
HAL Id: hal-00582012
https://hal.science/hal-00582012

Submitted on 1 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TESTING FOR A UNIT ROOT UNDER THE
ALTERNATIVE HYPOTHESIS OF ARIMA (0,2,1)

George Emm. Halkos, Ilias Kevork

To cite this version:
George Emm. Halkos, Ilias Kevork. TESTING FOR A UNIT ROOT UNDER THE ALTER-
NATIVE HYPOTHESIS OF ARIMA (0,2,1). Applied Economics, 2008, 39 (21), pp.2753-2767.
�10.1080/00036840600735416�. �hal-00582012�

https://hal.science/hal-00582012
https://hal.archives-ouvertes.fr


For Peer Review

TESTING FOR A UNIT ROOT UNDER THE ALTERNATIVE HYPOTHESIS OF 
ARIMA (0,2,1) 

Journal: Applied Economics 

Manuscript ID: APE-05-0609.R1 

Journal Selection: Applied Economics 

JEL Code:

C10 - General < C1 - Econometric and Statistical Methods: General 
< C - Mathematical and Quantitative Methods, C20 - General < C2 - 
Econometric Methods: Single Equation Models < C - Mathematical 
and Quantitative Methods 

Keywords:
ARIMA, UNIT ROOT, POWER, MONTE CARLO SIMULATIONS, 
CRITICAL VALUES 

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript



For Peer Review

1

FULL TITLE

TESTING FOR A UNIT ROOT UNDER THE 
ALTERNATIVE HYPOTHESIS OF ARIMA (0,2,1)

By

George E. Halkos and Ilias S. Kevork
Department of Economics, University of Thessaly

      Argonavton and Filellinon St, 38221 Volos Greece

ABSTRACT

Showing a dual relationship between ARIMA (0,2,1) with parameter θ=−1 and the random walk, 
a new alternative hypothesis in the form of ARIMA (0,2,1) is established in this paper for 
evaluating unit root tests. The power of four methods of testing for a unit root is investigated 
under the new alternative, using Monte Carlo simulations. The first method testing θ=−1 in 
second differences and using a new set of critical values suggested by the two authors in finite 
samples, is the most appropriate from the integration order point of view. The other three 
methods refer to tests based on t and Φ statistics introduced by Dickey & Fuller, as well as, the 
non-parametric Phillips-Perron test. Additionally, for cases where for the first method a low 
power is met, we studied the validity of prediction interval for a future value of ARIMA (0,2,1) 
with θ close but greater of –1, using the prediction equation and the error variance of the random 
walk. Keeping the forecasting horizon short, the coverage of the interval ranged at expected 
levels, but its average half-length ranged up to four times more than its true value.
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1. INTRODUCTION

Dickey and Fuller (1976) in their pioneer work, considered the random walk model with 

drift as a special case of the Gaussian AR(1), t1tt yy ε+φ+µ= − , with 1=φ  and .d.i.i~tε

( )20,N εσ . Taking first differences in t1tt yy ε++µ= −  gives a Gaussian white noise. Over-

differencing the random walk model, we would expect again a Gaussian white noise with mean 

( ) ( ) 0EyE 1ttt
2 =ε−ε=∆ − , and variance ( ) ( ) ( ) 22

1t
2
tt

2 2EEyV ε− σ=ε+ε=∆ . Empirical results from 

Monte-Carlo simulations, although they support the outcome of first differences, they do not 

agree with a white noise in second differences.

Figure 1 displays the sample autocorrelation (ACF) and partial autocorrelation (PACF) 

functions of first and second differences of a typical realisation of size 250 observations from the 

random walk with 2=µ , 0yo = , and 1=σε . Details about the adopted random number 

generator can be found in Kevork (1990). For first differences, the plots confirm a white noise 

process. On the contrary, the sample ACF and PACF of second differences, combined with a 

stationary time series plot, indicate an MA(1) process, as a significant negative autocorrelation 

occurs at lag 1, and the partial autocorrelations decay exponentially to zero. 

Figure 1 about here

The findings of Monte-Carlo simulations are shown analytically by first rewriting the 

second differences of the random walk model as t1tt
2 yy ε+∆−µ=∆ − , second, replacing 1ty −  in 

the right hand side with t2ty ε++µ − , and finally, after cancellations, writing 

( ) 1ttt
2 1y −ε−+ε=∆ . Thus, overdifferencing a random walk model with drift leads to ARIMA 

(0,2,1) with parameter 1−=θ . But also the random walk model can be considered as a special 

case of ARIMA (0,2,1) with 1−=θ . Rewriting ARIMA (0,2,1) as 1tt1tt yy −− θε+ε+∆=∆ , and 

relating ty∆ ’s to current and past tε ’s terms we take the following set of recursive equations:

11

1212

2t1t2t1t

1tt1tt

y

yy

...

yy

yy

ε+µ=∆
θε+ε=∆−∆

θε+ε=∆−∆

θε+ε=∆−∆

−−−−

−−

(1)

Adding the terms in each side of (1), we eliminate all past values of ty∆ , and get
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( )( ) t13t2t1tt ...1y ε+ε++ε+ε+εθ++µ=∆ −−− (2)

Setting 1−=θ  in (2), we take eventually the random walk model with drift.

To investigate further the behaviour of ARIMA (0,2,1) for θ greater but close to –1, we 

generated 1000 replications of 600 observations each, from the population model 

1tt2t1tt yy2y −−− θε+ε+−= , under different values of θ, with 0yo = , t1 2y ε+= , and 

.d.i.i~tε ( )10,N . Using the same streams of values generated from the standard normal for 

1−=θ , the previous specification lead to the same realisations with those produced by the 

random walk model with drift t1tt y2y ε++= −  with 0yo = . Figures 2a up to 2c display the 

time series plots of first differences, as well as, the sample ACF of first and second differences, 

for a typical realisation of 600 observations. As θ is approaching to –1+, the time series plots of 

first differences are changing gradually from an obvious non-stationary pattern to a stationary 

one. The corresponding plots of ACF and PACF have the representative pattern of a non-

stationary process for θ greater but quite far away from –1, but for θ close to –1, they indicate a 

white noise process. Finally, the graphs in figure 2c indicate an MA(1) in second differences, 

even when θ is not close to –1.

