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MOVING FINITE ELEMENTS
AND
DYNAMIC VEHICLE INTERACTION

* * *
Hakan Lane , Per Kettil and Nils-Erik Wiberg

" Department of Applied Mechanics
Chalmers University of Technology
Gothenburg, Sweden
E-mail: Hakan.Lane@sm.chalmers.se
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Abstract: Elastic “shock” waves emanating from the wheel-rail interface of a train running
at a speed close to one of the propagation velocities of the soil may cause great amounts of
nuisances to the population. An integrated rigid body — FEM model has been created in
order to advance the understanding of these effects and predict the effects of different
countermeasures. Usage of a fixed mesh includes more elements than necessary for an
accurate solution and limits the analysis to a rather short distance.

This paper replaces a large fixed mesh with a smaller mobile grid. A special algorithm has
been developed to ensure that the nodes are translated with the same speed as the passing
vehicle. The values of fields are updated through an interpolation procedure.

Results indicate that a size of about 15 m in front of and behind the wheel-rail interfaces is
enough to ensure the same results as the fixed mesh in a fraction of the time. The initial
transient phase is followed by a relatively constant wave pattern being transported
underneath the train. Waves are shown to be greatly magnified if the speed of the system
exceeds the Rayleigh velocity of the top layer of crust.

1 INTRODUCTION

A properly designed railway infrastructure is a vital part of a sustainable transport system
for the future. Intense competition for higher shares of the transportation market has lead to a
drive towards more high speed trains on the European rail network. As a consequence, the
speed of the train may now surpass one of the wave propagation velocities in the soil. When
this occurs, elastic solid waves can be emitted from the sleepers and propagate to surrounding
buildings. Resonance may lead to rather disturbing effects for people inside and in some
causes even harm the operation of delicate electronic equipment. Rail maintenance companies
are faced with the task of mitigating these vibrations. Computational modeling is a vital part
of this task.

An integrated rail vehicle — track structure model has been created for the purpose of
predicting and analyzing solid elastic waves in rail systems (Lane et al., 2005). However, the



required time and computational resources restricts the size of the model quite severely. In
some various studies presented so far (Larsson and Berg, 2005), (Ching 2004), only 89 metres
of rail have been analysed. Simulations of the behaviour over longer stretches require that the
finite element grid is moved together with the excitation provided by the weight of the rigid
body.

Much work has been performed on the application of a “moving mesh” or “moving grid”
approach to the solution of PDE:s (Baines 2002). Also known as 7 adaptivity, it has been used
to simulate vastly different physical systems (Forster et al., 2002), (Gwynllyw et al., 1996),
(Budd and Collins, 1998). The basic idea is to move the nodes and elements in the
discretisation based on some kind of algorithm, criterion or measure.

As the coupling between the wheels and the rail occur through specially labeled constraint
equations, the speed of the rigid body can be measured from the elastic domain by the
movement of the algebraic mean of the position of the wheel contact points. As the target is to
keep the body in the mid region of the finite element domain in a plane normal to the
direction of travel, the mesh should be displaced with the rate of motion of the wheels as
indicated by their mean position. This article presents an algorithm to achieve this kind of
mesh adaptivity incorporating the option to introduce new directions (e.g. slopes, transitions,
curves) at the front of the grid while also correctly interpolating node field variables
(displacements, velocities, accelerations) and element fields (stress, external and internal
strains and energy) from the old positions to the new ones.

The outline is as follows: Chapter 2 presents the computational model and how local
system matrices are established, Chapter 3 how time integration of the assembled system is
performed with a Newmark algorithm, Chapter 4 how the motion of the nodes are coupled to
the speed of the impeding vehicle, Chapter 5 discusses how the state is interpolated from one
position to the next, Chapter 6 presents the results of simulations with a model of an X2
locomotive running at different velocities and Chapter 7 gives some conclusions of the study.

