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Abstract

This paper applies quantile regression to assess the factors that influence

the risk of incurring high trading costs. Using data on the equity trades of the

world’s second largest pension fund in the first quarter of 2002, we show that

trade timing, momentum, volatility, and the type of broker intermediation are

the major determinants of the risk of incurring high trading costs. Such risk is

increased substantially by either high or low momentum and by strong volati-

lity. Moreover, agency trades are substantially more risky in terms of trading

costs than similar principal trades. Finally, we show that the quantile regression

model succeeds well in forecasting future trading costs.

Keywords: market impact costs, extreme trading costs, pension funds,

quantile regression

JEL classification: G11, G23, C53
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1 Introduction

Since in efficient markets, stock prices move in response to the release of new infor-

mation, trading itself may cause prices to be revised. Loosely speaking, a buy trade

tells the market that a stock is undervalued, and similarly, a sell trade indicates

that a stock is overvalued. Market participants observe the information conveyed by

trading and adjust their perceptions accordingly, which results in price movements.

Other reasons for stock prices to move in response to trading are e.g. demand and

supply imbalances and liquidity effects.

When an investor sends an order to the market, it is usually not executed directly.

For a large trade done by e.g. an institutional investor, it usually takes some time

to find a counter party. Since large trades convey information, the price at trade

execution is generally different than at trade initiation. Market impact costs occur

when price effects cause execution prices to be less favorable than benchmark prices.

A stock with a high gross return may yield a relatively low net return if trading

costs are high. Similarly, a stock with a low gross return can yield a relatively high

net return given low transactions costs. Stated differently, trading costs affect the net

return on an investment and thus influence optimal portfolio holdings. Therefore,

trading costs play an important role in portfolio management.

The starting point of this paper is our observation that a relatively small group

of equity trades causes the major part of market impact costs. For the equity trades

investigated in this paper, executed by the world’s second largest pension fund, we

find that only about 10% of the trades causes approximately 75% of total market

impact costs. Consequently, reducing or avoiding the trading costs of even a few

expensive trades would result in substantial savings on total costs. Therefore, it is

important for the investor to know what trade properties and market circumstances

increase the risk of incurring extreme trading costs.

The existing literature on trading costs usually applies a regression approach to

analyze the average impact of certain determinants on market impact costs. Var-
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ious trade-, exchange- and stock-specific characteristics have been shown to affect

market impact costs. See Keim and Madhavan (1998) and Bikker et al. (2007) for

an overview. However, the usual regression-based method is not suitable to assess

the factors that cause trading costs to be extreme. That is, the traditional setup

focuses on the average impact of certain trade properties and market circumstances

on trading costs rather than on the extreme effects that these determinants occasion-

ally have. Analyzing the variance of market impact costs (see Bikker et al. (2007))

suffers from the disadvantage that variance is a one-sided risk measure that does not

distinguish between extremely low and extremely high trading costs. Therefore, this

paper takes a different view, focusing on the determinants of extremely high trading

costs and using quantile regression to assess these factors. With the flexible quantile

regression approach, we can explicitly determine the impact of trade characteristics

and market conditions on the 100τ% most expensive trades, where τ can take any

value in the interval (0, 1). Besides its flexibility, another advantage of quantile re-

gression is its relative robustness to outliers in the dependent variable, which are

abundantly present in the data used in this paper.

In practice, a major motive for estimating market impact models is their use

for prediction purposes in trading cost management. Therefore, this paper also ad-

dresses the issue of forecasting future market impact costs. Forecasts of transaction

costs, particularly market impact costs, can be integrated in the portfolio construc-

tion at the same stage of the optimization process where risk and return forecasts

are applied. In this way the components return, risk, and costs are optimized simul-

taneously. We evaluate the performance of the quantile regression model in terms of

its forecasting quality.

The data used in this paper cover the global equity trades executed by the world’s

second largest pension fund (the Dutch ‘Algemeen Burgerlijk Pensioenfonds’ (ABP))

during the first quarter of 2002. This unique data set includes a vast collection of

trade, exchange, and stock specific characteristics corresponding to each trade.

2
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Previous research has established important roles for trade style and variables

related to trade difficulty (such as market capitalization and trade size) in explaining

market impact costs. We find that various trade characteristics and market condi-

tions increase the risk of incurring high trading costs. In particular, conditions of

high and low momentum and strong volatility make extreme market impact costs

more likely. The type of broker intermediation also appears to be an important risk

factor. Agency trades are more risky in terms of trading costs than similar principal

trades, while trade timing also increases risk substantially. Moreover, we show that

accurate prediction of market impact costs poses a difficult challenge. Therefore,

we take a different view and focus on predicting the entire distribution of market

impact costs instead of expected values. We show that quantile regression − not

applied before in this field − is able to successfully forecast this distribution and

outperforms the traditional regression approach in terms of predictive power.

The setup of this paper is as follows. Section 2 introduces the concept of market

impact costs and presents the data used in this paper. This leads us to Section 3,

which explains the quantile regression approach and subsequently discusses the es-

timation results for the quantile regression model. Moving forward to Section 4, we

discuss how the quantile regression model can be used to form expectations about

future market impact costs on a stock. Subsequently, we assess the forecast quality

of the quantile regression model. Finally, Section 5 summarizes and concludes.

2 Preliminary data analysis

The data used in this paper comprise all internally managed equity transactions of

the world’s second largest pension fund, ABP (‘Algemeen Burgerlijk Pensioenfonds’),

during the first quarter of 2002. ABP has some 2.4 million clients and an invested

capital of approximately 200 billion euro1, corresponding to one third of total Dutch

pension fund assets. In the period under consideration there were ten internal funds
1This is the total invested capital in July 2007.

3
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in ABP’s equity group, apart from the externally managed funds. The unique data

set contains detailed information on 3,721 equity trades executed during the first

quarter of 2002, with a total transaction value of 5.7 billion euro. The ten internally

managed equity portfolios in our sample had a total value of 20 billion euro. Of all

trades, 1,962 were buys and 1,759 were sells executed in Europe, the United States,

Canada, and Japan.

Trading process

Before turning to the trading process at ABP, we distinguish three types of trade. A

principal trade is a transaction between the pension fund and the broker, in which

case the broker buys or sells stocks from or to the pension fund at a predetermined

price. Hence, the risk is transferred to the broker. The broker takes on the other side

of the trade and tries to execute the trade in the open market. An agency trade is a

trade between the pension fund and a counterparty, where the broker acts solely as

an intermediate party. Thus, an agency trade involves two clients of the brokerage

firm, one of which is the pension fund. The term ‘single’ trades is applied to difficult

trades that are done separately, either with or without packages of other stocks. In

the case of single and agency trades the risk resides with ABP. The broker represents

the client (ABP) and acts in the client’s best interest.

For all trades the trading process during the first quarter of 2002 was as follows.

