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Abstract 

In this paper we present a technique to obtain the time-varying covariance 

matrix for several time series for nearest neighbour predictors. To illustrate 

the use of this technique, we analyse the time-varying variances and 

correlations between the daily returns on two equity stock market indexes, 

the New York Stock Exchange (NYSE) and the Madrid Stock Exchange 

Index (MSEI). 
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I. Introduction 

 

Cross-country covariances of asset returns play a key role in international 

risk management and portfolio diversification. So, potential benefits from 

international diversification from domestic investors are significant if cross-

country covariances are small. However, investors may not be able to 

diversify away much domestic risk if the cross-country covariances are 

large.  

Since the market crash of 1987, a wide range of literature has 

emerged investigating the contagion phenomenon and the fundamental 

factors which are affecting the cross-country stock return correlations. A 

determining paper was Roll (1989) which presents a survey on the link of 

international stock markets, signalling that international correlations of 

returns increased dramatically during crash periods. Several seminal papers 

focused their attention on analyzing how news from one international 

market influences other markets` volatility processes (see Engle et al., 1990; 

Hamao et al., 1990 and King and Wadhawani, 1990, among others). 

Other papers have established that correlations across the indexes, 

like their unconditional sample counterparts, are typically nonnegative (e.g. 

Koch and Koch, 1991 and Engle and Susmel, 1993). This empirical fact has 

also been corroborated by papers such as King, Sentana and Wadhwani 

(1994) or Darbar and Deb (1997). More recently, literature asks if the 

spread contagion is due to economic and/or financial links between the base 

country and secondary country, determining which channels of financial 
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contagion are the most significant in transmitting crises between countries 

(see Collins and Gavron, 2004 and other papers enclosed).  

The methodology employed for estimating variances and 

covariances of asset returns are also crucial. As Darbar and Deb (1997) 

point out, if the correlations are time varying, examining sample 

correlations may be inadequate because the time path of conditional 

correlations reveals information that cannot be obtained by simply 

computing the sample correlation statistic. The sample correlation 

coefficient may also be a misleading measure of independence between two 

markets. For instance, a large value of a sample correlation may be driven 

by an episode of unusually high conditional correlation. 

ARCH family models (see Engle, 1982) have been one of the most 

popular frameworks for modelling time-varying variances of asset returns. 

The ARMA-ARCH model rests on the assumption that the time series are 

linear in mean but nonlinear in variance. Nevertheless, several nonlinear and 

no parametrical alternative models have been considered recently. If we 

consider the hypothesis that the financial series have a nonlinear structure in 

mean, a very well-known model for predicting the returns are the Nearest 

Neighbour (NN from now on) prediction method.. In this paper we propose 

a way of estimating time-varying variances and covariances when the 

nonparametric NN multivariate estimator method is used to predict returns. 

In ARCH approach literature it is very common to use a multivariate 

framework for modelling time-varying covariances among international 

financial markets. In this case, there is a high number of parameters which 

has to be estimated. With N series, N(N+1)/2 processes, which characterize 
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the variance covariance matrix, need to be estimated. So, the imposition of 

restrictions is necessary to reduce the number of parameters of the model to 

be estimated (see Engle and Susmel, 1993).  

 The aim of the paper is to propose a different approach for 

estimating the time-varying covariance matrix using nonparametric local 

linear models. In our methodology the volatility of an observation is 

associated with the risk of an NN in-sample prediction. In some extensions, 

the NN procedure involves regression by ordinary least squares (OLS) of 

the future evolution of the k nearest neighbours chosen on their preceding 

histories. However, OLS is efficient only when the contemporaneous 

correlation of the OLS residuals do not exist, otherwise the estimators are 

inefficient. In this paper we use the seemingly unrelated regression (SUR) 

estimation methods to estimate the model (Zellner, 1962). In this context we 

call this technique the locally-adjusted seemingly unrelated regression 

(LASUR) model. This will not only be able to obtain the predictions of the 

series but also the time-varying variances and covariances. So, future 

volatility and co-variability, one-step ahead of two series, is associated with 

the prediction error covariance matrix of an NN-LASUR prediction. To 

illustrate the use of this technique we analyse the time-varying variances 

and correlations between the daily returns on two equity stock market 

indices, the NYSE and the MSEI in the context of in-sample prediction. 