Figure 2a-c about here

The behaviour of ARIMA (0,2,1) for θ close to –1 leads us to consider it as the alternative 

hypothesis for evaluating and comparing the power of unit root test methods. Four such general 

methods are considered in this paper. The first method tests in second differences the null 

hypothesis Ho: 1−=θ , against the alternative Ho: 1−>θ , using a new set of critical values, 

which Halkos and Kevork generated for testing a unit root in finite samples from an MA(1). The 

second method is based on testing the statistical significance of the estimated coefficient of the 

lagged dependent variable in the right hand side of the “intercept” and the “trend-and-intercept” 

models, using Mac-Kinnon critical values. The third method includes common regression F-tests 

introduced by Dickey and Fuller, which are known as Φ tests. Finally the last method concerns 

the non-parametric Phillips-Perron (PP) test, which is applied after estimation of the “intercept” 

model”.

The previous discussion makes the structure of the paper to be as follows: In the next 

section we review the relevant literature on over-differencing empirical non-stationary series, and 

validity of unit root tests. In section 3, we revise the theoretical background for exploring the 

Page 3 of 33

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4

existence of a random walk by testing for a unit root in ARIMA (0,2,1). The power of such a test 

is also presented for different combinations of sample sizes and values of θ. In section 4, we 

estimate the power of t, Φ, and PP tests on ARIMA (0,2,1). The method, based on testing for a 

unit root in ARIMA (0,2,1), attains low power for small samples and values of θ close to –1. For 

such cases, in section 5, we explore the consequences of a wrong decision, namely to accept a 

random walk model for making predictions for future values of the true process. Finally, section 

6 summarises the main findings of this research.

2. LITERATURE REVIEW

The literature review focuses on two basic issues: over-differencing empirical non-

stationary series and validity of unit root tests. Specifically, in empirical research applications of 

Box-Jenkins ARIMA (p,d,q) models for making valid predictions, we have to identify correctly 

the proper ARIMA model, which governs the behaviour of the empirical time series (hereafter 

TS). For a non-stationary time series before identifying the parameter p and q we must identify 

the times the series should be differenced. 

The number of times that the TS under consideration must be differenced is determined 

intuitively by using the autocorrelation or/and partial autocorrelation functions of the differenced 

series. Model identification is complicated especially if the TS under consideration is seasonal or 

periodic. For non-seasonal TS, manual identification may be achieved by using the 

autocorrelation or/and partial autocorrelation functions, the extended autocorrelation function and 

the smallest canonical correlation table (Tsay and Tiao, 1984, 1985, Box and Jenkins, 1970, Box 

et a., 1994, Pankratz, 1991). The above methods seem to be ineffective in seasonal TS. In this 

case the identification may be performed using a filtering method (Liu, 1989, 1999, Liu and 

Hudak, 1992). This method is effective for automatic identification of ARIMA models for both 

seasonal and non-seasonal TS. 

Koreisha and Pukkila (1993) presented two methods for determining the degree of 

differencing in order to achieve stationarity in the data. Using simulation of different model 

structures, they confirmed the results. Hall (1989) proposes a test for unit root relying on an 

instrumental variable (IV) estimator, which was applied in the case where the series is generated 

by an ARIMA(0,1,q) process. Pantula and Hall (1991) extended Hall’s framework to the case of 

a series generated by an ARIMA(p,1,q) model. To obtain the asymptotic distributions, they 
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assumed that either p or q was known, and using simulations they provide evidence that the 

finite-sample distributions of their test statistics were well approximated by the Dickey-Fuller 

distributions even in the case of over-specifying p and q.

Reilly (1980) and Reynolds et al. (1995) develope automatic methods for identifying 

ARIMA models for TS. The method developed by Reynolds et al. (1995) employs a neural 

network approach and is restricted to non-seasonal TS, while the method developed by Reilly 

(1980) works properly for non-seasonal TS but it is less effective in the case of seasonal TS. 

The above-mentioned methods require the existence of long TS, which are used for model 

development and validation before we proceed to parameter estimation and predictions. The 

ARIMA approach for TS predictive model development is justified in both theoretical and 

statistical grounds. But Makridakis et al. (1983) claim the complexity of these models has been 

an obstacle for their adoption as a forecasting tool in organisations. The one-step ahead forecast 

for an ARIMA (0,1,1) model is equivalent to forecasting using an exponential smoothing method, 

when the smoothing constant leads to minimum mean square error forecast (Abraham and 

Ledolter, 1983). 

A unit root in the moving average polynomial can be interpreted in various ways 

depending on the modeling application. Testing for a unit root in the moving average polynomial 

is equivalent to test that the series is over-differenced (Brockwell and Davis, 2002). A difficulty 

with the null hypothesis H0: θ=1 is that estimating a moving average model with a unit root is an 

irregular problem. The asymptotic distribution of the maximum likelihood estimator of a non-

invertible MA parameter is unknown but there is a positive probability that a local maximum is 

attained by the likelihood function at a point of a unit root (Anderson and Takemura, 1986, 

Tanaka and Satchell, 1989). This implies that the development of LR and Wald tests is 

“intractable”. Lagrange multiplier tests can be obtained, as they require the estimation of the 

model under the null hypothesis. Ahtola and Tiao (1984) prove it in the case of an MA(1) model 

with a zero mean value, while Tanaka (1990) obtains a general score-type test for the MA unit 

root hypothesis. Phillips (1987) and Phillips and Perron (1988) extends this work on 

autoregressive unit root tests.