A portfolio manager formed his or her portfolio. Subsequently, he or she approached

a trader at ABP. Together they discussed the proposed trade. In most cases the

trader would single out some part of the trades (say 10%) for reasons of perceived

cost reduction and would execute these elsewhere in the market as agency or single

trades. Next, the trader approached at most two of the large brokerage firms for

the remaining trades and revealed some of the characteristics of the trade (volume,

US or Europe, quantitative or fundamental, sector decomposition and a judgment

on the complexity of the trade). The choice of brokerage firms was based on the

4
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trader’ experience. Only the largest brokers could make competitive offers in the

case of principal trades, although sometimes a smaller one had an edge in particular

market segments, for example Japan. Based on the characteristics of the trade, the

broker made an offer for a principal trade. The the broker’s offer was compared to

others and to the trader’s own systems and experience. If the offer was acceptable,

then a principal trade was executed. Otherwise, the trade was executed as an agency

trade.2

Data and definition

For each transaction the data provide the execution price. Also provided is the price

of the stock just before the trade was passed on to the broker, which is the price

at which the portfolio managers allow the traders to trade. Moreover, the data also

show the time the trade was submitted to the broker and the time it was executed.

Trades that were split up into several subtrades are considered as a single trade if the

decision to split up the trade was taken by a trader at ABP. The data contain about

0.5% of such ‘trade packages’. Orders split up by portfolio managers are treated

as individual trades, since it is not known whether the traders eventually split up

the trade the same way the portfolio managers did. Additionally, the data include

detailed information on several trade, exchange, and stock specific characteristics.

Table 1 provides a complete list of the variables in the data set, including their

abbreviations and definitions. For a complete description of the data, we refer to

Bikker et al. (2007).3

2For a detailed exposition of the trading process at ABP, we refer to Bikker et al. (2007).
3The data set was created on the basis of the post-trade analysis provided by ABP, in combina-

tion with additional data from Factset and Reuters. The information on the characteristics of the
exchanges under involved were obtained from the World Federation of Exchanges and the exchanges
themselves.
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Measuring market impact costs

In order to measure market impact costs of ABP trades, a benchmark price has to

be chosen. The literature provides many suggestions for this choice. A commonly

used same-day benchmark is the volume-weighted average price calculated over all

transactions in the stock on the trade day. Pre-execution benchmarks are based

on the opening price on the same day or the closing price on the previous day.

Finally, post-execution benchmarks take the closing price of the trading day or the

opening price on the next day as reference price, ensuring that the temporary price

impact has disappeared from the benchmark. For a discussion of these approaches,

see Collins and Fabozzi (1991) and Chan and Lakonishok (1995). This paper opts for

the pre-execution benchmark, in line with e.g. Wagner and Edwards (1993). More

precisely, we take the price at the moment the order was passed to the broker as

benchmark and correct for market-wide price movements during the trade, as do

Chan and Lakonishok (1995, 1997). The MSCI World Industry Group Indices are

used as a proxy for these market movements. Thus, for a buy transaction in stock i

at time t market impact costs (CB
it ) are measured as

CB
it = log(P exe

it /P pt
it )︸ ︷︷ ︸− log(M exe

it /Mpt
it )︸ ︷︷ ︸, (1)

price impact market wide price movements

where P exe
it and P pt

it denote the execution and pre-trade price of stock i at time

t, respectively. M exe
it and Mpt

it denote the value of the MSCI industry group index

corresponding to stock i at the time of the execution of the trade and at the pre-trade

time, respectively. Similarly, the market impact of sells is defined as

CS
it = log(P pt

it /P exe
it )− log(Mpt

it /M exe
it ). (2)

For both buys and sells, positive market impact implies that a trade has been exe-

cuted against a price worse than at the moment of trade initiation.

6
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Some sample statistics

Table 2 reports sample means, standard deviations, medians and quantiles of mar-

ket impact costs for buys and sells. The sample statistics are provided both on a

principal-weighted basis and unweighted. We obtain the principal-weighted statis-

tics by weighting each observation by the euro value of the trade, so that larger

trades contribute more to, for instance, the average market impact than smaller

ones. Average market impact costs of buys equal 19.6 basis points (bp) and those of

sells 29.7 bp. The large quantiles in the right tail of the distribution are the trades

that really matter in terms of trading costs and that play an important part in cost

management. Their contribution to the spread of market impact costs around the

mean or median is substantial. These expensive trades take up a central position

in this paper. Table 2 shows that, there are relatively many trades that actually

result in profits instead of losses. This is emphasized by further calculations that

show that only about 10% of the trades causes approximately 75% of total mar-

ket impact costs. The unweighted average market impact costs for buys are of the

same magnitude as the weighted ones, but for sells we observe a much lower value

(even slightly negative). Additionally, Table 2 shows that the unweighted quantiles

are often of considerably smaller magnitude than the weighted ones, which implies

that a few large trades with high market impact costs determine the major part of

the weighted average. The asymmetry in market impact costs of buys and sells is

also found in other studies, see e.g. Kraus and Stoll (1972), Holthausen et al. (1987,

1990), Chan and Lakonishok (1993, 1995), and Keim and Madhavan (1996, 1997).

To give an idea of the transactions executed by ABP, we report some sample

statistics. The average trade size for buys (sells) is more than 70,000 (84,000) shares

and the average value of a trade equals almost 1.5 (1.6) million euro. Expressed as

a percentage of daily trading volume and shares outstanding, the average trade size

of buys equals 4.29% and 0.02%, respectively. For sells these percentages are 3.41%

and 0.02%. Commission averages about 12 bp for both buy and sell transactions.

7
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The average buy (sell) takes about 4 (4.5) hours to be completed.

3 Model selection, estimation, and interpretation

This section briefly introduces the notion of quantile regression and subsequently

discusses model selection and estimation. Finally, it turns to the interpretation of

the estimation results.

3.1 Quantile regression

Koenker and Bassett (1978) introduced the method of quantile regression in the

literature. Many applications followed, resulting in a vast literature on the subject.

Buchinsky (1998) provides an excellent survey. Furthermore, Koenker and Hallock

(2001) give many practical suggestions. In this subsection we briefly review the

main properties of quantile regression and explain how it differs from the classical

regression model. To clarify the exposition, this subsection focuses on market impact

costs as the dependent variable and trade characteristics as the covariates. However,

they can be replaced by any other variables.

The focus of the classical regression model is on the determinants of expected

trading costs. Quantile regression, however, has a broader scope and can be used to

assess the factors that influence the 100τ% most expensive trades, where τ can take

any value in the 0−1 range. Consequently, quantile regression does not yield a single

estimate, but a set of estimates covering the entire range from cheap to expensive

trades. Just as the linear regression model assumes that conditional expected trading

costs C, given a K dimensional vector of covariates X, equal Xα (with α a K-

dimensional vector of coefficients), the quantile regression model assumes that the

τth conditional quantile of C, given the covariates X, equals Xβτ (with βτ a K-

dimensional vector of coefficients).

Not only does the quantile regression approach allow direct analysis of the entire

distribution of trading costs, it is also considerably more flexible than the classical

8
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regression model in capturing the way market conditions and trade characteristics

affect the cost distribution. The usual regression approach implicitly assumes that

any determinant of trading costs affects these costs only through the mean and − in

a heteroskedastic regression model − through the variance. By contrast, the quantile

regression approach allows the impact of trade characteristics and market conditions

on trading costs to depend on the trading cost level. For a more technical discussion

of quantile regression, see Appendix A.

3.2 Model selection

Using Roger Koenker’s Quantreg package (version 3.90) for R, we estimate the quan-

tile regression process over the range from cheap to expensive trades using the Bar-

rodale and Roberts algorithm (see Koenker and d’Orey (1987, 1994)). We obtain

standard errors from Powell (1986)’s kernel estimator for the covariance matrix. In

line with the literature, we estimate separate models for buy and sell trades.

