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INTRODUCTION

 [START_REF] Dickey | Distribution of the estimators for autoregressive time series with a unit root[END_REF]in their pioneer work, considered the random walk model with drift as a special case of the Gaussian AR(1), . Empirical results from Monte-Carlo simulations, although they support the outcome of first differences, they do not agree with a white noise in second differences.

Figure 1 displays the sample autocorrelation (ACF) and partial autocorrelation (PACF) functions of first and second differences of a typical realisation of size 250 observations from the random walk with 2 = µ , 0 y o = , and 1 = . Details about the adopted random number generator can be found in [START_REF] Kevork | Confidence Interval Methods for Discrete Event Computer Simulation: Theoretical Properties and Practical Recommendations[END_REF]. For first differences, the plots confirm a white noise process. On the contrary, the sample ACF and PACF of second differences, combined with a stationary time series plot, indicate an MA(1) process, as a significant negative autocorrelation occurs at lag 1, and the partial autocorrelations decay exponentially to zero.

Figure 1 about here

The findings of Monte-Carlo simulations are shown analytically by first rewriting the second differences of the random walk model as . Thus, overdifferencing a random walk model with drift leads to ARIMA (0,2,1) with parameter 1 = . But also the random walk model can be considered as a special case of ARIMA (0,2,1) with 1 = . Rewriting ARIMA (0,2,1) as in (2), we take eventually the random walk model with drift.

To investigate further the behaviour of ARIMA (0,2,1) for greater but close to -1, we generated 1000 replications of 600 observations each, from the population model with 0 y o = . Figures 2a up to 2c display the time series plots of first differences, as well as, the sample ACF of first and second differences, for a typical realisation of 600 observations. As is approaching to -1 + , the time series plots of first differences are changing gradually from an obvious non-stationary pattern to a stationary one. The corresponding plots of ACF and PACF have the representative pattern of a nonstationary process for greater but quite far away from -1, but for close to -1, they indicate a white noise process. Finally, the graphs in figure 2c indicate an MA(1) in second differences, even when is not close to -1.

Figure 2a-c about here

The behaviour of ARIMA (0,2,1) for close to -1 leads us to consider it as the alternative hypothesis for evaluating and comparing the power of unit root test methods. Four such general methods are considered in this paper. The first method tests in second differences the null hypothesis H o : 1 = , against the alternative H o : 1 > , using a new set of critical values, which Halkos and Kevork generated for testing a unit root in finite samples from an MA(1). The second method is based on testing the statistical significance of the estimated coefficient of the lagged dependent variable in the right hand side of the "intercept" and the "trend-and-intercept" models, using Mac-Kinnon critical values. The third method includes common regression F-tests introduced by Dickey and Fuller, which are known as tests. Finally the last method concerns the non-parametric Phillips-Perron (PP) test, which is applied after estimation of the "intercept" model".

The previous discussion makes the structure of the paper to be as follows: In the next section we review the relevant literature on over-differencing empirical non-stationary series, and validity of unit root tests. In section 3, we revise the theoretical background for exploring the existence of a random walk by testing for a unit root in ARIMA (0,2,1). The power of such a test is also presented for different combinations of sample sizes and values of . In section 4, we estimate the power of t, , and PP tests on ARIMA (0,2,1). The method, based on testing for a unit root in ARIMA (0,2,1), attains low power for small samples and values of close to -1. For such cases, in section 5, we explore the consequences of a wrong decision, namely to accept a random walk model for making predictions for future values of the true process. Finally, section 6 summarises the main findings of this research.

LITERATURE REVIEW

The literature review focuses on two basic issues: over-differencing empirical nonstationary series and validity of unit root tests. Specifically, in empirical research applications of Box-Jenkins ARIMA (p,d,q) models for making valid predictions, we have to identify correctly the proper ARIMA model, which governs the behaviour of the empirical time series (hereafter TS). For a non-stationary time series before identifying the parameter p and q we must identify the times the series should be differenced.

The number of times that the TS under consideration must be differenced is determined intuitively by using the autocorrelation or/and partial autocorrelation functions of the differenced series. Model identification is complicated especially if the TS under consideration is seasonal or periodic. For non-seasonal TS, manual identification may be achieved by using the autocorrelation or/and partial autocorrelation functions, the extended autocorrelation function and the smallest canonical correlation table (Tsay and Tiao, 1984, 1985[START_REF] Box | Time Series Analysis: Forecasting and Control. Holden Say[END_REF][START_REF] Box | Time Series Analysis: Forecasting and Control[END_REF][START_REF] Pankratz | Testing for unit roots in autoregressive moving average models[END_REF]. The above methods seem to be ineffective in seasonal TS. In this case the identification may be performed using a filtering method [START_REF] Liu | Identification of seasonal ARIMA models using a filtering method[END_REF][START_REF] Liu | Forecasting and time series analysis using the SCA Statistical System[END_REF][START_REF] Liu | Forecasting and time series analysis using the SCA[END_REF]. This method is effective for automatic identification of ARIMA models for both seasonal and non-seasonal TS. [START_REF] Koreisha | New approaches for determining the degree of differencing necessary to induce stationarity in ARIMA models[END_REF] presented two methods for determining the degree of differencing in order to achieve stationarity in the data. Using simulation of different model structures, they confirmed the results. [START_REF] Hall | Testing for a unit root in the presence of moving average errors[END_REF] proposes a test for unit root relying on an instrumental variable (IV) estimator, which was applied in the case where the series is generated by an ARIMA(0,1,q) process. Pantula and Hall (1991) extended Hall's framework to the case of a series generated by an ARIMA(p,1,q) model. To obtain the asymptotic distributions, they F o r P e e r R e v i e w 5 assumed that either p or q was known, and using simulations they provide evidence that the finite-sample distributions of their test statistics were well approximated by the Dickey-Fuller distributions even in the case of over-specifying p and q. [START_REF] Reilly | Experiences with an automatic Box-Jenkins modeling algorithm[END_REF] and [START_REF] Reynolds | Box-Jenkins forecast model identification[END_REF] develope automatic methods for identifying ARIMA models for TS. The method developed by [START_REF] Reynolds | Box-Jenkins forecast model identification[END_REF] employs a neural network approach and is restricted to non-seasonal TS, while the method developed by [START_REF] Reilly | Experiences with an automatic Box-Jenkins modeling algorithm[END_REF] works properly for non-seasonal TS but it is less effective in the case of seasonal TS.