2 INTEGRATED RIGID BODY FEM MODEL
2.1 Overview

The computational building blocks are (see Figure 1):

e A train described by rigid body dynamics including dynamic motion laws for the
reference point, a Bryant angular representation (Wittenburg 1977) and constraints.

e The rigid bodies are connected through 3D stiffness / damping connectors.

e A 3D linear finite element model of the track structure and parts of the subgrade
including rail, sleepers, ballast, dry crust and layers of clay. The entire model is
built on solid eight node brick elements (MacNeal 1994). There are also some multi
point constraints between the displacements of nodes of different layers for
matching purposes. These have been inserted at the interfaces of the submeshes
between rail and sleepers and sleepers and ballast. The complex geometry at the
top of the track foundation leads to the requirement to bring together several
separate grids.



e Constraint equations keeping the virtual nodes for the wheel contact on the rail
surface. They are generated in each time step through an especially developed
dynamic differential generation algorithm, whereby the location of the point is used
to tie the change in displacements for the wheel to the change in displacements of
the nodes on the top of the rail in the element that the wheel will be moved to (Lane
et. al., 2004). The gravity load applied to the rigid body reference point is
transferred to the ground numerically through the associated Lagrange multipliers.

e The mesh with elastic materials is supplemented by viscoelastic boundary layers.
The dimensions and material properties are chosen to create non-reflecting
boundaries at interfaces to “infinite” regions of soil around the subgrade. The
details are provided by Lane et. al. (Lane et al., 2006). The degrees of freedom at
the outer ends of the boundary layers are fixed in all directions.

Differential constramnt I Rigid body dynamics

U™ e, | Spring/damper connectors

FEM solid mesh

FEM solid mesh with viscoelastic material paremeters
Figure 1: Compound analysis model.

The approach to solve the problem with equations from several sources was presented by
Lane et. al. (Lane et. al., 2004). The equations for the rigid body and connectors are integrated
with the finite element terms into a single, global system. The unknowns are the degrees of
freedom in the soil, the body centers of gravity, the generalized degrees of freedom on either
side of each connector and Lagrange multipliers for the restraints as modeled by constraint
equations and boundary conditions.

2.2 Governing equations and assembly process

Each part of the system (finite element, body, connector, constraint, boundary condition )
is referred to as an element. Based on a local set of degrees of freedom u., the equations for
the various realms leads to dynamic local matrices for mass (M.), stiffness (K.), damping (C.)
and an internal force Fin. The generation of these terms are based on the dynamic equations
and carried out as follows.

2.2.1 Elastic soil motion

In the absence of externally applied forces, elastic wave propagation in a soil with with
density p and viscosity » is ruled by the following relationship between displacements u,



stresses 6.

-V'6+vu+ pu=0 (1)

The gradient operator ¥ is defined as (Samuelsson and Wiberg, 1998)
g .

— 0 0
0x
0 a— 0
dy
o o aa_
V= ) ) : (2)
A
Jy dx
0 L9
dz 0y
9 L
iz dx

Based on the Young’s modulus E, the viscosity v and the poisson ratio v, the constitutive
relationship between stresses and strains

6=De+C,e=DV u+C,V u 3)

is dependent on both the strain and the strain rate. A Kelvin material model (parallel
stiffness and damping operators) is used. It applies the constitutive matrices

[20-v) % il 0 0 o-
1- 2 1- 2 1- %
2 2(1-v) . 0 0 0
E 1- 2% 1- 2 1- 2%
y 2 2 2(1-v)
D= 0 0 “4)
204v) -y - 1-
0 0 0 0 0
0 0 0 010
0 0 0 0 0 1

and
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_ 2y i 2(1-v)
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0 1|

The matrices for a soil element with the nodal displacements w;, i = 1,2,...,8, the
material density p density of the material and the constitutive stress-strain matrix D (eq. 4) are
generated from standard finite element procedures based on the shape functions N and their

spatial derivatives B= V N :

U = [U; U U3 Uy Us ugu; us]” (6)
M, = j N"pNav (7)

K, = j B'DBdV (8)
C.=0.001K., + 0.001M. 9)
Fi= | B"DBudV + Miii+ C. . (10)

The Rayleigh approach was applied for the elastic domain. For a material with a visco-
elastic material model, the damping term C. is derived as

C.=|B'C,BaV (11)

This is used in the absorbing layers.
2.2.2 Rigid bodies and connecting elements

The definition of a set of elements making up a rigid body is that it is undeformable, i.e.
the distance between any set of two points remains constant through time. The inertial
properties are the mass m and the rotary inertia tensor J and the body is subject to a
gravitational acceleration a = [0 0 —g]". A linear small angle approximation has been chosen.
Based on the displacements u, of a reference point (usually the center of gravity) and a set of
Bryant angles @ = [¢; 2 ¢;]" describing the state of rotation, the Lagrange equations based on



minimizing the functional of the energy

E=T-P (12)
based on the kinetic energy
T i) I ) (13)
and the potential
P =ma"u, (14)
become
d dT . JT P
E(ﬁ)_ﬁz T (15)
The vector
u=[u o] (16)

includes translational and rotational degrees of freedom for the reference point.