Initially, we estimate a full quantile regression model for both buys and sells, con-

taining all explanatory variables described in Section 2 and summarized in Table 1.

The corresponding estimation results suggest that the coefficients of several (mostly

dummy) variables are not significant at any range of quantiles and can be left out. To

test this in a formal way, we use a Wald test to conduct a model selection procedure

from general to specific (see Koenker and Portnoy (1999)). As expected, the Wald

test shows that the coefficients of several variables are jointly insignificant. We delete

these variables from the initial model to obtain a more parsimonious specification.

Figures 1 and 2 display the coefficients of the variables included in the final

model specification for buys over the entire range of quantiles. Similarly, Figures 3

and 4 show the coefficients for sell trades. These figures do not only display the

values of the estimated coefficient over the entire range of quantiles (solid curve),

but also depict 95% confidence bounds (light-shaded area). Additionally, ordinary

least squares coefficients obtained from the standard regression model (solid black

9
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line) and corresponding 95% confidence intervals (dashed black lines) obtained from

the classical linear regression model are plotted to facilitate visual comparison of

quantile regression with the traditional regression approach.4

3.3 Model interpretation

This subsection provides some economic explanations for the results obtained with

the quantile regressions as displayed in Figures 1-4.

First, we explain briefly how to interpret the plots in Figures 1-4. Each individual

plot depicts the impact of a variable on the range of quantiles of market impact costs,

starting with the lowest quantile on the left and ending at the highest quantile on

the right. Throughout, we will zoom in on the factors that affect the right tail, since

we are most interested in the trade characteristics and market conditions that affect

the risk of incurring extreme trading costs.

Momentum

Momentum has a significantly positive effect on almost all quantiles of the costs

distribution of buys and a significantly negative influence on, particularly, the right

tail of the cost distribution of sells. When momentum increases, the liquidity costs

of a buy transaction will become larger in order to convince more stock owners

to sell their shares. Similarly, when momentum drops, liquidity costs will decrease

to make it more attractive for market participants to buy stocks. Also, a buying

(selling) trend in the market may reveal the presence of good (bad) news, so an

increase (decrease) in momentum will lead to an increase in the information content

of a buy (sell). Together, these two effects explain the positive (negative) impact of

momentum on the market impact costs of buys (sells).

The U-shaped form of the quantile plot for buys indicates that, in periods of high
4As a robustness check, we have also calculated confidence bounds for the quantile regression

estimates using Chernozhukov (2005)’s extremal quantile regression approach (for which we used
the R code available from the author’s web site). The resulting confidence bounds were very close
to the current ones. Therefore, we do not depict them in Figures 1-4.

10

Page 11 of 42

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

momentum, extremely high trading costs for buy trades are more likely, whereas

exceptionally low costs are less probable. For sells, momentum also has substantial

influence on the upper tail of the cost distribution. The inversely U-shaped form of

the quantile plot implies that the risk of incurring extremely high trading costs on

sells is higher in periods with a selling trend.

Our regression results show that when momentum prior to trading (as measured

by the 5-day volume weighted return) increases, trading costs increase at well. This

mean that higher returns are to some extent offset by higher market impact costs.

The setting of our study is clearly different from Korajczyk and Sadka (2004) and

Lesmond et al. (2004), who focus on returns net of trading costs. Nevertheless, the

positive relation between momentum and trading costs that we establish, could pos-

sibly explain why these two papers find that positive returns of momentum trading

strategies disappear when trading costs are taken into account.

Volatility

For both buys and sells, the narrow confidence bound around the coefficients

of volatility points to a high level of significance. Price volatility only has a scale

effect on trading costs. The cost distribution is more dispersed in periods of high

volatility; i.e. extremely low and high market impact costs are more likely under

such circumstances. We explain this from the observation that more volatile stocks

experience stronger idiosyncratic price fluctuations, causing greater dispersion in

market impact costs.

Market capitalization

The literature usually establishes a negative relation between market capitaliza-

tion and market impact costs: the more liquid a stock, the lower the costs of trading.

See e.g. Keim and Madhavan (1997).

The results established for sells are generally in line with the literature. The

risk of incurring extremely high trading costs with selling is lower for large cap
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stocks than for small cap ones. By contrast, the lower tail is not significantly af-

fected by market capitalization. The picture for buys is completely different. Market

capitalization only affects the quantiles in the lower half of the cost distribution:

the probability of incurring extremely low values of market impact costs on buys

decreases with market capitalization.

Trade size

The quantile regressions show that the impact of relative trade size on market

impact costs is virtually always positive and fairly constant over the range from cheap

to expensive trades.5 The coefficients of the quantile regression estimates generally

fall within the confidence intervals corresponding to the classical regression model.

The only exception relates to sells in the upper tail. Hence, trade size mainly exerts

a location effect on trading costs. The positive effect of trade size on trading costs

is in line with the literature: large trades generally put more pressure on liquidity

and convey more information than smaller ones, resulting in higher price impact.

See e.g. Easley and O’Hara (1987).

Agency/single and principal trades

The literature has pointed out that principal trades benefit from the broker’s

objective to maintain his reputation. The broker will attempt to limit market impact

costs on principal trades, resulting in lower trading costs for principal trades than

for agency/single trades. See Smith et al. (2001).

The important role of broker intermediation is underlined by the narrow con-

fidence bound around the respective coefficients in the models for both buys and

sells. For both categories, the type of broker intermediation strongly affects the tails

of the cost distribution. For agency/single buys, the coefficient corresponding to the

broker variable is significantly positive everywhere except at the lowest quantiles

where it is not significant. Hence, the risk of incurring extremely high trading cost
5We notice that interaction terms such as the product of relative trade size and volatility are

not included in the regression model as their impact on market impact costs is not significant.
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levels is higher for agency buys than for similar principal buy trades. For sells, the

coefficients of the broker variable are significantly negative at the quantiles in the left

tail of the cost distribution and significantly positive in the right tail. This outcome

suggests that compared to principal sell trades, agency/single sells carry both a high

risk of incurring very high trading costs and a high probability of encountering very

low market impact costs.6

Quantitative and fundamental funds

Chan and Lakonishok (1993, 1995) and Keim and Madhavan (1997) find that

quantitative funds trade with more urgency than fundamental funds and are willing

to pay the price for higher immediacy, resulting in higher market impact costs.

For buy trades the coefficients of the investment style variable are significantly

negative everywhere except in the right tail where they are not significant. This

means that the probability of incurring very low trading costs is higher than for

similar buys executed by fundamental funds. By contrast, the coefficients for sells

are significantly positive throughout, with the exception of the left tail where they are

not significant. Hence, sells executed by quantitative funds are, in line with theory,

more likely to incur extremely high trading costs than comparable sells executed by

fundamental funds.

