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Mass redistribution method for finite element contact

problems in elastodynamics

Houari Boumediène Khenous
1, Patrick Laborde

2, Yves Renard
1.

Abstract

This paper is devoted to a new method dealing with the semi-discretized finite element

unilateral contact problem in elastodynamics. This problem is ill-posed mainly because

the nodes on the contact surface have their own inertia. We introduce a method based on

an equivalent redistribution of the mass matrix such that there is no inertia on the contact

boundary. This leads to a mathematically well-posed and energy conserving problem.

Finally, some numerical tests are presented.

keywords: elasticity, unilateral contact, time integration schemes, energy conservation, stabil-
ity, mass redistribution method.

Introduction

Many works have been devoted to the numerical solution of contact problems in elastodynamics
e.g. [21, 14, 13, 6]. In this paper, we are interested in numerical instabilities caused by the space
approximation. For simplicity, we limit ourself to the small deformations.

Concerning the continuous purely elastodynamic contact problems (hyperbolic problems), as
far as we know, an existence result has been proved in a scalar two dimensional case by Lebeau-
Schatzman [15], Kim [12], in the vector case with a modified contact law by Renard-Paumier
[24], but no uniqueness result is known. This ill-posedness leads to numerical instabilities of
time integration schemes. Thus, many researchers adapted different approaches to overcome
this difficulty.

To recover uniqueness in the discretized case, one of the approaches well adapted to rigid
bodies [21] is to introduce an impact law with a restitution coefficient. However, this approach
seems not satisfactory for deformable bodies. On the other hand the unilateral contact condition
leads to some difficulties in the construction of energy conserving schemes [21] [14] [13] [6] because
of presence of important oscillations of the displacement and a very noisy contact stress on the
contact boundary. To deal with this last difficulty, in [25, 3] the contact force is implicited
which consists in fixing nodes being in contact but the drawback of this method is the loss
of energy because of the annulation of kinetic energy. An other well known approach is the
penality method which introduce a very important oscillations that we have to reduce using a
damping parameter [25]. However, in [2] authors propose a conservative scheme with a posteriori
velocity correction in the same way as it is done in [7, 14] by introducing a jump on velocity
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during impact which permits the verification of the contact condition. The price to pay is a
supplemetary problem to solve on velocity.

Even this correction leads to a conserved physical properties, the contact condition is not
well approximated because we need the verification of contact condition either on displacement
and or on velocity and acceleration which is very difficult to obtain. We can find an idea to
verify the last two complementarity conditions in [26] with introducing a force in the discret la-
grangian. Also, [16] who propose a conservative iterative processus to correct the contact stress.
An other way, is to impose the persistency condition (complementarity on velocity) [13] with
a good choice of approximation. But this allows a small interpenetrations going to zero when
mesh parameter goes to zero. This interpenetration is eliminated by doing the same thing and
using a penality method [6].

In this paper, we perform an analysis of the ill-posedness encountered in this kind of dis-
cretization and conclude that the main cause is the fact that the nodes on contact boundary have
their own inertia. We propose a new method which consists in the redistribution of the mass
near the contact boundary. We prove that the well-posedness of the semi-discretized problem is
recovered and that the unique solution is energy conserving. Numerical simulations show that
the quality of the contact stress is greatly improved by this technique.

In section 1, we give the strong and week formulations of the contact problem in elastody-
namics. The next section is devoted to the corresponding evolutionary finite element problem.
In section 3, the ill-posedness and energy conserving characteristics of the finite element semi-
discretized problem is illustrated for a one degree of freedom system.

In section 4, we introduce a new distribution of the body mass with conservation of the to-
tal mass, the coordinates of the center of gravity and the inertia momenta. This distribution of
the mass is done so that there is no inertia for the contact nodes (similarly to what happens in
the continuous case). Using this method, we prove existence and uniqueness of the semi-discrete
solution. Numerical tests are presented in a last section. In particular, the propagation of the
impact wave is exhibited. Finally, we compare the evolution of the energy and the normal stress
with and without the mass redistribution method.