The application of the dynamic Lagrange equations in the assembly process leads to the
matrices

u. = [u; 9]’ (17)

Ke=C.=0s (18)

M. - {’”13 "31 (19)
0, J

Fun = M 0)

The notation 03 refers to the 3x3 zero matrix and I5 to the corresponding unit matrix. The
internal force vector contains inertial terms both for the translational and rotary degrees of
freedom.

As can be viewed in Figure 2, a connector is a spring/damper combination between two
points. It has been used to represent the suspensions between the bodies making up the train
and as a model of the contact between wheel and rail.
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Figure 2: Connector-

The spring is defined by the 3x3 stiffness matrix
K K

xx Xy
K= K

Yy
symmetric

and the damper by the corresponding entity
C C

XX xy
C =
symmetric

Yy

vz

C

zz

21)

(22)

As the relative distance u, — u; or the corresponding relative velocity u,-u, is altered, the

system reacts by the internal force

Fine = K(llz -3 lll) + C(ﬁz 'ul )

This yields the numerical terms

ue = [u; wp]"
K=K
C.=C
M.=0;

Fint = K¢ (llz— ul) + C. (ﬁz'ﬁl)

(23)

24)
(25)
(26)
(27)

(28)

Here, u; and u, represent the displacements on either side of the joint, K the stiffness
matrix (21) and C the corresponding damping values (22).



2.2.3 Constraint equations and boundary conditions

The equation for a holonomic constraint or boundary condition locking the
displacements of one slave node u, or connecting them to those of several master nodes u;
G=1,2,...,N) is

ndof N ndof

® =) Cuyt) Y Cuyt A=0 (29)
i=1

j=1 i=1

Theory predicts that in the presence of a constraint ® (u) = 0, there is a number 4
such that the function F (u) is minimised by the formula (Stahel 1999)

VF@)+ V0 (u) =0 (30)

The vector A contains the Lagrange multipliers. These numerical relationships are
integrated to the common framework through the following definitions:

Ue = [Us U Up ... Win 4] (€2
K.=C.=0 (32)
0 0 0 - - 0 C, 1
O CS2
0 Cv3
M.=| : G (33)
0 0 Cy
_Csl Cs2 Cs3 CN3 0 ]

The internal force is based on the value of the constraint @ (the deviation of (19)
from the desired value of 0) according the formula

[’1Cs1 ’1C51 ’1Cs1 ACM lcm ¢] (34)

Constraints are inserted to enforce rigid body conditions between the degrees of
freedom of the center of gravity and connector points on a body, at interfaces between
adjacent finite element meshes and between the virtual wheel point and the nodes on the rail
surface.



3 NEWMARK TIME INTEGRATION
3.1 System of equations

Analysis is based on finding a state (u,u, ii) matching the externally applied forces Fex
with the internal forces Fine (u,u, ii) while also fulfilling the constraints @ (u) = 0. The
condition of minimum virtual work in the presence of a number of holonomic constraints
leads to the formulation

Find min | (Fext - Fine (u, 01, ii)) SudV (35)

subject to ® =0 (36)

Based on the theory of minimising a functional with a set of constraints as stated in (15), the
target is to find a solution to the system of equations

Fext 'Fint(u,ua “)+XV (I)=0 (37)

The terms in equation (36) are global vectors constructed through assembling the local
contributions. Whereas the Fe vector is made up of additions at degrees of freedom where
external forces are applied (gravitational forces at the rigid bodies), the internal force vector
Fin¢ is made up from the elements as defined in Chapter 2.1 — 2.2. The term for the Lagrangian
multipliers is described in Chapter 2.3 .

3.2 Scaling the terms

The numerical constants from the various parts show a great variation in their magnitude,
leading to a badly conditioned system. In order to mitigate this problem, the constraint
equations are scaled by multiplying all terms by a common value. This value is chosen by
finding the smallest equation index among the participating nodes .