Trade timing and trading venue

The timing of trades has substantial impact on trading costs. For instance, buy

trades initiated before or at the opening of the market are more likely to incur

exceptionally high trading costs. The finding that the time of the day affects the
6We note that the pension fund itself decides whether it wants to trade on an agency/single

or principal basis. Clearly, the pension fund’s choice for either an agency/single or principal trade
may be affected by the expected market impact costs of the trade, which, in turn, is one of the
determinants of the initial choice for a specific trade type. This may cause a selectivity or selection
bias, see Heckman (1976, 1979). For a detailed survey of the selectivity bias literature, we refer
to Vella (1998). When the selection effect is ignored, the resulting estimators may be inconsistent.
To assess the possible selectivity effects regarding the choice of trade type, we conducted a similar
analysis as Madhavan and Cheng (1997). Using a two-stage estimation procedure we estimated a
probit-model to explain the choice for an agency/single or principal trade and a regression model
with a correction factor for selectivity effects depending on the probit-specification. We did not
establish significant evidence for a selection bias.
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costs of trading is in line with Foster and Viswanathan (1993) and McInish and

Wood (1992), who establish strong intraday patterns in adverse selection costs and

bid-ask spreads, respectively.

The trading venue also plays an important role in explaining trading costs. For

example, sells traded on the NYSE are less likely to incur very low values of market

impact costs than trades executed elsewhere.

As with the sample statistics in Section 2, we again establish substantial dif-

ferences between buy and sell trades. Also, the results show that average effects of

market conditions and trade characteristics are usually in line with what we would

expect from the literature. However, quantile regression depicts the relation between

market impact costs and those variables in more detail. In particular, it highlights

the influence of the various factors on the risk of incurring extremely high trad-

ing costs. In most cases, the impact found in the tails of the cost distribution is

significantly different from the average effect.

3.4 Model robustness and goodness-of-fit

Figures 1-4 suggest that the relation between market impact costs and their de-

terminants strongly varies across the range from cheap to expensive trades. Most

quantile regression estimates lie at some point outside the confidence intervals of

the classical regression model. This shows that the classical regression model is not

flexible enough to capture the distribution of the trading costs over the entire range

from cheap to expensive trades.

To underpin this conclusion, we test the quantile regression process against the

classical and heteroskedastic regression models (see Appendix A) using the Khmal-

adze (1981) test7 proposed by Koenker and Xiao (2002). The null hypothesis of the

classical regression model (or the heteroskedastic regression model) is rejected when

the joint test statistic exceeds the joint critical level. The test results show that
7This test is implemented in the Quantreg package in R.
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both models are indeed rejected at every reasonable significance level in favor of the

quantile regression model.8

To get some idea of the goodness-of-fit of the quantile regression process, we

calculate the ‘pseudo R2’ corresponding to the quantile regression models for buys

and sells. The pseudo R2 takes values in the interval [0, 1] and is the natural extension

of the R2 found in the classical regression model to the quantile regression approach

- we refer to Koenker and Machado (1999) for a more precise definition of this

goodness-of-fit measure. Interestingly, the pseudo R2-’s displayed as a function of τ

(not displayed here to save space) are shaped like a parabola. For buys, the minimum

of about 0.10 is attained at the 0.4th quantile. For sells, the lowest value equals 0.14

and is reached around the 0.5th quantile. For both buys and sells the pseudo R2 peaks

at approximately 0.35 when τ reaches the limits of the interval [0, 1]. Hence, the best

fit is obtained for the most extreme quantiles. In the usual regression model (with

the same explanatory variables as considered for the quantile regression process),

the R2 equals 0.18 for buys and 0.24 for sells.

3.5 Relative importance of variables

Figures 1-4 demonstrate that many variables significantly affect the distribution

of market impact costs. A question as yet unanswered is which of these variables

succeeds best in explaining market impact costs. A complicating factor in answering

this question is the fact that not all variables will influence each part of the market

impact cost distribution to the same extent. For example, some variables will only

affect part of the distribution, for instance the lower tail. Given the scope of this

paper, we are most interested in assessing the covariates that are responsible for the

extremes of market impact costs, i.e. the variables that substantially influence the

right tail of the cost distribution.

The literature on the classical regression model has proposed many ways to assess
8The (technical) results of the Khmaladze (1981) test are available from the authors upon request.
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the relative importance of explanatory variables, such as the well-known partial R2

(reflecting the proportion of unexplained variation of the dependent variable that

becomes explained with the addition of a covariate to the model). With quantile

regression the situation is more complex, as we consider a range of models over the

quantiles in the interval (0, 1). In this case it is natural to measure the relative impor-

tance of a covariate over a range of quantiles of the dependent variable. Therefore, we

generalize the squared partial correlation (SPC) as applied in the classical regression

model to the quantile regression framework. In the linear regression model, the SPC

reflects how much of the variance in the dependent variable that is not associated

with any other predictors, is associated with the variance in a particular covariate.

The squared partial correlation is calculated as

SPC = (R2 −R2
−i)/(1−R2

−i), (3)

where R2 is the adjusted R2 of the full model (containing all explanatory variables)

and R2
−i the adjusted R2 corresponding to the model without covariate i. Because

of the convenient definition in terms of the R2, we can easily adjust this measure for

the quantile regression model by defining it in terms of the pseudo R2 (denoted by

R̃2). As a consequence, the SPC then becomes a function of the quantile τ ∈ (0, 1).

That is,

SPC(τ) = (R̃(τ)2 − R̃(τ)2−i)/(1− R̃(τ)2−i). (4)

For each explanatory variable in the quantile regression model, we calculate the

SPC-’s for a range of quantiles. To obtain an impression of the contribution of each

variable to the left and right tail of the cost distribution, we calculate the average

SPC over the quantiles τ = 0.01, . . . , 0.1 (left tail) and τ = 0.9, 0.91, . . . , 0.99 (right

tail). To assess the impact of each covariate on the center of the cost distribution

we calculate the partial autocorrelation at the median (τ = 0.5). Table 3 reports

the SPC-’s for each explanatory variable under consideration in, respectively, the
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model for buys and sells. The SPC-’s show that a number of variables related to

the timing of trades strongly influence the entire cost distribution. Momentum and

volatility hardly affect the center of the cost distribution, but substantially influence

its tails. The type of broker intermediation also plays an important role in explaining

market impact costs, in particular its right tail. Furthermore, the SPC-’s show that

the economic importance of some other variables − although statistically significant

− is limited.

4 Forecasting future market impact costs

Our model for trading costs can be used to make better informed decisions in portfo-

lio management. As explained by Grinold and Kahn (1999), forecasts of transaction

costs, particularly market impact costs, can be integrated in the portfolio construc-

tion at the same stage of the optimization process where risk and return forecasts

are used (see e.g. Schittenkopf et al. (2002) and Moreno et al. (2005)). In this way

the components return, risk, and costs are optimized simultaneously. We note that

some of the determinants of market impact costs, such as volatility and momen-

tum, are exogenous to the pension fund. Other determinants, such as the day of

the week and the agency-principal dummy, are under the control of the fund and

can therefore be integrated in the portfolio optimization process. Alternatively, the

market impact cost model can be used to identify those factors (e.g. trade size as a

percentage of average daily volume) which contribute most to market impact costs.

This knowledge makes it possible to control the active bets in a similar way other

investment constraints do so. Also, the cost forecasts can be used to identify po-

tentially expensive trades in terms of market impact costs. Such forecasts have a

signalling function in the trade monitoring phase. A different trading strategy can

be adopted for trades that are likely to turn out expensive.

As a first step in the use of cost forecasts in the portfolio optimization process,

this section focuses on forecasting expected values of market impact costs. We calcu-
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late various quantitative forecasting performance measures to determine the extent

to which we are able to predict trading costs. Furthermore, we discuss an alternative

way to form expectations about future market impact costs and we suggest ways to

incorporate forecasts of future trading costs in the trading process.