1 Contact problems in elastodynamics

Let Ω ⊂ R
d (d = 2 or 3) be a bounded Lipschitz domain representing the reference configuration

of a linearly elastic body. It is assumed that this body is submitted to a Neumann condition on
Γ

N
, a Dirichlet condition on Γ

D
and a unilateral contact with Coulomb friction condition on Γ

C

between the body and a flat rigid foundation, where Γ
N
, Γ

D
and Γ

C
form a partition of ∂Ω, the

boundary of Ω.
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1.1 Strong formulation

Let us denote ρ, σσ(u), εε(u) and A the mass density, the stress tensor, the linearized strain tensor
and the elasticity tensor, respectively.

The problem consists in finding the displacement field u(t, x) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρü − div σσ(u) = f in [0, T ] × Ω,

σσ(u) = A εε(u) in [0, T ] × Ω,

u = 0 on [0, T ] × Γ
D
,

σ(u)ν = g on [0, T ] × Γ
N
,

u(0) = u
0
, u̇(0) = u

1
in Ω,

(1)

where ν is the outward unit normal to Ω on ∂Ω. Finally, g and f are the given external loads.

On Γ
C
, we decompose the displacement and the stress vector in normal and tangential com-

ponents as follows:
u

N
= u.ν, u

T
= u − u

N
ν,

σσ
N
(u) = (σσ(u)ν).ν, σσ

T
(u) = σσ(u)ν − σσ

N
(u)ν.

To give a clear sense to this decomposition, we assume Γ
C

to have the C1 regularity. To sim-
plify, there is no initial gap between the solid and the rigid foundation. The unilateral contact
frictionless condition is expressed thanks to the complementarity condition

u
N
≤ 0, σσ

N
(u) ≤ 0, u

N
σσ

N
(u) = 0 and σσ

T
(u) = 0 on [0, T ] × Γ

C
. (2)

1.2 Weak formulation

Let us define the following vector spaces:

V = {v ∈ H1(Ω; Rd) : v = 0 on Γ
D
} and X

N
= {v

N|Γ
C

: v ∈ V },
their topological dual spaces V ′ and X ′

N
and the following maps:

a(u, v) =

∫
Ω

Aεε(u) : εε(v)dx, l(v) =

∫
Ω

f.vdx +

∫
Γ

N

g.vdΓ.

Now, let us denote
K

N
= {v

N
∈ X

N
: v

N
≤ 0}

and

NK
N

(v
N
) =

{
{μ

N
∈ X ′

N
: 〈μ

N
, w

N
− v

N
〉

X′

N
,X

N

≤ 0, ∀ w
N
∈ K

N
}, if v

N
∈ K

N
,

∅, if v
N

/∈ K
N
,

3
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the cone of admissibles normal displacements and its normal cone.

Formally, the weak formulation of Problem (1)(2) can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

find u : [0, T ] −→ V and λ
N

: [0, T ] −→ X ′

N
satisfying, for a.e. t ∈ [0, T ] :

〈ρü(t), v〉
V ′,V

+ a(u(t), v) = l(v) + 〈λ
N
(t), v

N
〉

X′

N
,X

N

∀v ∈ V,

−λ
N
(t) ∈ NK

N
(u

N
(t)),

u(0) = u0, u̇(0) = u1.

(3)

Remark. For simplicity, we denote u = u(t). More details about the contact problems in
elasticity can be found in [11, 4, 9].

2 The finite element approximation of contact problems

in elastodynamics

We consider a Lagrange finite element method for the contact problem in elastodynamics (3).
Let a1, ..., an be the finite element nodes, ϕ1, ..., ϕn.d the (vector) basis functions of the finite
element displacement space and I

C
= {i : ai ∈ Γ

C
}. We denote m the number of nodes on Γ

C
,

d the space dimension and n the number of nodes.

Let U be the vector of degrees of freedom of the finite element displacement field uh(x):

uh(x) =
∑

1≤i≤nd

uiϕi and U = (ui) ∈ R
n.d.

With a nodal contact condition, the elastodynamic problem (3) can be approximated as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find U : [0, T ] 	→ R
nd satisfying, at each time in [0,T]:

M Ü + KU = L +
∑
i∈I

C

λi

N
Ni,

N
T

i U ≤ 0, λi
N
≤ 0, (N

T

i U)λi
N

= 0 ∀ i ∈ I
C
,

U(0) = U0, U̇(0) = U1,

(4)

where
Kij = a(ϕi, ϕj)

are the components of the stiffness matrix K and the components of the finite element mass
matrix M are equal to

Mij =

∫
Ω

ρ ϕi.ϕj dx (1 ≤ i, j ≤ n.d) . (5)
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The elasticity coefficients obey the usual symmetry and uniform ellipticity conditions. The
external loads vector L = (Li) is written

Li =

∫
Ω

f.ϕidx +

∫
ΓC

g.ϕidx.