Similarly Saikkonen and Luukkonen (1993) derive two tests for the MA unit root 

hypothesis. In the case of serially uncorrelated errors these can be motivated by local optimality 

arguments. Halkos and Kevork (2005c), using the exact maximum likelihood estimator of θ from 
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the MA(1), and a certain simulation strategy, estimate appropriate percentiles, together with their 

standard errors, offering a new set of critical values for testing in finite samples Ho: 1−=θ , 

against H1: 1−>θ . In this way, appropriate regions for rejecting the null or being in uncertainty 

are defined. 

A large literature has been recently developed for analyzing TS regression with difference 

stationary processes. Dickey (1976) and Dickey and Fuller (1976, 1981) in their seminal papers 

examine the OLS estimation when the innovations in the unit root process are i.i.d. Phillips 

(1987) extends these results to a more general setting for the innovation process in such a way as 

to allow both time dependence and heterogeneity. Phillips and Perron (1988) explore data 

generating mechanisms with drift and trend. Phillips (1990) and Chan and Tran (1989) have 

explored the estimation of the autoregressive parameter and tested for a unit root when the 

random walk process has errors, which obey to a stable law. Phillips (1990) generalises this case 

using a semi-parametric modification of the usual t-ratio. 

Leybourne and Newbold (1999) using simple theoretical calculations, confirm  simulation 

evidences that probabilities of rejecting the null hypothesis of the Dickey Fuller and the Phillips-

Perron tests differ substantially when the true generating process is the stationary second order 

autoregression. Halkos and Kevork (2005b) using certain estimates from Monte-Carlo 

simulations and considering the random walk as the true model, derived the probability the 

prediction interval to include any future value sTy + of AR(1). 

Ahn et al. (2001) analyse both asymptotically and in finite sample the properties of some 

unit root test, when the errors obey to a stable law. They consider a number of test statistics (such 

as the Dickey Fuller and the Lagrange Multiplier), when the data generating process is a driftless 

random walk and the regression model matches exactly the data generation process. Gallegari et 

al. (2003), in a similar analysis, characterize as limited both the behavior of OLS estimators of 

regression coefficients and the DF tests under the data generating processes usually encountered 

in the unit root literature (random walk with and without drift and the associated regression 

models with constant term, without deterministic component and with constant and time trend 

terms). They also investigate the consequences of the ‘local to finite’ variance analysis assessing 

that the size distortion of the DF test as the departure from the standard finite variance set up 

tends to decrease as the sample size tends to infinite. 
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Dickey and Fuller (1979) based their analysis on the asymptotic properties of the OLS 

estimator. Important variations of the DF tests are their extensions to other estimation methods 

such as Maximum Likelihood (Shin and Lee, 2000, Skin and Fuller, 1998), the generalised least

squares detrending under a fixed local alternative (Elliott et al., 1996, Xiao and Phillips, 1998, 

Hwang and Schmidt, 1996) and the weighted symmetric estimator (Park and Fuller, 1995, Fuller, 

1996). Hassler and Wolters (1994) claim that the Augmented Dickey Fuller (hereafter ADF) 

compared to fractional alternatives loses considerable power when augmented terms are added. 

On the other hand, Krämer (1998) finds that ADF is consistent if the order of autoregression does 

not tend to infinity too fast. Bisaglia and Procidano (2002), using Monte Carlo simulations, 

clarify this contradiction and find that the ADF bootstrap works in general better than the ADF 

even if the power of the test is quite low, especially if the data generating process is a non-

stationary fractional integrated one. 

On the contrary, Halkos and Kevork (2005a) evaluated simple versions of the Dickey-

Fuller test under the null hypothesis of a random walk model or an alternative non-stationary 

mean reverted process. Through Monte Carlo simulations they show that, apart from few cases, 

testing the existence of a unit root, using both McKinnon critical values and an F test, 

recommended by Pindyck and Rubinfeld, they obtain actual type I error and power very close to 

their nominal levels. 

Finally, a number of researchers have developed tests for a single structural break with 

unknown break points in various dynamic models (Andrews, 1993; Perron and Vogelsang, 1992; 

Sen, 2004; Blot and Serranito, 2006). In most cases, these tests were either designed to test for a 

structural change in regression coefficients with stationary series or for a unit root against a 

stationary alternative with an unknown single break point. The applications of these tests were 

extremely successful in analysing breaking points in variables like real exchange rates, real GNP 

and other integrated processes (Banerjee et al., 1992; Perron and Vogelsang, 1992; Zivot and 

Andrews, 1992; Charemza et al., 2005; Harvey and Mills, 2005).
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3. TESTING FOR A UNIT ROOT IN ARIMA (0,2,1)

For the non-invertible MA(1), 1ttty −θε+ε=µ− , given a sample of size T, the ln of the 

exact likelihood function is given by

( )( ) ( ) ∑∑
=ε=

εε ψσ
−ψ−σ−π−=σθ

T

1t tt

2
t

2

T

1t
tt

22 y~

2

1

2

1
ln

2

T
2ln

2

T
,Lln (3)

where

( )














±=θ
+

±≠θ
θ−
θ−

=ψ

−

1,
t

1t

1,
1

1
t2

1t2

tt

( )














±=
−

−−

±≠
−
−

−−

=

−

−

−

1,~1

1,~
1

1

~

1

12

12

θθµ

θ
θ
θθµ

tt

tt

t

t

t

y
t

t
y

yy

y

and µ−= 11 yy~ . Using an appropriate simulation strategy after maximising (3), Halkos and 

Kevork (2005c) offer a new set of critical values for testing Ho: 1−=θ , against H1: 1−>θ , in 

samples of size T = 25, 50, 100, 250, 500. The case of an estimate of θ  less than –1 does not 

contradict the alternative hypothesis, as (3) is maximised at 1~~ −θ=θ=θ  (Hamilton, 1994). So, 

whenever θ
~

 is less than –1, the test is applied by taking the reciprocal of θ
~

.