3.3 Time Integration algorithm

The system of equations presented in (40) is solved by a Newmark predictor-corrector time
integration scheme. Initial values of the statefields u,u and ii are either set explicitly to 0,
found from previous values or assigned by the user. For each subpart, the /ocal element
matrices for mass (M.), damping (C.) and stiffness (K.) are found from the assembly process
discussed in Chapter 2. Before being inserted into the global system, they are merged into a
dynamic mass matrix through the operation

2
M.c= M, + 0AIC, + B (Azt) K. (38)



The parameters a and f are the chosen Newmark parameters and A¢ the time increment.
The increments to the primary unknowns ii and the Lagrange multipliers are similarly joined
into the vector

u 39
a-=
N (39)
and the incremental entity
0 ou 40
a=
N (40)

For all subsequent time steps, the Newmark solution strategy is then initiated by a first
prediction step

U= Uat (1-0) At i (41)

. 1
Ups1 = Uy + AU+ ( 5 -B) (Af)* iin (42)

As the internal forces are calculated based on the values of the fields, the correction steps
repeat the global procedure

M*ﬁa = Fext - Fint (43)
A, =a, + 0a (44)
l-ln-¢—1= l-ln-i_ (IAZ ﬁn+l (45)
> (46)
Up+1 = Uy + (,B) (A t) U+
2
until the norm of the relative correction
4
l[8alll “7)




as well as the relative flux

48
x| (48)
lenergy]l|

falls within predefined tolerance values. Equation (42) was solved with a direct solver from
the Harwell Subroutine Library (HSLwww).

4 MESH MOVEMENT ALGORITHM
4.1 Mesh velocity criterion

The direction and velocity for moving all the nodes in a mesh can be either explicit
(provided directly by the user or programmer) or implicit (based on some indirect criterion).
While the former is easier to implement, an implicit technique is more general and requires
less from the person running the simulations. In the context of combining grid motion with
rigid body dynamics, the apparent difficulties in finding a suitable criterion coupled with
knowledge of the motion of the train has lead to the choice of a semi-implicit method. As the
rail wheel displacement is connected to the finite element track structure through a special
type of constraint equations, it is possible to use the location and coefficients of the wheel
nodes to select the rate of motion for the mesh. The direction should be explicitly set by the
user to simulate commonly occurring rail geometry changes such as curves, slopes and
turnouts.

The displacements of the slave node (wheel) Us ( [U;, Uy, Ug]" in three dimensions) is
connected to those of the nodes on the rail surface in the element where the virtual node on
the rail head will end up as a consequence of the time step through an especially developed
constraint equation (Lane et. al., 2004). The idea is that the increment in displacements for the
wheel during the time increment in the lateral and vertical directions are tied to the increments
in displacements for the rail top nodes. This enforces the conditions of no derailment and no
penetration into the track. The coordinates for the contact points are especially marked and
used as a basis to calculate the rate of motion for the finite element mesh. Assume that the rail
vehicle is connected to the rail at M points (wheel nodes). By identifying the positions
(original coordinates + displacements) of the slave nodes as Xy ([x17, x21, x3/]", [x12, X22 X32]" ete.
up to [xms, X Xsu]'), one may calculate a ‘“center of mobile constraint equations”
corresponding to a position located centrally between the wheel nodes through a normal
averaging operation

L % (49)

The calculation of these coordinates is illustrated in Figure 3

11



cec

Figure 3: Centre of constraints.

The rate of mesh movement is then governed by the rate of change of this variable, i.e.

|Node coordinates (t) - Node coordinates (t-1)|=| cec(t) — cec(t-1) (50)

The size of nodal movements is hence decided by the speed of the vehicle.

5 INTERPOLATING THE STATE
5.1 Finding Local Coordinates

As the nodes move to new locations, the values of displacements, velocities and
accelerations should assume the values given by interpolations of the previous solution
vectors for the nodes belonging to the element containing the new position. This is necessary
to achieve a continuous and accurate solution. For this purpose, the solution process was
preceded by creating a copy of the previous grid before motion, storing the positions of the
nodes before moving them (see Figure 4).

Figure 4: Previous grid copied before movement.

The old grid contains all the characteristics of the original mesh, including information
about nodes, elements and field vectors. The sequence of operations is based on the strategy
to find the values of displacements, velocities and accelerations at the positions where the
nodes have been moved to. This builds on a standard FE shape function interpolation of the
solution in the nodes. It is then necessary to find which element (in the previous grid) each
node has been moved to and its local coordinates 3 =[{, & #]" inside this element. The element
number and local coordinates for an arbitrary point x, is found through the following
algorithm (Kettil and Wiberg, 2002)

12



Find the ten nodes closest to x,.