The vectors Ni ∈ R
n are chosen such that the normal displacement on the contact surface is

equal to
uh

N
(ai) = N

T

i U ∀i ∈ I
C
. (6)

The multipliers λi
N

define the nodal equivalent contact forces vector:

Λ
N

=
(
λi

N

) ∈ R
m, m = Card(I

C
).

Problem (4) represents a differential inclusion with mesure solution (see [?], [21]). For more
details on the discretization of contact with friction problems, see [9].

3 Ill-posedness of elastodynamic frictionless contact prob-

lem

It is known that Problem (4) is ill-posed [18, 19, 22, 23]. For instance, we can exhibit an infinite
number of solutions for the one degree of freedom (d.o.f) system represented in Fig. 1. In fact,
this very simple system appears on the normal component for each contact node in Problem (4)
with a supplementary right hand side corresponding to the remaining terms.

Rigid foundation

k (Stiffness coefficient)

m (Mass)

Figure 1: system with one d.o.f.

The vertical motion U ∈ R of the simple mechanical system represented in Fig. 1 is governed

5
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by the following set of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mÜ + kU = Λ

N
,

U ≤ 0, Λ
N
≤ 0, Λ

N
U = 0,

U(0) and U̇(0) given,

(7)

where k is the stiffness coefficient of the spring, m is the mass placed in its extremity and Λ
N

is
the reaction of the rigid formulation. With the particular initial data U(0) = −1 and U̇(0) = 0,
and for any α ≥ 0, we obtain a solution to Problem (7) given by

U(t) = −cos

(
t

√
k

m

)
, 0 ≤ t <

π

2

√
m

k
,

U(t) = α cos

(
t

√
k

m

)
,

π

2

√
m

k
< t < π

√
m

k
.

Hence, the space semi-discretized elastodynamic frictionless contact problem admits an infinite
number of solutions and is ill-posed in that sense.

4 Mass redistribution method (MRM)

As we just saw, the finite element semi-discretization of the elastodynamic contact problem is
ill-posed. To recover the uniqueness, one of the approaches well adapted to rigid bodies is to
introduce an impact law with a restitution coefficient [18, 19, 22, 23]. This seems not to be
completely satisfactory for deformable bodies because, whatever is the restitution coefficient,
the system tends to a global restitution of energy when the mesh parameter goes to zero.

The aim now is to present a new method which permits to recover the uniqueness for the
finite element semi-discretized elastodynamic contact problem and also its energy conservation.
Some of the results presented bellow were annouced in [10].

4.1 Construction of the redistributed mass matrix

The ill-posedness of Problem (4) comes from the fact that the nodes on the contact boundary
have their own inertia. This leads to instabilities even for energy conserving schemes. An ex-
planation of those instabilities is that if a node is stopped on the contact boundary, its kinetik
energy is definitively lost. Thus, energy schemes make the node on the contact boundary oscil-
late in order to keep this kenetic energy.

We propose here to introduce a new distribution of the mass which conserves the total mass, the
center of gravity and the inertia momenta. This distribution of the mass is done so that there
is no inertia for the contact nodes (similarly to what happens in the continuous case).

6
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Let us denote Mr the redistributed mass matrix. The elimination of the mass on the contact
boundary leads to the following condition:

Ni
T MrNj = 0, ∀ i, j ∈ I

C
, (8)

where Ni is defined by (6).

The construction of the matrix Mr (10) is done with the same sparsity than M (i.e without
adding non-zero elements).

The total mass can be expressed from M as follows (for a Lagrange finite element method):∫
Ω

ρ dx = XT M X,

where X = 1/
√

d (1...1)T ∈ R
n (d = 2, 3). The kth-coordinate of the center of gravity is written∫

Ω

ρ xk dx = XT M Yk (1 ≤ k ≤ d),

denoting Yk = (yi) ∈ R
n the vector such that

1/
√

d
∑
i,j

yi ϕi .ϕj = xk.

Finally, the moment of inertia matrix is derived from the quantities∫
Ω

ρ xk xl dx = Y T
k M Yl (1 ≤ k, l ≤ d).