In the introductory section we illustrated the dual relationship between the random walk 

model and ARIMA (0,2,1). That is, overdifferencing the random walk model leads to ARIMA 

(0,2,1) with parameter 1−=θ , as well as, the random walk model can be considered as a special 

case of ARIMA (0,2,1) with 1−=θ . This means that applying the test Ho: 1−=θ , against H1: 

1−>θ , to second differences of a time series realisation is equivalent of testing in the same 

series for the existence of a unit root. The only problem, which occurs in such a case is that 

taking second differences, the actual sample size is reduced from T to T-2. For this reason, we 

applied a linear interpolation to the initially suggested critical values of Halkos and Kevork, 

resulting to those presented in Table 1. The critical values of table 1 can be used for testing a unit 

root in ARIMA (0,2,1) at nominal sample sizes T=25, 50, 100, 250 and 500, or actual ones T = 
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23, 48, 98, 248, and 498, leading to rejection of Ho when Uˆ
αΘ>θ , and to uncertainty whenever 

UL ˆ
αα Θ<θ<Θ .

To estimate the power of the unit root test in ARIMA (0,2,1) using the critical values of 

table 1, for each value of θ = -0.90, -0.95, -0.98, we generated 1000 replications of size 600 

observations from model 1tt2t1tt yy2y −−− θε+ε+−= . The initial conditions, as well as, 

comments about the validity of the random number generator have been already discussed in the 

introductory section. In each replication, and for nominal T=25, 50, 100, 250, 500, after 

subtracting the mean of second differences, we fit an MA(1) without a constant term to second 

differences in each replication, by maximising (3). The maximisation process was performed in 

E-VIEWS. 

In each replication, to update θ and 2
εσ  in successive iterations, we used the Marquard first 

derivative method, where first derivatives were evaluated analytically. The computation of 

( )( )2,Lln εσθ  was repeated until the improvement between iterations was less than 0.001. The 

Marquardt algorithm modifies the Gauss-Newton by adding a correction matrix to the Hessian 

approximation. This ridge correction copes with numerical problems in case the outer product is 

near singular, improving the convergence rate. Estimation using the analytical evaluation of first 

derivatives was preferred as it involves fewer function evaluations, and therefore is faster than 

evaluating the derivatives analytically.

As starting values for θ and 2
εσ , we used those provided by E-VIEWS, using the method 

of backcasting (Box and Jenkins; 1976). EVIEWS backcasts MA terms by computing the 

unconditional residuals and using the backward recursion to compute backcast values. To start 

this recursion the values for the innovations beyond the estimation sample are set to zero and a 

forward recursion is used for estimating the values of the innovations using the backcasted values 

of the innovations and the actual residuals. The sum of squared residuals is minimized, after 

having being formed as a function of θ and relying on the fitted values of the lagged innovations. 

The backcast step, forward recursion and the minimization of SSR are repeated till the 

convergence of estimates of θ.

The standard errors of the estimated θ and 2
εσ  were computed from the Gauss-Newton 

Hessian. Gauss-Newton follows Newton-Raphson replacing the negative of the Hessian using for 
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each observation the approximation of the sum of the outer product of the gradient vectors and its 

contribution to the objective function. In this way we have just to evaluate the first derivatives, 

and the outer product is necessarily positive and semi-definite. But in case that it is away from 

the maximum, we may approximate poorly the overall shape of the function. This implies the 

need for more iterations for convergence.

Table 1 about here

For each combination of T and θ , table 2 displays the percentages of replications where 

the null hypothesis of a unit root in ARIMA (0,2,1) either is rejected or we are uncertain for 

making a decision. The estimated probabilities are reported for nominal level of significance, α = 

0.10, where the maximum power is attained between the three traditional levels of significance, 

1%, 5% and 10%. It is obvious that for 90.0−=θ  and 95.0−=θ acceptable power can be 

attained when the sample size is greater than 250 and 500 observations respectively. For 

98.0−=θ , the power remains at very low levels, even with a sample of size 500. Further, for all 

the examined cases, the probability of being in uncertainty ranges below 4%. The cases where 

low power is observed will be further discussed in section 5, where we shall investigate, from the 

forecasting point of view, the consequences of not rejecting the null hypothesis on the validity of 

prediction intervals generated using the random walk model.

Table 2 about here

4. POWER OF UNIT ROOT TESTS ON ARIMA (0,2,1)

In this section, we evaluate traditional unit root tests on ARIMA (0,2,1), using the 1000 

replications already generated from model 1tt2t1tt yy2y −−− θε+ε+−= , for 

θ = -0.90, -0.95, -0.98. In the following lines, we present first the theoretical properties of each 

test separately, and the way of implementing it in each replication from ARIMA (0,2,1).

The first two tests are carried out by estimating using ordinary least squares (OLS) the 

“intercept” model

∑
=

−− ε+∆φ+γ+µ=∆
P

1j
tjtj1tt yyy (4)

The first test is based on the tINT statistic of the estimated parameter γ. Whenever tINT is less than 

the corresponding Mac-Kinnon critical value, we reject Ho: γ=0, in favour of H1: γ<0. The second 
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test, known as Φ1, concerns the null hypothesis Ho: µ=0, γ=0, and is applied by estimating first 

(4), and then its restricted form under Ho. The null hypothesis is rejected whenever the calculated 

ratio ( )( ) ( )URURR ESS2ESSESS1PT −+−κ−  is greater than the corresponding critical value of 

table IV in Dickey and Fuller (1981). URESS and RESS are respectively the sum of squared 

residuals in the unrestricted and restricted regressions, while κ  is the number of estimated 

parameters in the unrestricted model.