We compare the model’s forecasting ability not only in-sample, but also for an

out-of-sample period. First, we divide the data sample into an in-sample part (the

first two months of trades, about 75% of the total sample, say trades t = 1, . . . , n)

and an out-of-sample part (the final month of trades corresponding to 25% of the

sample, say trades t = n + 1, . . . , n + m). Next, we estimate the model using only

the in-sample data. The in-sample forecasts correspond to the predicted trading

costs for the in-sample trades. To obtain forecasts for the out-of-sample trades, we

estimate the model using all trades up to rebalancing k. Next, we calculate forecasts

for all trades at rebalancing k + 1. We repeat this step-wise for each rebalancing k,

resulting in m out-of-sample forecasts.

4.1 Forecasting numeric values of market impact costs

The simplest way of forecasting market impact costs is to take the conditional ex-

pected value as a forecast of future trading costs. We estimate α in the linear re-

gression model C = Xα + ε by means of ordinary least squares and take Xα̂ as a

forecast of market impact costs. We obtain the final set of regressors X by perform-

ing a similar model selection procedure as before. However, we remove the variable

trade duration from the set of regressors since trade duration is not known up front.

Also, we use only the in-sample data period to perform the model selection. This

procedure selects the same variables as before. Figures 5 (a)-(c) display realized and

forecasted market impact costs for buys and sells during the out-of-sample period.

The difference between realized and forecasted trading costs is largest where these

costs take extreme values, while the forecasts seem more accurate when market im-

pact costs are moderate. However, at this point we emphasize that the extreme
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cases of trading costs are most relevant from the perspective of cost management.

Although the scale of the forecasts (light-colored line) is different from the realized

trading costs (dark-colored line), the direction of the forecasts seems to follow real-

ized trading costs quite well. However, the quality of the predictions is difficult to

judge visually. Therefore, Table 4 displays various error measures and other quanti-

ties that relate to the quality of the forecasts. Theil’s inequality coefficient and the

mean absolute relative error are scale-independent measures for the forecast error

and should be as close to zero as possible. The mean squared error is another mea-

sure for the prediction error, but it depends on the scale of the data. We also report

its decomposition into bias, variance, and covariance percentages which sum up to

100. The bias percentage tells us how far the mean of the forecast is from the mean

of the actual series, whereas the variance percentage measures the variation of the

forecast relative to the variation of the actual costs. The covariance percentage mea-

sures the remaining unsystematic forecasting errors. Ideally, the bias and variance

proportions should be small so that most of the discrepancy between forecasted and

realized market impact costs is idiosyncratic. The hit ratio counts the percentage of

forecasts with the correct sign. Table 4 also displays the ‘naive’ hit ratio (obtained by

assigning each trade to the most likely category). Only for sells in the out-of-sample

period is the hit ratio of the quantile model lower than the naive hit ratio. Finally,

Table 4 reports the correlation between the forecasted and realized trading costs,

which should ideally be as close to one/1 as possible. For more information on the

error measures and their definitions, we refer to Appendix B.

The results show that, as expected, the performance of the forecasts is generally

better in-sample than out-of-sample. For the in-sample forecasts, the bias proportion

is low. Out-of-sample the bias is much higher. Moreover, the in-sample and out-of-

sample variance proportions are quite high, although lower than the covariance parts.

The correlations between forecasted and realized trading costs reflect the extent to

which the model forecasts higher trading costs for stocks that actually do incur high
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costs. Both in-sample and out-of-sample, the correlation is significantly positive,

reflecting a modest positive relation between forecasted and realized trading costs.

The results demonstrate that it is difficult to obtain accurate forecasts of market

impact costs, in particular for trades with extremely low or high trading costs. Since

market impact costs reflect the price movements of a stock during trade execution,

this difficulty does not come as a complete surprise. Moreover, the out-of-sample

period differs substantially from the in-sample months, which also complicates fore-

casting.9

4.2 Forecasting the distribution of market impact costs

This subsection presents an alternative approach and focuses on forecasting the

distribution of market impact costs, rather than its expected future value. Since any

distribution is completely determined by its quantiles, we forecast the conditional

distribution of market impact costs via its quantiles obtained from the quantile

regression process. Note that this approach reduces to a Value-at-Risk (VaR) analysis

applied to market impact costs. A forecast of − particularly the upper tail of −
the conditional distribution of future market impact costs can play a useful role

in managing trading costs. For instance, when the 95% conditional quantile of a

trade exceeds a certain critical level, the investor can classify the trade as ‘risky’

and decide to manage the trade in a different way in order to avoid high trading

costs. Alternatively, a fully integrated approach applies a VaR analysis to returns

net of trading costs. Finally, forecasts of conditional quantiles can also be used to

construct prediction intervals. For example, a 90% prediction interval is the range

of values in which future market impact costs will fall with 90% probability. Instead

of forecasting a single value, we can use prediction intervals to forecast a range of

values in which trading costs are likely to fall.

Table 5 displays in-sample and out-of-sample estimates of several quantiles (see
9In the year 2002, January was bearish and February was quite flat. However, the out-of-sample

month of March was bullish.
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the columns captioned ‘τ̂ ’), based on the quantile regressions. Moreover, Figures 5 (b)-

(d) depict 90% prediction intervals for realized trading costs based on the 5% and

95% conditional quantiles obtained from the quantile regression model. The predic-

tion intervals are asymmetric and quite broad, which is no surprise given the large

dispersion in market impact costs. Furthermore, for 95.2% respectively 91.5% of the

out-of-sample observations the trading costs of buys and sells fall within the 90%

prediction interval. Thus at first sight, the coverage of the prediction interval during

the out-of-sample period is quite accurate, but we need a formal statistical test to

confirm this.

The quality of conditional quantile forecasts can be formally evaluated in any of

several ways. We opt for an approach that is often used in Value-at-Risk (VaR) anal-

ysis. Therefore, at this point, we emphasize the relation between forecasting market

impact costs and forecasting VaR. Instead of predicting extreme price depreciations

such as in VaR-analysis, we wish to predict extreme cases of market impact costs.

Because of this close connection, techniques developed to evaluate the quality of VaR

forecasts can also be used in the current setting. Thus, we assess the quality of the

forecasted quantiles by calculating the fraction of ‘exceptions’ (the number of times

realized trading costs are less than the estimated τth quantile) to see how close it

is to τ , which yields a binomial experiment with success rate equal to τ . Following

Kupiec (1995) and Christoffersen (1998), we do a formal likelihood ratio (LR) test

per quantile to determine whether the binomial parameter is significantly different

from τ0. Formally, for a given value of τ0, we test the null hypothesis H1 : τ = τ0

against the alternative hypothesis H1 : τ 6= τ0. Define10 the exception indicator as

I =
{ 1 if C < Q̂C(τ0 | X);

0 if C ≥ Q̂C(τ0 | X),
(5)

where QC(τ | X) denotes the τth conditional quantile of trading costs C given trade
10Clearly I depends on τ0, but we omit any subscripts for simplicity of notation.
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characteristics and market circumstances X. Let z =
∑m

i=1 Ii be the total number

of exceptions in the out-of-sample period. The LR test of correct unconditional

coverage has the form

LR = 2{log(τ̂ z(1− τ̂)m−z)− log(τ z
0 (1− τ0)m−z)}, (6)

where τ̂ = z/m. The LR statistic is asymptotically χ2 distributed with one degree

of freedom. The above LR test is a test for unconditional coverage of the VaR es-

timates, since it is simply based on the total number of exceptions over the entire

out-of-sample period. We test the null hypothesis of correct unconditional coverage

for several values of τ0. The upper panel of Table 5 (with the caption ‘QR’) reports

the outcomes of the LR tests, both in-sample and out-of-sample (see the columns

with the caption ‘LR’). It is no surprise that the in-sample forecasts have virtually

perfect unconditional coverage, as this is inherent to the quantile regression model.