The matrix Mr will be said to be equivalent to M if the following equality constraints are
satisfied: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

XT (Mr − M) X = 0,

XT (Mr − M) Yk = 0 (1 ≤ k ≤ d),

Y T
k (Mr − M) Yl = 0 (1 ≤ k, l ≤ d).

(9)

Moreover, for a reason of computational cost, the considered matrices Mr have the same form
than M , i.e. the zeros are in the same position for the two matrices.

Finally, the new mass matrix Mr is subjected to the above-mentioned constraints and mini-
mizes the distance to the standard finite element matrix M (Fröbenius norm). This choice leads
to a very simple system (6× 2 in 2D and 10× 10 in 3D) to be solved with Lagrange formulation
in order to compute Mr.

7
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4.2 Elastodynamic contact problem with redistributed mass matrix

If we number the degrees of freedom such that the last ones are the nodes on the contact
boundary, hypothesis (8) leads to a new mass matrix having the following pattern

Mr =

(
M 0
0 0

)
. (10)

We can also split each matrix and vector into interior part and contact boundary part as follows:

K =

(
K CT

C K̃

)
, Ni =

(
0

Ñ i

)
, L =

(
L

L̃

)
and U =

(
U

Ũ

)
.

Replacing M by Mr, Problem (4) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
M 0
0 0

) (
Ü
¨̃
U

)
+

(
K CT

C K̃

) (
U

Ũ

)
=

(
L

L̃

)
+

∑
i∈I

C

λi

N

(
0

Ñ i

)
,

ÑT
i Ũ ≤ 0, λi

N
≤ 0, λi

N
(ÑT

i Ũ) = 0 ∀ i ∈ I
C
,

U(0) = U0, U̇(0) = U1.

(11)

4.3 Stability analysis

Theorem 1 Let us assume that the load vector L is a Lipschitz continuous function on [0, T ].
Then, there exists one and only one Lipschitz continuous function t −→ (U(t), Λ

N
(t)) solution

to the discretized Problem (11).

Proof. Problem (11) is equivalent to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

M Ü + K U = L − CT Ũ ,

CU + K̃Ũ = L̃ +
∑

i∈I
C

λi
N
Ñi,

ÑT
i Ũ ≤ 0, λi

N
≤ 0, λi

N
(ÑT

i Ũ) = 0 ∀ i ∈ I
C
,

U(0) = U0, U̇(0) = U1.

(12)

The following sub-system of (12):⎧⎨⎩ K̃Ũ + CU = L̃ +
∑

i∈I
C

λi
N
Ñi,

ÑT
i Ũ ≤ 0, λi

N
≤ 0, λi

N
(ÑT

i Ũ) = 0 ∀ i ∈ I
C

(13)

8



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

can be expressed as follows :

a(Ũ , Ṽ − Ũ) ≥ lU (Ṽ − Ũ) ∀ Ṽ ∈ Q, (14)

where a(Ũ , Ṽ ) = Ṽ T K̃Ũ , lU (Ṽ ) = Ṽ T L̃ − Ṽ T CU and Q = {V : ÑT
i Ṽ ≤ 0, i ∈ IC}.

The standard assumptions of the elasticity problem imply on the one hand that Ũ is uniquely
defined from the variational inequality (14) for given U and L̃, and on the other hand that Ũ

and Λ
N

are Lipschitz continuous functions with respect to U and L̃. It follows that the first
equation in the system (12) is a second order Lipschitz ordinary differential equation with re-
spect to the unknown U . Such an equation, with the initial conditions, has a unique solution U
with a Lipschitz continuous derivative.

Since U and L̃ are Lipschitz continuous functions in time, Λ
N

is Lipschitz in time too.

Proposition 1 The solution (U, Λ
N
) to Problem (11) satisfies the following persistency condi-

tion at each node on Γ
C
:

∀i ∈ IC , λi

N
(NT

i U̇) = 0 a.e. on [0, T ].

Proof. Thanks to the fact that the solution (U, Λ
N
) to Problem (11) is Lipschitz continuous,

we have:
λi

N
= 0 on Supp(NT

i U) = ωi ⊂ [0, T ] (i ∈ Γ
C
),

where Supp(ψ) denotes the support of the function ψ(t). The continuity of λi
N

on [0, T ] implies

λi

N
= 0 on ωi.

