, whose valuation 

using a binomial model is outlined in Azofra et al. (2004). In general terms, the 

application results confirm that one critical issue in correctly implementing ROV is 
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correct estimation of the state variable process. We observe that random mean-zero 

discontinuities alter the value of the options to expand and to contract, particularly 

when the influence of the continuous variation is lower and jump dispersion is high. 

Further, the joint effect of the jump together with the real restrictions caused by the 

maximum production capacity of the investment or the very nature of the state 

variable, magnify the differences identified in the estimations. 

Since the influence of random jumps is not quantified in the evaluation 

obtained using conventional numerical techniques, estimating the expanded NPV 

may lead to errors similar to those which occur when using the much criticised DCF 

approach. In our case study, leaving out discontinuities entails the appearance of 

biases –downward when the jump dispersion is low and upward in the opposite case– 

which may lead to inefficient investment decisions being taken. 

At lower discrete volatility levels, undervaluing the option to expand may 

lead to sub-optimal deferral of exercising the right and even the rejection of 

profitable projects. Over-valuation, might could appear in traditional ROV models in 

the case of high jump dispersion may explain the naïve selection of negative 

expanded NPV projects. Finally, the probability of early non-optimal exercise of the 

option to contract increases with the relative influence of discrete volatility, leading 

to the possible rejection of subsequent positive cash flows.  

Although in this work we only assess the influence of random jumps with a 

zero mean value, our results show that the influence of discontinuities on option 

values will be even greater and thus errors arising from conventional ROV models 

even more evident. Summing up, the differences observed allow us to justify the 

effort required to flexibilise ROV models when the investment opportunities 
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available to the firm suggest considering exercise at more than one future date and 

the inclusion of stochastic processes other than pure geometric Brownian. 
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Fig. 1. Simulation paths for the uncertain state variable 
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Fig. 2. Critical values for the option to expand. 
Notes: Growth rate of state variable is 7%. All values are in thousands USD. 
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Fig. 3. Critical values for the option to contract 
Notes: Growth rate of state variable is 7%. All values are in thousands USD. 

Tables 

Table 1. Predicted Cash Flows  

 Year 1 Year 2 Year 3 Year 4 Year 5
Revenues 31,009.74 64,419.80 64,024.38 64,042.57 64,061.30
Cost of Goods Sold 18,084.20 37,115.88 38,229.35 39,376.23 40,557.52
Personnel Costs 3,254.57 4,080.05 4,202.45 4,328.52 4,458.38
Other Operating Costs 705.89 1,243.18 1,280.47 1,318.88 1,358.45
General and Administrative Expenses 4,565.59 6,031.87 6,212.82 6,399.21 6,591.18
Taxes 815.30 3,378.46 3,345.60 4,102.07 3,970.55
Total Payments 27,425.55 51,849.43 53,270.69 55,524.91 56,936.08
Net Free Cash Flow 3,584.20 12,570.38 10,753.69 8,517.65 7,125.22
Notes: Values are in thousands USD. Source: Azofra et al. (2004). 

Table 2. Present value of the option to expand  

   Jump Volatility 
Growth rate = 0% 0% 25% 50% 200% 400% 500%

7% 312.87 3,407.67 3,437.74 3,176.89 858.29 1.16
13% 2,929.65 3,324.56 3,262.76 3,081.87 506.82 55.09Continuous 

Volatility 
20% 2,982.51 3,133.02 3,082.54 3,069.44 1,320.62 135.52

Growth rate = 7%       
7% 5,540.52 6,267.29 6,269.84 6,205.98 1,282.93 234.40
13% 6,049.64 6,057.93 6,187.02 6,076.66 6,013.01 297.03

Continuous 
Volatility 

20% 5,711.13 5,798.84 5,765.69 5,754.64 5,376.63 450.16
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Growth rate = 15%       
7% 10,407.63 10,514.03 10,483.70 10,458.74 2,991.41 2,410.86
13% 9,875.19 10,044.93 10,016.15 10,022.05 10,035.88 2.312.44

Continuous 
Volatility 

20% 9,390.97 9,331.24 9,263.66 9,424.31 9,147.26 5,315.77
Note: Values are in thousands of USD. 

Table 3. Present value of the option to contract  
   Jump Volatility 

Growth rate = 0% 0% 25% 50% 200% 400% 500%
7% 7,452.35 7.485.04 7,518.70 7,451.86 7,520.56 6,547.17

13% 7,327.73 7,207.16 7,301.42 7,273.81 6,704.01 6,466.43
Continuous 
Volatility 

20% 7,104.75 7,086.80 7,004.11 6,898.37 6,907.27 6,057.61
Growth rate = 7% 

7% 4,122.86 4,083.16 4,099.23 4,040.44 4,257.15 4,000.61
13% 4,166.67 4,184.72 3,905.42 4,066.78 4,135.14 3,835.34

Continuous 
Volatility 

20% 4,365.83 4,263.87 4,352.07 4,312.32 4,228.64 4,056.90
Growth rate = 15% 

7% 213.86 286.00 255.16 333.05 266.64 242.14
13% 607.83 611.86 608.74 624.18 747.00 671.86

Continuous 
Volatility 

20% 1,164.20 1,110.30 1,104.35 1,236.70 1,370.97 1,166.68
Note: Values are in thousands of USD. 
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