Therefore, the out-of-sample forecasts are more interesting. Although the null hy-

pothesis of correct unconditional coverage is rejected for some quantiles in the case

of buys, the quantile regression model generally performs well. Hence, rather than

relying on relatively inaccurate expected costs, using forecasted conditional quantiles

seems a better way to screen trades and to filter out expensive ones.

We could also use the classical regression model to forecast the distribution

of market impact costs.11 For completeness’ sake, we test for correct coverage in

the linear regression model with empirical error term distribution; see the lower

panel of Table 5 (captioned ‘LM’).12 Again it is no surprise that the in-sample

forecasts exhibit exact unconditional coverage, since this is inherent in the empirical
11Alternatively, we could compare the quantile regression model to the heteroskedastic regression

model. However, at some points this model produces negative values of the conditional standard
deviation. This is not a surprise, since the model does not restrict the conditional standard devi-
ation to positive values. Instead, it is more practical to work with a different specification for the
conditional variance, for instance exp(Xγ)′ or (Xγ)2. However, our investigations show that such
a specification performs very similarly to the homoskedastic regression model. Therefore, we apply
the simplest specification, which is the latter model.

12The empirical distribution is based on the (in-sample) observed model residuals and assigns
equal probability mass to each observed value.
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error term distribution. The out-of-sample forecasts confirm that the traditional

regression model has less accurate coverage than the quantile regression model. The

linear model with normal error terms performs even worse, but to save space we

do not report these results. The results confirm our earlier finding that the linear

regression model is rejected in favor of the more general quantile regression model.

For alternative ways to forecast market impact costs, we refer to Bikker et al.

(2006).

5 Conclusions

When a relatively small group of expensive equity transactions determines the main

part of market impact costs, substantial cost savings can be realized by reducing

the trading costs of comparatively few trades. To do so, expensive trades need to be

identified as such before actual trading takes place. This requires accurate modeling

of the entire cost distribution; in particular of how trade properties and market

circumstances influence the trading costs of the most expensive trades.

The traditional regression approach focuses on the average impact of certain

trade properties and market circumstances on trading costs rather than on the ex-

treme effects that these determinants occasionally have. This paper uses a different

approach and relies on quantile regression to assess the determinants of extreme

market impact costs. Using the flexible quantile regression approach, we can ex-

plicitly determine the impact of trade characteristics and market conditions on the

100τ% most expensive trades, where τ can take any value in the range 0− 1.

Previous research has established important roles for trade style and variables

related to trade difficulty (such as market capitalization and trade size) in explaining

market impact costs. Analyzing data on the world-wide equity trades executed by

the world’s second largest pension fund during the first quarter of 2002, our study

shows that extreme values of momentum and high volatility substantially increase

the risk of incurring high trading costs. Our analysis also makes clear that agency
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trades are considerably more risky in terms of trading costs than similar principal

trades. Moreover, trade timing also turns out to be an important risk factor.

In practice, a major motive for estimating market impact models is their use

for prediction purposes in trading cost management. Formal statistical tests confirm

that the quantile regression model succeeds well in forecasting the cost distribution.

Moreover, it outperforms the traditional regression model in terms of forecasting

power.

All in all, this paper shows that quantile regression and the forecasts based on

this method can make a productive contribution to transaction cost management.
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Appendix A Quantile regression

This appendix briefly explains the quantile regression approach. Moreover, we also

discuss the differences between this approach and traditional regression models.

Given market impact costs (C) and its determinants (contained in the vector

X of dimension K), the classical regression model (alternatively referred to as the

‘location’ model) is formulated as

C = Xα + σε, IE(ε | X) = 0, IE(ε2 | X) = 1, (A.1)

with α a vector of coefficients of dimension K and σ > 0. The classical regression

model is restrictive, since it only allows covariates to affect the conditional mean

(that is, the term Xα) of the trading costs. This implies that a change in the de-

terminants merely ‘shifts’ the conditional distribution of the dependent variable C.

The more flexible heteroskedastic regression model (also called the ‘location-scale’

model) is written as

C = Xα + (Xγ)ε, IE(ε | X) = 0, IE(ε2 | X) = 1. (A.2)

Hence, in the location-scale model the variance of the error terms depends on the co-

variates X through the vector of coefficients γ. This means that the covariates addi-

tionally influence the conditional variance of the dependent variable, thus stretching

(larger variance) or squeezing (smaller variance) the distribution of trading costs.

However, since we expect that market impact costs are affected by its determinants

in more complex ways, the usual regression models are presumably too restrictive.

Therefore, we consider the more flexible quantile regression approach.

We say that market impact costs incurred on a trade are at the τth (0 < τ < 1)

quantile if they are higher than the proportion τ and lower than the proportion 1−τ

of all trades’ market impact costs. More formally, the τth quantile of trading costs
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C (denoted by QC(τ)) is defined as

QC(τ) = infc{c : FC(c) ≥ τ}, (A.3)

where FC(c) = IP(C ≤ c) denotes the distribution function of C. Definition (A.3)

states that the τth quantile is equal to the smallest value c for which FC(c) is at

least equal to τ . Since we observe response variables (market impact costs) in com-

bination with covariates, we are actually interested in conditional quantiles rather

than unconditional ones. For instance, we may want to know what the trading costs

will be given a particular trade size and a certain level of stock price volatility. The

τth conditional quantile of C given X = x (denoted by QC(τ | x)) is defined in a

very similar way:

QC(τ | x) = infc{c : FC|X(c | x) ≥ τ}, (A.4)

where FC|X(c | x) = IP(C ≤ c | X = x) denotes the conditional distribution

function of C given X = x. Just as the classical linear regression models are based

on the assumption that the conditional expectation of the dependent variable C

given the covariates X is equal to Xα, the quantile regression model assumes that

the τth conditional quantile of C given the covariates X equals Xβτ . That is, we can

formulate the quantile regression model in a similar manner as the usual regression

model:

C = Xβτ + ε, Qε(τ | X) = 0. (A.5)

In specification (A.5), the partial derivative of C with respect to one of the regressors

(say Xj) equals the jth element of the vector βτ and represents the change in the

τth conditional quantile due to a (ceteris paribus) one-unit change in Xj .