On the other hand,
NT

i U̇ = 0 a.e. on θi,

where θi is the complementary part in [0, T ] of the interior of ωi. Hence

λi

N
(NT

i U̇) = 0, a.e. on [0, T ].

Remark. The previous statement is a transcription in a finite element framework of the
so-called persistency contact condition in elastodynamics (see [13]).

Theorem 2 Assuming that the load vector L is constant in time, the finite element elastody-
namic system with unilateral contact (11) is energy conserving.

9
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Proof. The discrete energy of system (11) is given by:

E(t) =
1

2
U̇T MU̇ +

1

2
UT KU − UT L.

The first equation in (11) implies:

U̇T MrÜ + U̇T KU = U̇T L +
∑
i∈I

C

λi

N
U̇T Ni.

Integrating from 0 to t, it follows:

1

2
U̇T MU̇ +

1

2
UT KU − UT L =

∑
i∈I

C

∫
0

t

λi

N
U̇T Ni dt + E(0).

In others words, one has

E(t) =
∑
i∈I

C

∫
0

t

λi

N
U̇T Ni dt + E(0) ∀t ∈ [0, T ].

Thanks to Proposition 1, we finally obtain

E(t) = E(0) ∀t ∈ [0, T ].

5 Numerical results

Figure 2: the mesh of the disc (isoparametric P2 elements).
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Disc property Values Property of the resolution method Values
ρ, diameter 6 103kg/m3, 0.2 m Time step 10−3s

Lamé coefficients λ = 106 P , μ = 5 105 P Simulation time 0.3 s
u0, v0 0.01 m, 0. m/s Mesh parameter � 0.02 cm

Table 1: characteristics of the elastic disc and the resolution method

In this section, we study the dynamic contact of an elastic disc (see Fig. 2) the properties of
which are summarized in Tab. 1. We denote A the lowest point of the disc (the first point which
will be in contact with the foundation). The numerical tests were performed with the finite
element library Getfem [27]. The test program is available on the website of Getfem.

The semi-discretization in time is done with two time integration schemes: Crank-Nicholson
scheme and Newmark scheme.

Crank-Nicholson scheme

The Crank-Nicholson scheme is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un+1 = Un +
Δt

2

(
V n + V n+1

)
,

V n+1 = V n +
Δt

2

(
An + An+1

)
,

MrA
n+1 + KUn+1 = L +

∑
i∈I

C

(λi

N
)n+1Ni,

N
T

i Un+1 ≤ 0, (λi
N
)n+1 ≤ 0, (N

T

i Un+1)(λi
N
)n+1 = 0 ∀ i ∈ I

C
,

U(0) = U0, U̇(0) = U1,

(15)

where Un, V n and An approximate U(tn), U̇(tn) and Ü(tn) respectively.

The energy evolution for the Crank-Nicholson scheme with and without mass redistribution
method is shown on Fig. 3. We remark that the energy is blowing up with the standard
mass matrix. Whereas, there are very small fluctuations in the energy evolution which is quasi-
conserved with the mass redistribution method.
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Figure 3: energy evolution for the elastodynamic contact problem (Δt = 10−3).

The evolution of the numerical normal stress at point A is presented on Fig. 4. The normal
stress is rather smooth with the mass redistribution method unlike with the standard finite
element mass matrix where it is completely unexploitable.
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Figure 4: normal stress evolution of the lowest point of the disc (Δt = 10−3).

The numerical behaviour of the energy and normal stress evolution is stabilized using the redis-
tributed mass matrix. The discretized elastodynamic contact problem is then equivalent to a
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Lipschitz ODE in time, allowing the convergence of classical schemes when the time step goes to
zero. It is illustrated with the use of a time step equal to 10−4 for the Cranck Nicholson scheme.
The result on Fig. 5 clearly shows that the energy tends to be conserved when the time step
goes to zero.
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Figure 5: influence of the time step on the energy evolution.

Newmark scheme

Let us consider the following Newmark scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un+1 = Un + Δt V n +
Δt2

2
An+1,

V n+1 = V n +
Δt

2
(An + An+1),

MrA
n+1 + KUn+1 = L +

∑
i∈I

C

(λi

N
)n+1Ni,

N
T

i Un+1 ≤ 0, (λi
N
)n+1 ≤ 0, (N

T

i Un+1)(λi
N
)n+1 = 0 ∀ i ∈ I

C
,

U(0) = U0, U̇(0) = U1.