The next three tests assume that the time movement of the series, ty , is described by the 

following “trend and intercept” model

∑
=

−− ε+∆φ+γ+β+µ=∆
P

1j
tjtj1tt yyty (5)

The third test is based again on the tTREND statistic of the estimated γ. The unit root null 

hypothesis, Ho: γ=0, is rejected in favour of the alternative H1: γ<0, whenever tTREND is less than 

the corresponding Mac-Kinnon critical value. Furthermore, the next two tests are the common 

regression “F-tests” (as Φ1 was), known as Φ2 and Φ3. For Φ2, the null hypothesis Ho: µ=0, β=0, 

γ=0, is rejected when the ratio ( )( ) ( )URURR ESS3ESSESS1PT −+−κ−  is greater than the DF 

critical value of table V.  In a similar manner, for Φ3, when the ratio defined in Φ1 test is greater 

than the DF critical value of table VI, the null hypothesis Ho: µ=0, γ=0, is rejected. The latter test 

is referred by Pindyck and Rubinfeld (1988) as an F-ratio test.    

Regarding the three Φ tests, adding lagged difference terms of ty  to the right-hand side of 

(4) and (5), the sample size is reduced. For this reason, before the implementation of the Φ tests, 

an appropriate linear interpolation was applied again to the corresponding DF critical values. 

Additionally to this, adding jty −∆ terms to the right-hand side of (4) and (5), not rejecting the unit 

root null hypothesis in Φ tests leads to ARIMA (P,1,0). On the contrary, not including such 

lagged difference terms of the dependent variable in the testing models, the rejection of the null 

leads to the rejection of the random walk model.

The final test is the non-parametric Phillips-Perron (PP), which assumes the following 

model

t1tt yy ε+γ+µ=∆ − (6)

To test the random walk null hypothesis Ho: γ=0 against H1: γ<0, a correction to the t-statistic 

estimated from an OLS regression on (6) is applied. The corrected t-statistic is given by
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( )
ε

γγ

σω

γ−ω
−

ω

γ
=

ˆ2

sˆTˆt
t o

2
o

PP

where γt and γs are respectively the t-statistic and the standard error from applying OLS 

regression to (6), εσ̂  the standard error of the regression, ( )[ ]∑
=

γ+−+γ=ω
q

1j
jo

2 ˆ1qj12ˆ , 

Tˆˆˆ
T

1jt
jttj ∑

+=
−εε=γ , and q the truncation lag defined as the largest integer not exceeding 

( ) 92T01.04 . In this test, the null hypothesis is rejected whenever PPt  is less than the 

corresponding Mac-Kinnon critical values.

Tables 3 up to 7 present the results from the application of all the previous tests on 

ARIMA (0,2,1), for different sample sizes T=25, 50, 100, 250, 500, as θ  is approaching to –1+. 

Considering tINT, tTREND, and PP tests, the first interesting remark is a non-negligible probability 

to estimate a positive γ, something which contradicts the nature of the alternative hypothesis, 

γ<0, in these tests (see table 3). For tINT, and PP, and for every combination of T and θ , this 

probability ranges close to 0.50, while no significant differences are observed between the two 

tests. Besides, adding lagged difference terms of the dependent variable to the right hand side of 

(4), no considerable changes are observed, while increasing the sample size these probabilities 

rise slightly in both tests. On the other hand, tTREND statistic displays lower probabilities of a 

positive γ compared to the other two tests. Furthermore, the probability related to tTREND statistic 

is rather low either for small samples or for θ quite close to –1. Increasing the sample size, this 

probability is getting larger and larger, approaching θ=1, the probability declines, as well as, 

adding jty −∆  terms to the right hand side of (5), the probability declines again.

For the previous three tests, tables 4 displays their “conditional” power, at nominal level 

of significance 10%. The term conditional implies that the power has been estimated as a 

percentage of replications where the null hypothesis is rejected, from the subset of replications, 

where a negative γ-estimate is obtained. For the three tests, the estimated conditional power 

increases as T is getting larger, but decreases as θ  is approaching –1+. However, the most 

important feature, regarding tINT and tTREND tests, is that for large T (e.g T≥100), when θ  is not 

very close to -1, adding more jty −∆ terms in (4) and (5), trying to correct autocorrelation in the 

error term, we lead the tests to lower power. Comparing now the performance between the three 
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tests, which one of the three attains the highest power depends upon the sample size and how 

close θ  is to –1. For example, for small samples (e.g. T≤50) and θ not close to –1, PP attains the 

highest power, while for T=500, tINT succeeds the highest power, even when θ = -0.98.

Tables 5, 6 and 7 present the power (again at nominal level of significance 10%) of the Φ

tests, for which the problem of a negative γ-estimate is not met. For this reason, the power was 

estimated with reference to the total number of 1000 replications for each case. For P=0, the 

power of Φ3 statistic is higher than the power of Φ2 and Φ3. Besides, the power of Φ3 test, (a) 

declines as θ  takes values closer to –1, (b) increases by drawing a larger sample, and (c) has a 

downward trend for θ  not very close to –1, by adding more jty −∆ terms in the right-hand side of 

(5). Regarding now Φ1 and Φ2 tests, adding lagged difference terms of the dependent variable to 

the right hand side of (4) and (5), we observe extremely high powers. Especially, for θ not so 

close to –1, the maximum power is attained in most of the cases at P=1. But we should not forget 

that for models (4) and (5) with P≥1, rejecting Ho in Φ1 and Φ2 leads not only to reject the null 

hypothesis but also the hypothesis that the population model is integrated of order 2.

Tables 3-7 about here

5. FORECASTING ARIMA (0,2,1) USING THE RANDOM WALK MODEL

In table 2, testing a unit root on ARIMA (0,2,1), there are cases (combinations of T and 

θ ) where the power remains at low levels. In such cases, therefore, it is very likely to accept that 

the process of generating the data is the random walk model, when in fact this is not true. The 

consequences of such a wrong decision are investigated in the current section, by evaluating the 

validity of the prediction interval for a future value ( )lTy  of ARIMA (0,2,1), using, however, the 

random walk prediction equation and error variance for the period−l forecast, computed as

( ) µ+= ˆyŷ TT ll , and ( ) ( )( ) 2
v

2
TT ˆŷyV σ=− lll  respectively, where

1T

yy

1T

y
ˆ 1T

T

2t
t

−
−

=
−

∆
=µ
∑
=

( )

2T

ˆy
ˆ

T

2t

2
t

2
v −

µ−∆
=σ
∑
=
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are the corresponding OLS estimates obtained after fitting the model tt vy +µ=∆  to the 

available realisation. 