Following Härdle (1990), the nonparametric approach to estimating 

a regression curve has four main purposes. First, it provides a versatile 

method of exploring a general relationship between variables. Second, it 

gives predictions of observations yet to be made without reference to a fixed 
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parametric model. Third, it provides a tool for finding spurious observations 

by studying the influence of isolated points. Fourth, it constitutes a flexible 

method of substituting for missing values or interpolating between adjacent 

X-values. 

Besides, we add three additional purposes related to the specific 

covariances of stocks correlation problems:  

• Our non-parametric method is robust to extreme values estimating 

volatilities and correlations guaranteeing that these measures are not 

affected by the stock market slumps. Given the dramatic changes in 

the stocks co-movement patterns around market crashes we used a 

nonparametric method in order to develop a precise study of stock 

indexes correlation in these periods as well as guaranteeing that the 

volatility and correlation will be not affected by the extreme values. 

• As opposed to parametric models for estimating the volatility (like 

ARCH family models), our non-parametric model produces normal 

standardized residues or standardized residues very close to 

normality 

• Our non-parametric model is not affected by the possible existence 

of structural changes. 

 The plan of the paper is as follows. In section 2 the technique is 

developed. Section 3 describes an illustrative example of the LASUR 

procedure that uses real data sets, namely the New York Stock Exchange 

(NYSE) and the Madrid Stock Exchange Index (MSEI). In section 4 we 

show the conclusions. 
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II. Multivariant Nearest Neighbour Predictions with SUR Estimation 

 

Let { }T
ttx 1= be a time series of scalar observations. We introduce the method 

of local polynomial regression, where the underlying regression curve is 

locally and linearly approximated around a vector of d consecutive 

observations by a linear function, with the objective of getting an in-sample 

prediction of 1+tx . The out-of sample prediction is easily gotten just by 

taking the sub-sample up to the current t-moment and disregarding the rest 

of the sample. 

 The first step of this methodology consists of embedding the series 

in a d-dimensional space, called the phase space of the time series. 

Segments of d consecutive elements  

Tddtxxxx dttt
d
t ,....,1,),......,,( )1(1 +== −−− (1) 

of the series, frequently called d-histories, are considered vectors in the 

space d� , and recorded in the matrix dZ .

1 1

1 2

1 ( 1)

1 2

...

...
. . ... .

...
. . ... .

...

d d

d d

d

t t t d

T T T d

x x x
x x x

Z
x x x

x x x

−

+

− − −

− − −

 
 
 
 

=  
 
 
 
  

(2) 

 

The parameter d is referred to as the embedding dimension, and each row-

vector of the matrix dZ in (2) is called the d-history. For the out-of-sample 

prediction of 1+tx the last row of dZ is the 1
d
tx − vector. 
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This embedding procedure is well-known in the literature of 

deterministic chaos, where the Takens (1981) theorem guarantees, under 

broad conditions, that a hidden deterministic dynamic may be mimicked in 

the d-dimensional space by the set of d-histories. With independence of the 

theory of deterministic chaos, nonparametric regression and local 

polynomial modelling methods propose similar procedures for modeling 

and predicting time series (see Härdle, 1990, Green and Silverman, 1994 

and Hastie et al., 2001). 

 In order to predict an observation 1+tx , the local linear approximation 

considers the k nearest neighbors vectors d
tx
l

for 1,.....,k=l to the vector 

d
tx taken from the row vectors of dZ in (2). These nearest neighbors 

d
t

d
t

d
t k

xxx ,....,,
21

are the first k minima of the function d d
t tx x−
l

, where 

1d t T≤ ≤ −l and ⋅ being the Euclidean distance. 

 Then we can model the data locally as  

d d d d
t t t tY X β ε= + (3) 

where d
tε is a perturbations vector of size k, d

tX is a matrix of size (k,d+1) 

formed from the nearest neighbors row-vectors selected from dZ , plus a 

column of ones to take into account the constant in the model: 

 

1 1 1

2 2 2

1 ( 1)

1 ( 1)

1 ( 1)

1 ...

1 ...