. For each of these nodes, go through each element it is part of.

3. Search for the local coordinates of x, in each element through a Newton-Raphson
search. First, y is initialised to an arbitrary value yo. The following steps are then
repeated until

o =

|ei| < tolerance (51)

a. Find the 1x8 vector containing the values of the form functions N(y;) and the
3x8 derivative matrix B=¥ N(y) evaluated at the point with the local

coordinates ;.
b. Find the corresponding search position x; through the formula

x; = x,(N()") (52)

, where x, is a 3x8 matrix containing the nodal locations (original coordinates +
displacements) for the members of the solid brick element.
c. Calculate the error

Ci=Xi—Xp (53)

d. Check whether (49) is fulfilled. If the condition is met, x; = x; and the iterations
may stop. Otherwise, the search will continue.
e. Find the matrix

D, = x,(B(x)") (54)
f. Solve the system of equations
DiAy = -¢f (55)
g. Update the local coordinate vector x; as
L =1+ A (56)

If convergence according to (49) can’t be reached within a predefined number of iterations
or either of the local coordinates fall outside of the element (&j,[|y;>1+toly], where toly is a

13



second user-defined tolerance) the search will continue for other elements connected to the
node. If suitable local coordinates can’t be found for any of these elements, it is concluded
that the node has moved to a position completely outside the old mesh. In this case,
displacements, velocities and accelerations will retain their values from the preceding time
increment.

In order to achieve a correct time evolution of all node (displacements, velocities and
accelerations) and element (stresses, strains, state variables and energy) field variables
throughout the simulation, the values of these field variables should change when the mesh is
subject to motion as determined by the previous state in the nodes surrounding the new
positions (see Figure 5).

Cld nodal positions

n 5
Mode movement I/_’ Y

Figure 5. Interpolation of states.

A pre-requisite for this interpolation is knowledge about what element each node has
moved into and the local coordinates of the new position. This information can be obtained
with the search algorithm presented above, where the data was used to determine what
direction every individual node should take. There is one important difference. Whereas the
search with the purpose of deciding which nodes should be moved according to the user’s
specification was performed in the initial grid, the search with the aim of setting up
interpolation is done in the previous mesh. While the copy of the original mesh is retained
throughout the simulations, this object has to be created, copied and later destroyed in every
time increment.

For nodes moving to coordinates inside the previous mesh, the search algorithm yields an
element number other than 0. Assume that the local coordinate vector inside the element is
denoted y. The element’s 3 x 8 matrix consisting of a collocation of the individual
displacements from the former time step is called u.. The new field vectors for the node
under consideration will then be given by

u,= uNE)" (57)
u,, =u N@)T (58)
fim = il NQ()T (59)

14
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6= 6 N())T (60)

em= & N(Y)T (61)

The 1 x 8 N matrix contains the value of the form functions for the nodes in the new
element.

15



6 ANALYSIS OF WAVE PROPAGATION OVER LONG DISTANCES
6.1 Setup
6.1.1 Overview

The aim of the simulations is to use the basic computational model defined in Chapter to
predict the waves emanating from the wheel-rail interface of an X2 locomotive running over a
rail structure. In order to evaluate the required size of the mesh, only a portion of the grid used
in previous simulations (Lane et al., 2004), (Lane et al., 2006), (Lane et al., 2005) was used.
The parameter d as shown in Figure 6 represents the distance from the front and wheel sets to
the respective ends in the direction of travel.

Rail pomt

Figure 6. Size of model.

The boundary conditions were the same as those defined in a study on the same problem
with moving loads (Ekevid et al., 2006) augmented with the usage of viscoelastic fictitious
elements to absorb reflections (Lane et al., 2006). This means that the clay part of front and
end of the mesh (Figure 7) is locked in all directions, while all degrees of freedom at the
termination of the appended viscoelastic elements to the side and at the bottom are locked.

6.1.2 Dimensions

The locomotive consists of the car body and two bogies with two wheel axes each with
overall dimensions according to Figure 7. The car, the bogies and the wheels are modeled by
rigid elements. Springs and dampers model the connections between the car and the bogies
and between the bogies and the wheels. Table 1 gives the mass and Table 2 shows the
stiffness and damping properties.