The first criterion of evaluation is the coverage of the prediction interval

( ) lllll vTTvT ˆ2ˆyyˆ2ˆy σ+µ+≤≤σ−µ+ (7)

namely, the percentage the interval to include the true value, with reference all those replications 

where the random walk null hypothesis cannot be rejected. Table 8 presents the coverage, but 

only for those combinations of T and θ  of table 2, where the method based on testing the unit 

root on ARIMA (0,2,1) gave low power. The general remark is that keeping l  close to T, 

accordingly to the values of T and θ , coverage is acceptable, as it is over 90%. On the other 

hand, increasing l , coverage declines reaching low levels, especially using very large samples.

The second criterion concerns the precision of prediction interval (7), expressed as the 

ratio of its average half length (computed as the mean of half length of prediction intervals 

constructed from those replications where the random walk null hypothesis cannot be rejected) 

over the true value of the half length. It is known for ARIMA models that, given information up 

to time T, the conditional distribution of ( )lTy  is normal with mean ( )lTŷ  and variance 









ψ+σ ∑

−

=
ε

1

1j

2
j

2 1
l

. For ARIMA (0,2,1), the ψ weights are computed recursively from 

( ) 11jj +θ+=ψ . Using the last relationship, the variance of the period−l forecast error for 

ARIMA (0,2,1) is given by

( ) ( )( ) ( ) ( )( ) ( )( )






 θ+−+

−−
θ++σ=− ε 11

6

121
11ŷyE 222

TT l
ll

lll (8)

Thus the true value of the half-length, in the context of our simulation experiments, is computed 

by multiplying (8) by 2, replacing 12 =σε , and using the appropriate value for θ . Table 9 displays 

this ratio, again at those cases of table 2, where we meet low power. The ratio although is above 

one in all cases, indicating a smaller precision than it should be expected, it reduces by increasing 

l , resulting however in smaller coverage. Summarising, therefore, using the random walk model 

to predict future values of ARIMA (0,2,1) when θ  is close to –1, for l  close to T, coverage is 

ranged at satisfactory levels, but we take as a penalty a lower precision.

Tables 8-9 about here
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6. SUMMARY AND CONCLUSIONS

In this paper we show that taking second differences in the random walk model generates 

an ARIMA (0,2,1) with parameter 1−=θ . The reverse argument also holds, as a random walk 

model can be also considered as a special case of ARIMA (0,2,1) with 1−=θ . Using this dual 

relationship between a random walk model and an ARIMA (0,2,1), we illustrate that the 

behaviour of the latter model in levels and first differences, whenθ is close but greater to –1, 

resembles the behaviour of either the random walk model with drift or the behaviour of the 

stationary AR(1) with autoregressive coefficient close to unity [Halkos & Kevork(2005b)]. The 

last finding leads us to suggest a new alternative hypothesis, in the form of replications from 

ARIMA (0,2,1) with θ close but greater to –1, to estimate and to compare the power of 

alternative methods of unit root tests, using Monte Carlo simulations.

Four such general methods are considered in the current research. The first is based on 

testing Ho: 1−=θ  to second differences, rejecting the random walk null hypothesis using a set of 

critical values suggested by Halkos & Kevork (2005c) for finite samples. The second method 

refers to tests based on the t-statistic of the estimated coefficient of the lagged dependent variable 

in the right hand side of the “intercept” and the “trend-and-intercept” models. The third method 

includes tests based on the known Φ statistics, which are calculated by estimating the unrestricted 

and the restricted forms of the “intercept model” (Φ1 test) and the trend-and-intercept model (Φ2

and Φ3 tests). Finally the last method concerns the non-parametric Phillips-Perron (PP) test, 

which is applied after again the estimation of the “intercept” model, without the presence of 

lagged difference terms of the dependent variable in the right hand side. 

Considering the first method, for any θ  greater than –0.95, a sample over 250 

observations generates acceptable power, while for θ  very close to –1, unfortunately, only an 

enormously large sample might lead to satisfactory levels of power. Regarding now the two tests 

based on t-statistics together with the PP test, which one of the three attains the highest power 

depends upon the sample size, and how close θ is to –1. Finally, comparing the power of Φ tests 

without including lagged difference terms of the dependent variable to the right hand side of the 

corresponding models, the Φ3 statistic performs better than the other two. However, with the 

inclusion of lagged difference terms, the Φ1 and Φ2 statistics produce extremely high powers, 

rejecting not only the unit root null hypothesis but also the hypothesis that the population model 

is ARIMA (0,2,1). Two other interesting findings should be also reported for some of the tests 
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under investigation. The first concerns the t and PP test statistics, where a positive value might 

occur, something that contradicts the nature of the alternative hypothesis. Second, for the t and Φ3

tests, adding more and more lagged difference terms of the dependent variable to the right hand 

side of the testing models, in an effort to eliminate autocorrelation in the error term, unfortunately 

the power shows a downward trend.

Up to now, the most known disadvantage of unit root tests has been the extremely low 

power when the parameter(s) of the model representing the alternative hypothesis take values 

close to limiting situations. On the other hand, this paper brings forward an additional problem 

concerning the selection of the appropriate unit root test, even when in the alternative hypothesis 

model its parameter(s) are not taking values close to a certain limit. For example, the “trend and 

intercept model” with an autoregressive coefficient not very close to unity cannot be easily 

differentiated and identified from an ARIMA (0,2,1) with θ close but greater to –1. This happens 

because in finite samples, both models display similar patterns in the plots of levels and in the 

sample autocorrelation and partial autocorrelation functions of first differences. And for the 

“trend and intercept model”, Halkos & Kevork (2005a) showed that the Φ3 statistic should be 

preferred, while this paper suggests for ARIMA (0,2,1) the null hypothesis Ho: 1−=θ  being 

tested to second differences of the series.