. . . ... .
1 ...

k kk

t t t d

t t t dd
t

t t t d

x x x

x x x
X

x x x

− − −

− − −

− − −

 
 
 =  
 
  

, (4) 
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and d
tY is a vector of size k formed from the one step ahead observation of 

every row-vector of d
tX , that is 

 

1

2

1

1

1

.

k

t

td
t

t

x

x
Y

x

+

+

+

 
 
 =  
 
  

. (5) 

 

Finally, d
tβ is a vector of local parameters of size d+1 associated 

with the segments of d consecutive observations d
tx . This vector can be 

estimated by OLS: 

 

( ) 1, ( )ˆ ( ) '( ) ( ) '( )d OLS d d d d
t t t t tX X X Yβ

−
= . (6) 

 

For the predictions of 1+tx , the observations of the vector d
tx are used 

as explanatory variables, so 

, ( )
1

ˆd d OLS
t t tx x β+ =) . (7) 

 This procedure may be generalized to the case of several 

simultaneous time series. In this case, we use the cross information of 

several time series in forming a predictive vector. There have been several 

practical attempts in finance, such as Mizrach (1992) or Fernández-

Rodríguez et al. (1999) (see also Fernández-Rodríguez et al., 2003 for a 

review) in the context of prediction. 
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A serious problem arises in the generalization of univariate NN 

techniques to the multivariate case. It is the so called “curse of 

dimensionality”, which was termed by Bellman (1961). Consider a p-

dimensional unit hypercube as a neighbour of a target point. Following 

Hastie et al. (2001), if we wanted to capture a fraction r of the unit volume 

of the observations, the expected edge length would be 1/( ) p
pe r r= . So, in 

ten dimensions 10 (0.01) 0.63e = and 10 (0.1) 0.8e = . Therefore, to capture 1% 

and 10% of the data to form a local neighbour, we must cover 63% or 80% 

of the range of each input variable. Consequently, a local neighbourhood in 

a higher dimension is no longer local. As Fan and Gijbels (1997) point out, 

if a local neighbourhood contains 10 data points along each axis, then there 

are 10d data points in the corresponding d-dimensional neighbourhood. 

Subsequently, even when d is moderate, a large data set is required to fit a 

k-NN multivariate model, and such large data sets are often not available in 

practical situations. Therefore, due to the “curse of dimensionality”, k-NN 

multivariante techniques are hardly useful in the presence of many 

regressors.  

 Now we present an alternative approach in dealing with the “curse of 

dimensionality” which will be summarized as follows: For simplicity, let’s 

consider a two-dimensional time series { }T
ttt xx

1,2,1 ,
=

, with two matrices of d-

histories d
iZ (for i=1,2) as in (2). In order to select the nearest neighbors we 

embed each of these series in the space d dx� � , paying attention to the 

vectors 1, 2,( , )d d d d
t tx x x∈� � which represent simultaneous histories in both 

series. So, we can look for the closest k simultaneous histories 
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1 11, 2, 1, 2,( , ),...., ( , )
k k

d d d d
t t t tx x x x to the current one 1, 2,( , )d d

t tx x . That is, we have to 

minimize the function 

 

1, 1, 2, 2, 1d d d d
t t t tx x x x where d t T− + − ≤ ≤ −
l l l . (8) 

 

for every current simultaneous history 1, 2,( , )d d
t tx x , fixed the time t. Given the 

two-dimensional time series { }T
ttt xx

1,2,1 ,
=

, and a current day t, the out of 

sample prediction is obtained by minimizing the function (8) when only 

simultaneous histories 1, 2,( , )
l l

d d
t tx x with the restriction lt t T< < are 

considered. 

 Following (3), (4) and (5) we can model the data locally with two 

equations: 

1, 1, 1, 1,

2, 2, 2, 2,

d d d d
t t t t

d d d d
t t t t

Y X

Y X

β ε

β ε

= +

= +
. (9)     

 

Observe that the equations in (9) are seemingly unrelated although the 

information for selecting 1,
d
tX and 2,

d
tX are obtained in (8) using the 

simultaneous histories. The purpose of model (9) is to collect the 

multivariant information of both series and, at the same time, to have a 

minimum number of parameters to be estimated with the end of avoiding 

the curse of dimensionality.  