The track consists of sleepers and rail, and the ground consists layers of ballast, dry crust
and clay resting on rock with dimensions as given by Figure 7, and with material properties
according to Table 3. The track and ground are modeled by elastic 8-node brick elements with
a typical dimension of 0.7 m. Table 4 shows the properties of the absorbing layers.

16



Total mass: 65 tons

Ballast

DC-DryCrust <« *

0.8 ¢V ‘-ﬂ _/—“"‘ﬁ__“’h_ﬂ‘;»ﬂ/* Subballast

0.8 DC —F*| — —— Vi

1.5 fvm y Clayl Sy Ve

| ¥

2.5 Ver o : Clay2 i “ Ve
i Vg i.
—_-—— o>
2.625 28.75 [m] 2-625

Figure 7: Model of X2000 train, track and ground.

Weight / kg
Car body 54000
Boogies 2x3000
Wheels 8x1800

Table 1. Locomotive mass properties.

17



K, /(N/m) | Ky/(N/m) [ D,/ (Ns/m) | Dy/(Ns/m)
Car to bogie 1000x103 600x103 40x10° 40x10°
Bogie to wheel 1200x103 20x10° 30x10° 2x10°
Wheel to rail 1200x10* 20x107 30x10* 2x10*

Table 2. Locomotive springs (K) and dampers (D) properties.

p/(kg/m?® | E/Pa v n/(Pas) | cr/(m/s)’

Rail 7820 206.8E9 [ 0.29 0 -

Sleepers 2500 30E9 0.2 0 -

Ballast 1 1800 100E6 | 0.45 0 130
Ballast 2 1800 100E6 | 0.45 0 130
Dry crust 2000 30E6 0.45 0 67
Clay 1 2000 8E6 0.45 0 30
Clay 2 2000 13E6 0.45 0 40

Table 3. Track and ground material properties

*Rayleigh wave velocity.

The regions Vpc, Vci, Ve and 'V, are fictitious elements with viscoelastic materials, which
have been appended in order to absorb the outgoing waves and reduce reflections (Lane et. al.
2006). The material parameters in the crosssection are defined in Table 4. In the front and
behind the elastic zone, each of the material layers defined in Figure 7 is joined to its
respective viscoelastic domain of a length 0.3 m. The properties are based on formulae
derived by Krenk et. al. (Krenk and Kierkegaard, 2001) and depends on the distance from the
source (the wheel-rail interface) as well as the properties of the elastic region. The
viscoelastic material parameters in the front and back are provided in Tabe 5 for the chosen d
value of 16 m.

Absorbing p/(kg/m? | E/Pa v n/ (Pas)
layers
Ve 1 5.4783E6 | 0.45 [ 3.3015ES5
Va 1 1.4609E6 | 0.45 | 1.7049E5
Vo 1 2.3739E6 | 0.45 | 2.1733ES
V. 1 5.6670E6 | 0.45 [ 2.0698ES

Table 4. Properties of absorbing layers in the y and z coordinate directions.

Absorbing p/ E/Pa E/Pa |v 1/ (Pas)
layers (kg/m?) [ in front | behind
Vi - Dry Crust 1 6.3291E5 | 6.016E5 | 0.45 | 3.7731E4
V, —Clayl 1 1.6878E5 | 1.6043E5 | 0.45 | 1.9484E4
V, — Clay2 1 2.7426E5 | 2.6070E5 | 0.45 | 2.4838E4

Table 5. Properties of absorbing layers in the y and z coordinate directions.

6.1.3 Time stepping parameters

A static step calculating the displacements from equilibrium between the applied forces of

18



gravity (Table 1) and internal stress forces was followed by a dynamic step. The rigid bodies
were given a uniform velocity of 70 m/s (252 km/h) in the horisontal direction. This
corresponds to a speed slightly above the wave propagation speed for the top layers in the
ground (see Table 3). The consequence of this is that the ground will be in a critical state with
strong vibrations spreading in certain directions. All nodes in the mesh were moved with the
same speed. A time step of A7 = 0.03 s was used for the Newmark time integration. Average
acceleration parameters (a = 0.5, f = 0.25) were assigned. The simulations ran on a single
CPU on a Linux Redhat cluster.

6.2 Domain size analysis

One important choice concerns the assignment of a suitable value of the d parameter
indicating the size of the mesh (see Figure 6). In order to make take full advantage of the
opportunities of the moving mesh technique, an optimal value should not be higher than what
is needed for accurate modelling of the vibrations in the soil. A series of tests were performed
to find an appropriate distance.