We believe that the research on unit root tests, apart from developing new methods, 

should also take a new direction on exploring the consequences of reaching a wrong conclusion 

due to the low power of a specific unit root test. This is something that we also explore in the 

current paper. More specifically, regarding the first method, in cases where it attains low power, 

we study the validity of the prediction interval for a future value of ARIMA (0,2,1), when, 

however, we use the prediction equation and the error variance for the period−l forecast of the 

random walk. Besides, the validity is explored only to those replications where the random walk 

hypothesis cannot be rejected. The results indeed are not disappointed, looking at the estimated 

probability (coverage) the prediction interval to include a future value of ARIMA (0,2,1) 

periods−l ahead. Keeping l low, the prediction interval with half-width 2 times the square root 

of the random walk error variance attains coverage more than 90%. For such cases, however, the 

average half-length of the prediction interval might reach to be four times more than its true 

value.
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Table 1: Critical values for a unit root test in ARIMA (0,2,1)

T L
10.0Θ U

10.0Θ L
05.0Θ U

05.0Θ L
01.0Θ U

01.0Θ
25 -0,7358 -0,7243 -0,6775 -0,6578 -0,4675 -0,3685
50 -0,8287 -0,8222 -0,7980 -0,7891 -0,7087 -0,6692
100 -0,8933 -0,8897 -0,8765 -0,8720 -0,8387 -0,8248
250 -0,9422 -0,9403 -0,9340 -0,9316 -0,9176 -0,9127
500 -0,9635 -0,9625 -0,9587 -0,9573 -0,9493 -0,9464
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Table 2: Probability of rejecting a unit root in ARIMA(0,2,1); α = 0.10

Sample size
Θ T=25 T=50 T=100 T=250 T=500

Uncertainty Reject Uncertainty Reject Uncertainty Reject Uncertainty Reject Uncertainty Reject

-0.90 0,025 0,160 0,024 0,197 0,037 0,367 0,013 0,872 0,000 0,994
-0.95 0,029 0,143 0,024 0,149 0,024 0,192 0,036 0,406 0,019 0,808
-0.98 0,024 0,141 0,026 0,131 0,017 0,158 0,022 0,204 0,025 0,277
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Table 3: Probability of a positive tINT, tTREND, and PP

tINT tTREND PP
T θ P=0 P=1 P=2 P=3 P=4 P=5 P=0 P=1 P=2 P=3 P=4 P=5
25 -0.90 0,451 0,447 0,457 0,019 0,029 0,036 0,456

-0.95 0,430 0,440 0,451 0,012 0,016 0,029 0,437

-0,98 0,426 0,434 0,452 0,007 0,013 0,027 0,442

50 -0.90 0,471 0,477 0,476 0,054 0,050 0,057 0,474

-0.95 0,461 0,460 0,459 0,015 0,012 0,019 0,463

-0,98 0,434 0,446 0,460 0,006 0,005 0,006 0,442

100 -0.90 0,498 0,500 0,496 0,493 0,174 0,154 0,144 0,133 0,496

-0.95 0,497 0,491 0,495 0,500 0,059 0,049 0,047 0,048 0,497

-0,98 0,483 0,483 0,483 0,481 0,004 0,008 0,006 0,008 0,485

250 -0.90 0,493 0,495 0,494 0,489 0,489 0,398 0,368 0,348 0,321 0,299 0,493

-0.95 0,474 0,476 0,473 0,481 0,481 0,251 0,233 0,223 0,219 0,201 0,473

-0,98 0,463 0,466 0,469 0,465 0,467 0,051 0,048 0,044 0,044 0,048 0,464

500 -0.90 0,563 0,563 0,558 0,555 0,546 0,538 0,467 0,446 0,416 0,397 0,368 0,344 0,561

-0.95 0,505 0,504 0,504 0,503 0,505 0,504 0,383 0,375 0,367 0,352 0,342 0,325 0,505

-0,98 0,511 0,508 0,504 0,508 0,507 0,507 0,184 0,178 0,173 0,173 0,167 0,162 0,511
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Table 4: Conditional power of tINT, tTREND, and PP test statistics

tINT tTREND PP
T θ P=0 P=1 P=2 P=3 P=4 P=5 P=0 P=1 P=2 P=3 P=4 P=5
25 -0.90 0,071 0,058 0,057 0,077 0,104 0,080 0,097

-0.95 0,046 0,030 0,044 0,083 0,102 0,080 0,066

-0,98 0,030 0,027 0,038 0,099 0,109 0,083 0,050

50 -0.90 0,168 0,140 0,124 0,072 0,072 0,072 0,192

-0.95 0,050 0,050 0,039 0,085 0,098 0,092 0,073

-0,98 0,012 0,023 0,020 0,100 0,108 0,096 0,034

100 -0.90 0,458 0,388 0,347 0,292 0,054 0,037 0,040 0,043 0,405

-0.95 0,187 0,175 0,141 0,138 0,055 0,054 0,060 0,059 0,209

-0,98 0,029 0,033 0,033 0,029 0,089 0,096 0,078 0,080 0,039

250 -0.90 0,724 0,671 0,617 0,569 0,524 0,223 0,177 0,147 0,125 0,097 0,659

-0.95 0,532 0,515 0,488 0,489 0,464 0,072 0,072 0,051 0,047 0,041 0,518

-0,98 0,194 0,200 0,185 0,170 0,173 0,054 0,043 0,042 0,046 0,050 0,209

500 -0.90 0,828 0,778 0,719 0,667 0,606 0,545 0,484 0,394 0,320 0,264 0,217 0,175 0,752