 The OLS estimation of (9) is efficient only if the contemporaneous 

correlation of the OLS residuals do not exist, otherwise OLS is inefficient. 

When the contemporaneous correlation between d
t,1ε and d

t,2ε exists, it may 

Page 10 of 31

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

11

be more efficient to estimate the two equations jointly, rather than to 

estimate each one separately using OLS. The appropriate joint estimation 

technique is known as seemingly unrelated regression estimation (SURE), 

(Zellner, 1962), that in this context we shall call the locally-adjusted 

seemingly unrelated regression (LASUR). 

 We can rewrite (9) as 

 

εβ += XY (10) 

where 

 









= d

t

d
t

X
X

X
,2

,1

0
0

, 1,

2,

d
t

d
t

Y
Y

Y
 

=  
 

, 







= d

t

d
t

,2

,1

ε
ε

ε , 1,

2,

d
t

d
t

β
β

β
 

=  
 

. (11) 

 

The assumptions are 

 

[ ] 0=εE and      ,
kE Iεε  =Ω = Σ⊗   where     








=Σ

2221

1211

σσ
σσ

(12) 

 

and ( )'

, ,
d d
i t j t ij kE Iε ε σ  =  

 for i,j=1,2. The identity matrix Ik is of dimension k 

and ⊗ is the Kronecker product. In this case Ω cannot be written as a scalar 

multiplied by a 2k-dimensional identity matrix. It follows that the locally 

adjusted generalized least squares estimator: 

 

( ) ( )1
, ( ) 1 1ˆ ˆ ˆ' 'd LASUR X I X X I Yβ

−
− − = Σ ⊗ Σ ⊗   (13) 
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is the best linear unbiased estimator for β . ,( )ˆ d LASURβ has lower variance 

than ,( )ˆ d OLSβ in (6) because it takes into account the contemporaneous 

correlation between the disturbances in different equations. The covariance 

matrix of ,( )ˆ d LASURβ is consistently estimated by 

 

� ( ) ( ) 1
, ( ) 1ˆ ˆ'd LASURCov X I Xβ

−
− = Σ ⊗  (14) 

 

and the one step ahead prediction vector, which is denoted by 1
ˆ

tX + , is 

obtained as: 

 

1, 1 ' , ( )
1

2, 1

ˆ ˆˆ
ˆ

t d LASUR
t t

t

x
X P

x
β+

+
+

 
= = 
 

 (15) 

 

where 

 

1, 1, 1 1, ( 1)'

2, 2, 1 2, ( 1)

1 .... . 0 0 0 . 0
0 0 0 . 0 1 .... .

t t t d
t

t t t d

x x x
P

x x x
− − −

− − −

 
=  
 

. (16) 

 

To obtain Σ̂ in (13) we first estimate each equation by OLS and 

obtain the residual vector iε̂ . Consistent estimates of Σ are given by 

 

( ) ( )'

, ,ˆ ˆ
ˆ , 1, 2

d d
i t j t

ij for i j
k d

ε ε
σ = =

−
(17) 
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that will be unbiased on finite samples when the same d-dimensional vectors 

are used in each series. Once ,( )ˆ d LASURβ is calculated it can be used to form a 

new estimator for ijσ using (17) that can be used again to obtain new values 

of ,( )ˆ d LASURβ and so on, in an iterative procedure until a convergence criteria 

is achieved. Besides, if the disturbances, 1,
d
tε 2,

d
tε , follow a multivariate 

normal distribution this estimator is also a maximum likelihood estimator. 

There are two conditions under which ,( )ˆ d OLSβ is identical to ,( )ˆ d LASURβ . The 

first is when all contemporaneous correlations are zero. In this case, Σ is a 

diagonal matrix and (6) is then equal to (13). The second condition is when 

all the explanatory variables in each equation are identical in name, 

( )1, 2,
d d
t tX X= what it is no possible in the procedure described in this section.  