We now turn to the relation between quantile regression and traditional regression

models.13 Assuming that the regression model contains an intercept, we write X =
13We notice that it would be clearly wrong to approximate the quantile regression model by

dividing the dependent variable into subsets according to its unconditional distribution and by
subsequently applying ordinary least squares to these subsets. The example of Hallock, Madalozzo,
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[1 Z], α = (α0, α1), γ = (γ0, γ1), and βτ = (βτ,0, βτ,1). Applying definition (A.4)

to the conditional quantiles in the classical linear regression model, we find that the

conditional quantiles are given by QC(τ | X) = Xα+σF−1
ε (τ) = α0+Zα1+σF−1

ε (τ),

where Fε denotes the distribution function of ε. Similarly, in the location-scale model,

we find QC(τ | X) = Xα + XγF−1
ε (τ) = α0 + Zα1 + (γ0 + Zγ1)F−1

ε (τ). Thus, the

location model imposes certain restrictions on the coefficients of the conditional

quantiles in the quantile regression model, namely βτ,0 = α0 + σF−1
ε (τ) and βτ,1 =

α1, whereas the location-scale model imposes βτ,0 = α0 + γ0F
−1
ε (τ) and βτ,1 =

α1 + γ1F
−1
ε (τ).

Both the location and the location-scale model are special cases of the quantile

regression approach. The crucial difference between the classical and the quantile

regression model is that in the former the covariates affect all quantiles in a similar

way, whereas in the latter model the impact of the explanatory variable on the τth

quantile depends on τ . Although the location-scale model allows the impact of the

covariates to vary over the quantiles as well, it remains more restrictive than the

quantile regression model as it imposes certain restrictions on βτ .

Appendix B Forecast error measures

Given a sample of observations C1, . . . , Cn and corresponding forecasts Ĉ1, . . . , Ĉn,

the mean absolute percentage error (MAPE) is defined as

MAPE =
1
n

n∑

i=1

∣∣∣ Ĉi − Ci

Ci

∣∣∣. (B.1)

Furthermore, the mean squared error (MSE) is calculated as

MSE =
1
n

n∑

i=1

(Ĉi − Ci)2. (B.2)

and Reck (2004) demonstrates that such truncation of the dependent variable can lead to erroneous
conclusions, due to the selection bias of Heckman (1979).
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The bias, variance, and covariance proportions of the MSE are given by

BP =
(Ĉ − C)2∑n

i=1(Ĉi − Ci)2/n
, V P =

(sĈ − sC)2∑n
i=1(Ĉi − Ci)2/n

, CP =
2(1− ρ̂)sĈsC∑n
i=1(Ĉi − Ci)2/n

,

where C, Ĉ, sC , sĈ are the sample means and variances of C1, . . . , Cn and Ĉ1, . . . , Ĉn,

respectively. The sample correlation between the series of observed values and fore-

casts is denoted by ρ̂. Finally, Theil’s inequality coefficient is obtained as

U =

√
1
n

∑n
i=1(Ĉi − Ci)2√

1
n

∑n
i=1 Ĉ2

i +
√

1
n

∑n
i=1 Ci

2
. (B.3)
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variable definition

momentumperc 5-day volume-weighted average return prior to trading (in %)
volatility logarithm of 30-day individual volatility prior to trading (in %)
tradesize square root of trade size relative to 30-day average daily volume prior to trading (in %)
marketcap logarithm of market capitalization 3 months prior to trading (in billion Euro)
adv logarithm of 30-day average daily trading volume of stock (in shares)
exprice logarithm of execution price of stock (in Euro)

agencysingledum 0/1 variable for agency/single (1) or principal (0) trades
growthdum 0/1 variable for growth stocks
quantdum 0/1 variable for trades executed by quantitative (1) or fundamental (0) fund

preopendum 0/1 variable for trades sent to broker during pre-opening of the market
morningdum 0/1 variable for trades sent to broker during in the morning (after pre-opening)
middaydum 0/1 variable for trades sent to broker during in the afternoon
(Mondaydum) 0/1 variable for trades executed on Monday
(Tuesdaydum) 0/1 variable for trades executed on Tuesday
Wednesdaydum 0/1 variable for trades executed on Wednesday
Thursdaydum 0/1 variable for trades executed on Thursday
Fridaydum 0/1 variable for trades executed on Friday
earlymonthdum 0/1 variable for trades executed at the beginning of the month
Jandum 0/1 variable for trades executed in January
Febdum 0/1 variable for trades executed in February
(Marchdum) 0/1 variable for trades executed in March
tradedur logarithm of the time elapsed between the moment that trade was passed

to the broker and trade execution

NYSEdum 0/1 variable for trades executed on NYSE
Nasdaqdum 0/1 variable for trades executed on Nasdaq
Torontodum 0/1 variable for trades executed on Toronto Stock Exchange
Londondum 0/1 variable for trades executed on London Stock Exchange
Tokyodum 0/1 variable for trades executed on Tokyo Stock Exchange

upstairsdum 0/1 variable for trades executed on exchange with upstairs market
(dealerdum) 0/1 variable for trades executed on exchange with dealer market
LOBdum 0/1 variable for trades executed on exchange with electronic limit order book
(floordum) 0/1 variable for trades executed on exchange with trading floor
(hybriddum) 0/1 variable for trades executed on exchange with hybrid market (LOB+dealers)
mcapdom logarithm of domestic market capitalization of the exchange on which the stock

was traded (in billion Euro)

consumerdiscrdum 0/1 variable for stocks in consumer discretionary sector
consumerstdum 0/1 variable for stocks in consumer staples sector
energydum 0/1 variable for stocks in energy sector
finservdum 0/1 variable for stocks in financial services sector
healthdum 0/1 variable for stocks in health sector
ITdum 0/1 variable for stocks in IT sector
materdum 0/1 variable for stocks in materials sector
telecomdum 0/1 variable for stocks in telecommunications sector
utilitiesdum 0/1 variable for stocks in utilities sector
(industrydum) 0/1 variable for stocks in industry sector

Table 1: Potential determinants of market impact costs and their definitions

The dummy variables in parentheses have not been included in the estimated
models to avoid exact collinearity, but are included in the table for completeness.
Since there are virtually no trades on Monday during the sample period, we
exclude both the Monday and the Tuesday dummy. The sectors correspond to the
Global Industry Classification Standard (GICS).
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BUYS SELLS

weighted unweighted weighted unweighted

mean 19.6 16.5 29.7 -0.5
st.dev. mean 5.7 119.5 6.5 144.2
median 0.2 7.9 0.0 2.2
0.5% quantile -942.7 -391.5 -950.7 -487.6
5% quantile -133.1 -163.0 -157.3 -245.5
95% quantile 241.6 201.9 357.5 210.7
99.5% quantile 1329.5 501.6 1426.2 557.3

Table 2: Sample statistics of market impact costs (in bp)

This table presents both principal-weighted and unweighted market impact costs
statistics. The weighted statistics are obtained by weighting each observation by
the Euro value of the trade, so that larger trades contribute more to, for instance,
the average market impact than smaller ones.
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BUYS SELLS
left tail median right tail left tail median right tail

momentumperc 0.0422 0.0024 0.0145 momentumperc 0.0054 0.0066 0.0591
volatility 0.0402 0.0001 0.0159 volatility 0.0369 0.0004 0.0277
marketcap 0.0128 0.0010 0.0010 marketcap 0.0019 0.0028 0.0201
tradesize 0.0022 0.0019 0.0014 tradesize 0.0041 0.0025 0.0030
agencysingledum 0.0067 0.0242 0.0485 agencysingledum 0.0215 0.0038 0.0395
quantdum 0.0130 0.0152 0.0012 quantdum 0.0014 0.0104 0.0129
preopendum 0.0034 0.0247 0.0237 preopendum 0.0191 0.0011 0.0006
morningdum 0.0150 0.0226 0.0106 morningdum 0.0233 0.0092 0.0008
earlymonthdum 0.0021 0.0014 0.0010 earlymonthdum 0.0194 0.0049 0.0032
Jandum 0.0010 0.0012 0.0338 Jandum 0.0191 0.0005 0.0061
NYSEdum 0.0040 0.0031 0.0160 NYSEdum 0.0290 0.0113 0.0025
Wednesdaydum 0.0179 0.0338 0.0233 Wednesdaydum 0.0023 0.0187 0.0053
Thursdaydum 0.0292 0.0357 0.0034 Thursdaydum 0.0016 0.0154 0.0121
Fridaydum 0.0218 0.0353 0.0147 Fridaydum 0.0234 0.0250 0.0020
tradedur 0.0090 0.0067 0.0085 Nasdaqdum 0.0211 0.0327 0.0258
Nasdaqdum 0.0052 0.0041 0.0098