(16)
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Figure 6: energy evolution for the elastodynamic contact problem (Δt = 10−3).
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Figure 7: normal stress evolution on the lowest point of the disc (Δt = 10−3).
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Figure 8: influence of time step on energy evolution.

Concerning the Newmark scheme, we remark that the mass redistribution method stabilizes also
the scheme and improves the behaviour of the normal stress (see Fig. 6, Fig.7 and Fig.8). Fur-
thermore, when time step goes to zero, the discrete solution tends also to be energy conserving.

Propagation of the impact wave

In order to show that the method does not change the behaviour of the solution and that
in particular we conserve the propagation of the impact wave, we give the following test. Fig.9
represents the evolution of the Von Mises stress during the first impact.
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t = 0 s t = 0.5 10−2 s t = 10−2 s t = 1.5 10−2 s

t = 2 10−2 s t = 2.5 10−2 s t = 3 10−2 s t = 3.5 10−2 s

t = 4 10−2 s t = 4.5 10−2 s t = 5 10−2 s t = 6 10−2 s

t = 6.5 10−2 s t = 7 10−2 s t = 7.5 10−2 s t = 8 10−2 s

t = 8.5 10−2 s t = 9 10−2 s t = 9.5 10−2 s t = 0.1 s

Figure 9: Von Mises stress evolution during the first impact (Cranck-Nicholson scheme with
MRM). The return of the shear wave causes the rebound of the ball.

One can see how the return of the shear wave causes the rebound of the ball. Despite the
roughness of the mesh, the behavior of the shear wave seems to be quite healthy. This reinforce
the confidence on the MRM which does not qualitatively affect the propagation of the shear
wave and allows to have non-oscillatory constraints.
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Other comparisons

5.1 Comparison with Paoli-Schatzman scheme

The Paoli-Schatzman scheme is well adapted to rigid bodies because it is based on introducing a
restitution parameter (see [18]) to define the jump of velocity during the impact [21]. This idea
is not true for deformable bodies. We adapted this scheme for those bodies and we inroduce the
following formulation:

Un+1 = Un + Δt V n+ 1

2 , Un+ 1

2 =
Un+1 + Un

2
, (17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U0 and V 0 given, U1 = U0 + Δt V 0 + Δt z(Δt ), avec lim
Δt −→0

z(Δt ) = 0,

∀n ≥ 2,

M

(
Un+1 − 2Un + Un−1

Δt2

)
+ K

(
Un+1 + 2Un + Un−1

4

)
= L + BT

N
Λn

N
+ BT

T
Λn

T
,

−Λn
N
∈ N

K
N

(
B

N
Un+1 + eB

N
Un−1

1 + e

)
.

(18)

Let us notice that the contact condition is verifyed for displacement on the proximal point defined
by

B
N
Un+1 + eB

N
Un−1

1 + e
,

where e is the restitution coeffcient (e ∈ [0, 1]). For more details of the stability of this scheme
please see [8].
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Figure 10: energy evolution for the elastodynamic contact problem (Δt = 10−3).
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Figure 11: normal stress evolution of the lowest point of the disc (Δt = 10−3).

5.2 Comparison with Laursen-Chawla scheme

This scheme is based on idea to verify the contact condition on velocity (persistency condition)
[13]. Here, we will do only the comparison between this scheme with and the Newmark scheme
(β = γ = 0.5) using the mass redistribution method of section (4.2). A comparison can also be
found in [10] with an other scheme close to Laursen-Chawla scheme.
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Figure 12: energy evolution for the elastodynamic contact problem (Δt = 10−3).
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Figure 13: normal stress evolution of the lowest point of the disc (Δt = 10−3).
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Concluding remarks

In [10], a comparison is done between the approach presented above and an energy conserving
scheme similar to the one introduced in [13]. The advantage of the mass redistribution method
is first to lead to a well-posed finite element contact problem in elastodynamics which is energy
conserving. Secondly, such a method allows to improve the behaviour, on the contact surface,
of the numerical normal stress (which is very noisy in the other approach). Moreover, the mass
redistribution method does not affect the propagation of the impact wave. Let us also note
that adding a Coulomb friction condition is not a difficulty from a stability point of view. This
work can easily be extended to large deformations [6, 5]. We can confirm also that the mass
redistribution method is consistent when the mesh parameter goes to zero and this leads to a
very small redistributed mass tending to zero.
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