 The aim of the paper is to propose a different approach for 

estimating the conditional covariance matrix using nonparametric local 

linear models. In finance, volatility is associated with the risk of a specific 

prediction. In the ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) 

approximations, time series volatility is measured by means of the 

conditional variance of its unexpected component, that is, with the risk of an 

ARMA-ARCH prediction. In this paper, the volatility of an observation is 

associated with the risk of an NN in-sample prediction. Future volatility and 

co-variability, one-step ahead of two series, is associated with the prediction 

error covariance matrix of a NN-LASUR prediction. Since the one-step 

ahead prediction error vector is 

( )' ' , ( ) ' , ( )
1 1 1 1 1

ˆ ˆˆ d LASUR d LASUR
t t t t t t t te X X P P Pβ ε β β β ε+ + + + += − = + − = − + , (18) 
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where 1, 1
1

2, 1

t
t

t

x
X

x
+

+
+

 
=  
 

, 1, 1
1

2, 1

t
t

t

ε
ε

ε
+

+
+

 
=  
 

and  







=

+

+
+

1,2

1,1
1

t

t
t e

e
e ,

the prediction error covariance matrix of a NN prediction is defined as: 

( )( ) ( )( )'
' , ( ) ' , ( )

1 1 1
ˆ ˆcov( ) d LASUR d LASUR

t t t t te E P Pβ β ε β β ε+ + +
 = − + − + =  

( )( ) 1
' 1ˆ ˆ't tP X I X P

−
−Σ ⊗ +Σ . (19) 

 Note that (19) is the covariance matrix Σ̂ plus a positive definite 

matrix. Thus, the future volatility and co-variability one-step ahead of both 

series depends not only on the stochastic element in the system Σ̂ , but is also 

a function of tP and matrix X. The tP matrix contains the vectors 1,
d

tx

and 2,
d

tx that have been used to find the nearest neighbours which are in the 

X matrix.  

 

III. Empirical Results for NYSE and Madrid Stock Exchange Indexes 

 

To illustrate the use of this technique we analyse the time-varying variances 

and correlations between the daily returns on two equity stock market 

indexes, the New York Stock Exchange (NYSE) and the Madrid Stock 

Exchange Index (MSEI). As our task is to describe the relations in the past 

between these two indexes throughout the sample period, therefore the in-

sample prediction of variances and correlations are appropriated. 

Nevertheless, in other cases the out-of sample prediction could be carried 

out. 
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The data consist of daily close-to-close returns for indexes of the two 

equity markets from January 2, 1991 to December 30, 2002, which provide 

a total of 2916 observations. A graph of the data is provided in figure 1. 

 

[Figure 1] 

[Table 1] 

 

In table 1 we present a statistical summary based on the first 

differences of the logarithms of the stock market indexes (multiplied by 

100). The daily average return for both series is less than 1 per cent. The 

standard deviation of the returns varies from 0.94 per cent per day for the 

NYSE, to 1.27 for the MSEI. In both cases, the returns are skewed to the left 

and the unconditional distribution of returns has kurtosis coefficients in 

excess of 3, implying fatter tails than the normal distribution. According to 

the Jarque-Bera test, we strongly reject the null hypothesis of normality in 

both cases. Finally, we report the sample correlation coefficient with a value 

of 0.4056. 

 Following Casdagli and Eubank (1992), the number of neighbours 

k=28 and the embedding dimension d=6 have been estimated by minimizing 

the sample prediction error.  

 

[Table 2] 

 

In table 2 we report statistics for the estimated time-varying 

covariance and correlation matrices. An important use of the time-varying 
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variance is the evaluation of the accuracy of the NN forecast. In standard 

time series methodology, which uses constant variance ARMA processes, 

the variance of the forecast error does not depend on the current information 

set. If the series being forecasted by NN displays time-varying variances, 

the current information set can indicate the accuracy by which the series can 

be forecasted by NN. To ensure that the computed value of time-varying 

variance is reasonable, in figure 2 we present the first differences in 

logarithms of the NYSE and its prediction intervals for the last 50 

observations. The prediction intervals are obtained by  

)(*2ˆ 1,1, ++ ± tNYSEtNYSE eSEx . (20) 

where SE(·) represents the time-varying standard error. 

 

[Figure 2] 

 

For the full sample, the first differences in logarithms of the NYSE 

lie outside the prediction intervals at 6.8 %. For the differences in 

logarithms of the MSEI at 6.5%, it implies that LASUR estimation of the 

time-varying variance is able to collect correctly the risk associated with the 

predictions since similar results are expected for any measure of dispersion 

if the distribution of the data is bell-shaped, and anyway these percentages 

are clearly smaller than those corresponding to Chebyshev‘s inequality. 