Table 3: Squared partial correlations

Based on the quantile regression model, Tables 3 displays the values of the squared
partial correlation (SPC) for each explanatory variable in the left and right tail
and the center of the cost distribution. The most important variables according to
the SPC are in bold face.
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BUYS SELLS
in-sample out-of-sample in-sample out-of-sample

Theil’s U 0.61 0.64 0.57 0.69
mean absolute percentage error 4.1 13.8 3.3 4.7

mean squared error 12,874 9,960 17,396 13,004
bias part (%) 0.0 6.7 0.0 15.1
variance part (%) 39.0 19.9 33.1 28.6
covariance part (%) 61.1 73.6 67.0 56.6

naive hit ratio (%) 59.2 52.7 50.5 59.1
hit ratio (%) 67.7 54.0 66.3 48.4

correlation to realized costs 0.44 0.19 0.50 0.28

Table 4: Error measures for in-sample and out-of-sample forecasts

Tables 4 displays various error measures for the in-sample and out-of-sample
forecasts of market impact costs based on the ordinary least squares estimator.
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BUYS SELLS

QR

in-sample out-of-sample in-sample out-of-sample

τ0 (%) τ̂0 (%) LR τ̂0 (%) LR τ̂0 (%) LR τ̂0 (%) LR

5 5.2 0.0 2.0 4.9 5.5 0.3 4.1 0.3
10 10.5 0.2 6.6 2.9 9.5 0.2 8.8 0.3
15 14.7 0.1 9.8 4.6 15.2 0.0 14.8 0.0
20 20.3 0.0 14.7 3.8 20.2 0.0 18.9 0.1
25 25.1 0.0 21.7 1.2 25.3 0.0 30.3 2.4
30 30.0 0.0 40.0 9.0 29.6 0.0 33.9 1.2
35 35.5 0.0 48.1 14.4 34.5 0.0 38.9 1.1
40 40.0 0.0 36.3 1.1 39.5 0.0 41.2 0.1
45 45.2 0.0 29.5 19.9 44.7 0.0 43.8 0.1
50 50.2 0.0 30.2 32.0 49.8 0.0 50.8 0.0
55 55.5 0.0 34.4 34.2 55.1 0.0 54.4 0.0
60 60.5 0.0 43.3 22.4 59.9 0.0 65.3 2.0
65 65.4 0.0 63.0 0.3 65.6 0.0 68.7 1.0
70 70.0 0.0 73.3 1.1 70.6 0.0 73.3 0.9
75 74.6 0.0 84.9 11.6 75.5 0.0 75.9 0.1
80 80.1 0.0 88.2 9.4 80.1 0.0 83.7 1.5
85 84.5 0.1 90.2 4.6 85.1 0.0 88.9 2.1
90 90.0 0.0 92.1 1.1 89.5 0.2 90.2 0.0
95 95.1 0.0 97.2 2.3 94.6 0.2 95.6 0.1

LM

5 5.0 0.0 7.4 2.2 5.0 0.0 7.8 2.3
10 10.0 0.0 17.5 10.4 10.1 0.0 17.1 7.9
15 15.0 0.0 23.2 9.2 15.0 0.0 28.0 18.5
20 20.0 0.0 33.7 20.4 20.0 0.0 36.3 23.8
25 25.0 0.0 42.5 28.7 25.1 0.0 43.5 27.2
30 30.0 0.0 55.6 55.8 30.0 0.0 50.8 31.5
35 35.0 0.0 65.0 73.7 35.0 0.0 57.5 35.2
40 40.0 0.0 71.3 79.8 40.0 0.0 61.7 31.9
45 45.0 0.0 75.5 76.4 45.0 0.0 66.8 32.4
50 50.0 0.0 79.6 74.6 50.0 0.0 71.0 30.5
55 55.0 0.0 83.8 74.4 55.0 0.0 74.9 28.3
60 60.0 0.0 85.8 63.3 60.0 0.0 76.7 20.9
65 65.0 0.0 88.4 57.1 65.0 0.0 78.5 14.5
70 70.0 0.0 90.2 47.0 70.0 0.0 81.1 10.7
75 75.0 0.0 91.0 33.5 74.9 0.0 82.6 5.7
80 80.0 0.0 93.0 26.4 80.0 0.0 85.8 3.8
85 85.0 0.0 94.3 17.0 85.0 0.0 87.6 0.9
90 90.0 0.0 96.3 11.2 89.9 0.0 89.9 0.0
95 95.0 0.0 97.6 3.4 95.0 0.0 93.8 0.5

Table 5: Outcomes of likelihood ratio test for unconditional coverage

This table displays the outcomes of the likelihood ratio test for unconditional
coverage for the in-sample and the out-of-sample period. A test statistic LR in
boldface indicates rejection of the null hypothesis H0 : τ = τ0 at a 5% level. The
outcomes of the likelihood ratio test are given for both the quantile regression
model (‘QR’) and the linear model with empirical error term distribution (‘LM’).
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Figure 1: Estimated quantile regression coefficients with confidence bounds (buys)

Figures 1-4 display the impact of the trade characteristics on the distribution of
the market impact costs as a function of the quantile (solid curve) and 95%
confidence bounds (light-shaded area). The estimation results are based on the
Barrodale and Roberts algorithm implemented in the Roger Koenker’s Quantreg
package for R. Additionally, ordinary least squares coefficients (solid black line)
and corresponding 95% confidence bounds (dashed black lines) obtained from the
classical linear regression model are plotted to facilitate visual comparison of the
quantile regression with the traditional regression approach.
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Figure 2: Estimated quantile regression coefficients with confidence bounds (buys,
continued)
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Figure 3: Estimated quantile regression coefficients with confidence bounds (sells)
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Figure 4: Estimated quantile regression coefficients with confidence bounds (sells,
continued)
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(a) Buys out−of−sample: forecasts
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(b) Buys out−of−sample: prediction interval
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(c) Sells out−of−sample: forecasts
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(d) Sells out−of−sample: prediction interval

Figure 5: Forecasted and realized market impact costs

Figures (a) and (c) display forecasted (light-colored lines) and realized
(dark-colored lines) market impact costs for buys and sells during the
out-of-sample period. The forecasts are based on the linear regression model. The
light-colored lines in Figures (b) and (d) depict the upper and lower bounds of the
90% prediction interval obtained from the quantile regression model; the
dark-colored lines represent realized market impact costs.
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