-0.95 0,770 0,746 0,718 0,704 0,669 0,645 0,271 0,234 0,202 0,188 0,173 0,151 0,731

-0,98 0,444 0,431 0,417 0,407 0,400 0,396 0,067 0,062 0,060 0,052 0,056 0,055 0,431
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Table 5: Power of Dickey-Fuller Φ1 statistic

T θ P=0 P=1 P=2 P=3 P=4 P=5
25 -0.90 0,042 0,964 0,740

-0.95 0,017 0,972 0,766
-0,98 0,011 0,972 0,771

50 -0.90 0,136 0,999 0,986
-0.95 0,036 1 0,994
-0,98 0,012 1 0,996

100 -0.90 0,404 0,997 0,995 0,992
-0.95 0,134 1 1 1
-0,98 0,016 1 1 1

250 -0.90 0,719 0,981 0,976 0,967 0,956
-0.95 0,502 1 1 1 1
-0,98 0,138 1 1 1 1

500 -0.90 0,843 0,971 0,959 0,943 0,930 0,915
-0.95 0,745 0,999 0,998 0,998 0,997 0,997
-0,98 0,391 1 1 1 1 1
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Table 6: Power of Dickey-Fuller Φ2 statistic

T θ P=0 P=1 P=2 P=3 P=4 P=5
25 -0.90 0,068 0,935 0,703

-0.95 0,059 0,956 0,744
-0,98 0,055 0,966 0,760

50 -0.90 0,149 0,999 0,975
-0.95 0,073 1 0,991
-0,98 0,057 1 0,991

100 -0.90 0,364 0,998 0,997 0,990
-0.95 0,130 1 1 1
-0,98 0,060 1 1 1

250 -0.90 0,712 1 0,999 0,997 0,989
-0.95 0,469 1 1 1 1
-0,98 0,128 1 1 1 1

500 -0.90 0,850 0,996 0,993 0,989 0,981 0,968
-0.95 0,733 1 1 1 1 1
-0,98 0,377 1 1 1 1 1
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Table 7: Power of Dickey-Fuller Φ3 statistic
T θ P=0 P=1 P=2 P=3 P=4 P=5
25 -0.90 0,111 0,127 0,094

-0.95 0,092 0,123 0,084
-0,98 0,098 0,118 0,086

50 -0.90 0,191 0,162 0,147
-0.95 0,118 0,111 0,113
-0,98 0,095 0,107 0,101

100 -0.90 0,420 0,354 0,305 0,274
-0.95 0,176 0,150 0,138 0,133
-0,98 0,104 0,099 0,095 0,089

250 -0.90 0,725 0,683 0,635 0,598 0,553
-0.95 0,516 0,487 0,461 0,445 0,417
-0,98 0,173 0,163 0,166 0,158 0,144

500 -0.90 0,861 0,819 0,779 0,723 0,677 0,632
-0.95 0,747 0,724 0,706 0,676 0,643 0,623
-0,98 0,418 0,411 0,408 0,395 0,385 0,371
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Table 8: Coverage of prediction intervals

period−l forecast
T Θ 1 2 3 4 5 10 15 20 40
25 -0,90 0,934 0,921 0,893 0,872 0,866

-0,95 0,931 0,925 0,915 0,899 0,891
-0,98 0,935 0,934 0,927 0,904 0,899

50 -0,90 0,941 0,920 0,869 0,860 0,855 0,729
-0,95 0,944 0,949 0,907 0,925 0,917 0,877
-0,98 0,951 0,953 0,929 0,941 0,944 0,929

100 -0,90 0,919 0,909 0,861 0,834 0,805 0,681 0,601
-0,95 0,936 0,941 0,930 0,912 0,893 0,858 0,807
-0,98 0,941 0,950 0,943 0,939 0,941 0,932 0,920

250 -0,95 0,950 0,930 0,892 0,884 0,869 0,756 0,667 0,616
-0,98 0,956 0,960 0,948 0,944 0,928 0,899 0,884 0,862

500 -0,98 0,947 0,933 0,918 0,923 0,920 0,871 0,834 0,794 0,672
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Table 9: Ratio of the estimated average half-length of the prediction interval over its true one

LAG
T θ 1 2 3 4 5 10 15 20 40
25 -0,90 2,37 2,26 2,15 2,05 1,96

-0,95 2,36 2,30 2,24 2,19 2,14
-0,98 2,36 2,34 2,32 2,29 2,27

50 -0,90 2,53 2,41 2,29 2,19 2,09 1,71
-0,95 2,37 2,31 2,25 2,20 2,15 1,92
-0,98 2,34 2,32 2,29 2,27 2,25 2,14

100 -0,90 3,44 3,28 3,12 2,98 2,85 2,33 1,96
-0,95 2,53 2,47 2,41 2,35 2,30 2,05 1,85
-0,98 2,40 2,38 2,35 2,33 2,31 2,20 2,10

250 -0,95 3,67 3,58 3,49 3,41 3,33 2,97 2,68 2,44
-0,98 2,57 2,55 2,52 2,50 2,47 2,36 2,25 2,15

500 -0,98 2,89 2,86 2,83 2,80 2,77 2,64 2,52 2,41 2,05
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Figure 1: Sample autocorrelation and partial autocorrelation functions of first and second 
differences from the random walk model t1tt y2y ε++= −
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Figure 2a: Time series plots of first differences for model 1tt2t1tt yy2y −−− θε+ε+−=

θ = −0.80 θ = −0.90

θ = −0.95 θ = −0.98
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Figure 2b: Sample ACF of first differences for model 1tt2t1tt yy2y −−− θε+ε+−=

θ = −0.80 θ = −0.90

θ = −0.95 θ = −0.98
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Figure 2c: Sample ACF of second differences for model 1tt2t1tt yy2y −−− θε+ε+−=

θ = −0.80 θ = −0.90

θ = −0.95 θ = −0.98
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