 The upper part of Figure 3 shows the centred moving averages for 

101 observations to eliminate irregular fluctuations from the time-varying 

variances of both indexes. The behaviour of these two series seems similar, 

but MSEI variances are around the double of those corresponding to NYSE. 

Page 16 of 31

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

17

The sample correlation between these two series is 0.38 indicating a positive 

relation. In order to investigate causal relations between these series we 

estimate the next bivariate regressions to apply Granger’s causality test 

 

, 0 1 , 1 5 , 5 1 , 1 5 , 5 ,

, 0 1 , 1 5 , 5 1 , 1 5 , 5 ,

... ...
... ...

N t N t N t M t M t N t

M t M t M t N t N t M t

V V V V V u
V V V V V u

α α α β β

α α α β β
− − − −

− − − −

= + + + + + + +

= + + + + + + +
 (21) 

 

where ,N tV and ,M tV are the time-varying variances of the first differences in 

the logarithms of the NYSE and MSEI, respectively. The Wald statistics for 

the null joint hypothesis: 1 5... 0β β= = = is rejected for each equation. This 

means that the process is a feedback system where ,N tV causes ,M tV and 

,N tV causes ,M tV .

[Figure 3] 

 

Finally, in Figure 3 we have signalled the period from September to 

November 1998. In this time interval the largest slump took place in the 

sample period which corresponds to the Russian financial crisis. Our 

estimations during the index fall reflect an important increase in the 

variances in both markets, which diminishes until reaching a trough. 

 Previous studies, some of which have been mentioned in the 

introduction, suggest that international correlation is much higher in periods 

of volatile markets and that market trends affect international correlations. 

In our case, the correlation seems to be influenced by the volatility of both 
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indexes but not by the market trend. Taking the standard deviation as a 

measure of volatility we have estimated the next two reciprocal regressions 

 

1 2
,

ˆ 0.89 0.006 0.15
(0.00) (0.00)

t N tC D R−= − =
(22) 

 

1 2
,

ˆ 0.89 0.005 0.13
(0.00) (0.00)

t M tC D R−= − =
(23) 

 

where ˆ
tC is the fitted time-varying correlation between NYSE and 

MSEI. ,N tD , and ,N tD are the time-varying standard deviations of NYSE and 

MSEI, respectively. P-values are given in brackets. Other functional forms 

have been considered but the reciprocal gets a good fitting. As Figure 4 

shows, for both markets when volatility increases, correlations increase 

approaching asymptotically to the limit of 0.89. Figure 4 illustrates the 

relation represented in equations (22) and (23).  

 

[Figure 4] 

 

In Figure 1 we have signalled two periods with different trends. The 

first one from 11/22/1994 to 08/25/2000 represents a bull market, and the 

second one from 08/25/2000 to the end of the sample represents a bear 

market. We have run the next regression to test whether there is any relation 

between trend market and correlations 
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2
1 2

ˆ 0.42 0.001 0.052 0.004
(0.00) (0.43) (0.00)

tC d d R= + + =  

1

2

1 11/ 22 /1994 08 / 25 / 2000
0

1 08 / 25 / 2000 12 / 30 / 2002
0

from to
d

in other case

from to
d

in other case


= 



= 


P-values are given in brackets. The coefficient of the bear market is 

significantly different from zero but the trend market explains correlations 

poorly. 

 As table 2 shows, although the series sometimes experience negative 

correlations, such events are rare. They occur less than 10 per cent of the 

time, suggesting the conditional correlations across the indexes, like their 

unconditional sample counterparts, are typically nonnegative. This is a 

typical empirical finding (e.g. Koch and Koch, 1991 and Engle and Susmel, 

1993). However, the range of the estimated correlations is considerable. 

This fact has been found in other research as in King, Sentana and 

Wadhwani (1994) or Darbar and Deb (1997). In figure 5, we present the 

centred moving averages for 101 observations from the time-varying 

correlations. This figure shows that the time-varying correlations appear to 

increase with time.  