6.2.1 Propagation

Figure 8a — ¢ show the wave pattern (displaced mesh) with d = 10, 16 and 22 m
respectively.
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Figure 8b. Wave propagation with d =16 m.

Figure 8c. Wave propagation with d =22 m.

Although the displacements are magnified, the supersonic wave pattern for a velocity close
to a critical speed for the structure is clearly revealed. The waves go out in the typical Mach
cone directions with high amplitudes. The selection of a suitable distance for
the mesh must be carried out with a balance between the desire to have enough elements for
accurate results but not more than necessary. The inclusion of redundant parts will lead to too
high computational demands without adding quality to the solution. The size of 10 m seems to
cut the mesh in the middle of a wavefront and disregard a big part of the vibrations in the trail
of the vehicle. The 22 m results seem to contain a portion with relatively low influence on the
global behaviour. The distance of 16 m can be viewed as a reasonable size.

6.2.2 Displacement in point

A fixed point located just ahead of the front wheel set at the beginning of the analysis was
chosen for analysis. As indicated in Figure 6, the point is located on the head of the rail at the
right side 13.5 m ahead of the front wheel set when the train starts. The displacements for the
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different d values are presented in Figure 9.
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Figure 9. Displacements in point for different d values.

Note that values are missing for the shorter meshes, as the point under consideration is no
longer in the analysed zone. The values for d = 16 and 22 m are nearly identical. The
displacements for the distance of 10 m are somewhat different.

6.2.3 Efficiency

Table 5 presents the number of equations and time consumption per time increment (A¢)
for the respective values of the parameter d. Calculations ran on a single node with a CPU of

2 Ghz on a Linux RedHat cluster.

d Neq Time per increment
10 26164 ~150-180s
16 36364 ~ 180—-200s
22 45949 ~210-220s

Table 5. Computations for different mesh sizes.
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The value of 16 m seems to offer a good tradeoff between accuracy and efficiency. It can
be noted that computational times for a fixed mesh with a size of 89 m are in the order of 14
min, i.e. 5 - 6 times higher than those for the chosen grid. The size of 16 m was used for the
rest of the presented simulations.

6.3 Fixed mesh comparisons

Figure 10 presents the displacements of the monitored rail point (Figure 6) for the moving
mesh as compared to corresponding simulations with a large fixed mesh. The picture clearly
demonstrates the similarity of the methods. The deviations towards the end can be explained
by the fact that the train in the fixed mesh is very near the front boundary.
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Figure 10. Results for fixed mesh and moving grid.

6.4 Wave propagation pattern

Figure 11a-c display the nature of the waves at three different time instants, with the train
having traveled 57 m, 328 m and 636 m, respectively.
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Figure 11a. Wave propagation alter a distance of 57 m.

Figure 11b. Wave propagation after a distance of 328 m.

Figure 11c. Wave propagation after a distance of 636 m.

As expected, the wave patterns underneath the train are similar for the analysed sampling

instants.
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6.5 Critical speed effect

Figure 12a-c portrays the nature of the vibrations for a velocity below (50 m/s), just above
(70 m/s) and far above (90 m/s) the velocity of Rayleigh waves in the top layer of soil.

Figure 12b. Wave propagation for v =70 m/s (252 km/h).

Figure 12c. Wave propagation for v =90 m/s (324 km/h).

The critical speed effect identified in several other studies (Lane et al., 2004),
(Larsson and Berg, 2005), (Ching 2004), (Ogwemoh 2005) and predicted by analytical
studies (de Hoop 2002) is clearly demonstrated.

24



7 CONCLUSIONS

A moving mesh technique has been presented for finite element computations of elastic
wave propagation. The method is based on concentrating the grid to a smaller part centered
around the vehicle providing the excitation and moving the elements with the same speed as
the source. Fields are interpolated based on finding the local coordinates and the
corresponding value of the form functions for the element that the respective nodes move
into.

It was found that a value of 15 m in front of the front wheel set and a similar distance
behind the back wheels led to a good compromise between accuracy and efficiency. The
results for this mesh were nearly identical with corresponding simulations with a large fixed
mesh at 5-6 times lower computation times. The moving mesh approach has this served to
make computations far more efficient.

The critical speed effect was clearly identified. Although the presented simulations were
restricted to a straight structure with constant material parameters, the method can also be
extended by changing material conditions or imposing an irregularity on the track. It can also
be used in several other contexts.
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