 

[Figure 5] 
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In figure 5 we have signalled three periods to describe the time-

varying correlation behaviour. The first period is from September to 

November 1998, which corresponds to the Russian financial crisis, where 

the effects are shown clearly in the index. During the index slump, an 

increase in the correlations in both markets is produced which diminishes 

until reaching a trough. Subsequently, when both indexes increase the 

correlation also increases. The second period is from the end of December, 

1999 until the middle of May, 2000. This period is characterized by internal 

events in the Spanish and European markets, according to the fusion of 

technological firms, which brought about the so-called speculative bubble. 

This phenomenon, although not alien to the American market, was 

experienced intensely in the Spanish market, as it is possible to see in the 

NYSE and MSEI indexes. As shown in figure (3), this phenomenon entails 

an important decrease in the correlations between both markets. When this 

phenomenon begins to disappear in the MSEI, it is possible to observe that 

the correlations between both markets increase again. The last period 

considered is from the day before the terrorist attacks on the World Trade 

Centre and the Pentagon on September, 2001. Until this moment the 

evolution was characterized by a constant decrease in correlations. 

However, the terrorist attacks produced a change of tendency as we show in 

figure 5.    

 

IV. Conclusions 
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In Economics and financial time series it is important to estimate the time-

varying variances and covariances of asset returns. These magnitudes are 

crucial for risk management and diversification. The degree to which 

investors can reduce their risk by diversifying their portfolio depends on the 

correlations among assets. The lower is the correlation between two assets, 

the higher is the potential benefit to be obtained by diversification. Typical 

empirical findings indicate that stock returns are positively correlated across 

countries, but these correlations are usually smaller than between domestic 

assets, which justify international diversification. 

 In this paper we present a technique for obtaining the time-varying 

covariance matrix for several time series for nearest neighbour predictors. 

To illustrate the use of this technique, we analyse the time-varying variances 

and correlations between the daily returns on two equity stock market 

indexes, the New York Stock Exchange (NYSE) and the Madrid Stock 

Exchange Index (MSEI). 

We highlight four empirical conclusions of our work. (1) There is a 

positive time-varying relation between both indexes. (2) Consistent with 

previous empirical results, we find evidence of a positive time-varying 

relation between the returns volatility of NYSE and MSEI and its 

correlations respectively. This provided an interesting use of the technique 

presented in this paper since correlations asset returns are a critical 

parameter in risk management. The use of constant correlations between 

asset returns in portfolio selection might lead to the use of suboptimal 

portfolios. (3) The capacity of trend markets to explain correlations is very 

poor. If any positive relation existed, it would be in the bear market but not 
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in the bull market. And finally, (4) the important shocks produced in the 

markets such as those described above, seem to be well collected by our 

variances and correlations estimation technique. 
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Figure 1. Stock Market Indexes: New York Stock Exchange (NYSE) and the 

Madrid Stock Exchange Index (MSEI)
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Figure 2. First differences in logarithms of the NYSE and the prediction 

interval
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Figure 3.  Centred moving averages for time-varying variances
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Figure 4. Relation between standard deviation and correlation
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Figure 5.  Centred moving averages for time-varying correlations
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Table 1. Summary statistics for daily returns (multiplied by 100)

NYSE MSEI

 Mean 0.033 0.036

 Median 0.034 0.051

 Maximum 5.179 6.362

 Minimum -6.791 -8.611

 Std. Dev. 0.940 1.267

 Skewness -0.254 -0.249

 Kurtosis 7.617 6.105

 Jarque-Bera 2620.3 1201.3

 (Probability) (0.00) (0.00)

 Observations 2915 2915

Sample correlation = 0.4056
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Table 2. Summary statistics for the estimates daily time-varying variances, 

covariances and correlations

10th Per. 30th Per. Median 70th Per. 90th Per.

Variance 

(NYSE)

0.04*10-3 0.07*10-3 0.08*10-3 0.11*10-3 0.16*10-3 

Variance 

(MSEI)

0.09*10-3 0.12*10-3 0.15*10-3 0.20*10-3 0.30*10-3

Covariance 0.002*10-3 0.030*10-3 0.052*10-3 0.082*10-3 0.143*10-3

Correlation 0.0137 0.3201 0.4919 0.6264 0.7839
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