The above-mentioned methods require the existence of long TS, which are used for model development and validation before we proceed to parameter estimation and predictions. The ARIMA approach for TS predictive model development is justified in both theoretical and statistical grounds. But [START_REF] Makridakis | Forecasting: Methods and applications[END_REF] claim the complexity of these models has been an obstacle for their adoption as a forecasting tool in organisations. The one-step ahead forecast for an ARIMA (0,1,1) model is equivalent to forecasting using an exponential smoothing method, when the smoothing constant leads to minimum mean square error forecast [START_REF] Abraham | Statistical methods for forecasting[END_REF].

A unit root in the moving average polynomial can be interpreted in various ways depending on the modeling application. Testing for a unit root in the moving average polynomial is equivalent to test that the series is over-differenced [START_REF] Brockwell | Introduction to Time Series and Forecasting[END_REF]. A difficulty with the null hypothesis H 0 : =1 is that estimating a moving average model with a unit root is an irregular problem. The asymptotic distribution of the maximum likelihood estimator of a noninvertible MA parameter is unknown but there is a positive probability that a local maximum is attained by the likelihood function at a point of a unit root [START_REF] Anderson | Why do noninvertible estimated moving averages occur?[END_REF]Takemura, 1986, Tanaka andSatchell, 1989). This implies that the development of LR and Wald tests is "intractable". Lagrange multiplier tests can be obtained, as they require the estimation of the model under the null hypothesis. [START_REF] Ahtola | Some aspects of parameter inference for nearly stationary and nearly noninvertible ARMA models II[END_REF] prove it in the case of an MA(1) model with a zero mean value, while Tanaka (1990) obtains a general score-type test for the MA unit root hypothesis. [START_REF] Phillips | Time series regression with a unit root[END_REF] and [START_REF] Phillips | Testing for a unit root in time series regression[END_REF] extends this work on autoregressive unit root tests.

Similarly Saikkonen and Luukkonen (1993) derive two tests for the MA unit root hypothesis. In the case of serially uncorrelated errors these can be motivated by local optimality arguments. Halkos and Kevork (2005c) A large literature has been recently developed for analyzing TS regression with difference stationary processes. [START_REF] Dickey | Estimation and hypothesis testing for non-stationary time series[END_REF] and [START_REF] Dickey | Estimation and hypothesis testing for non-stationary time series[END_REF]Fuller (1976, 1981) in their seminal papers examine the OLS estimation when the innovations in the unit root process are i.i.d. [START_REF] Phillips | Time series regression with a unit root[END_REF] extends these results to a more general setting for the innovation process in such a way as to allow both time dependence and heterogeneity. [START_REF] Phillips | Testing for a unit root in time series regression[END_REF] explore data generating mechanisms with drift and trend. [START_REF] Phillips | Time series regression with a unit root and infinite variance errors[END_REF] and [START_REF] Chan | On the first-order autoregressive process with infinite variance[END_REF] have explored the estimation of the autoregressive parameter and tested for a unit root when the random walk process has errors, which obey to a stable law. [START_REF] Phillips | Time series regression with a unit root and infinite variance errors[END_REF] generalises this case using a semi-parametric modification of the usual t-ratio. [START_REF] Leybourne | The behaviour of Dickey Fuller and Phillips Perron tests under the alternative hypothesis[END_REF] using simple theoretical calculations, confirm simulation evidences that probabilities of rejecting the null hypothesis of the Dickey Fuller and the Phillips-Perron tests differ substantially when the true generating process is the stationary second order autoregression. Halkos and Kevork (2005b) using certain estimates from Monte-Carlo simulations and considering the random walk as the true model, derived the probability the prediction interval to include any future value s T y + of AR(1). [START_REF] Ahn | Unit root tests with infinite variance errors[END_REF] analyse both asymptotically and in finite sample the properties of some unit root test, when the errors obey to a stable law. They consider a number of test statistics (such as the Dickey Fuller and the Lagrange Multiplier), when the data generating process is a driftless random walk and the regression model matches exactly the data generation process. [START_REF] Gallegari | Asymptotic inference in time series regressions with a unit root and infinite variance errors[END_REF], in a similar analysis, characterize as limited both the behavior of OLS estimators of regression coefficients and the DF tests under the data generating processes usually encountered in the unit root literature (random walk with and without drift and the associated regression models with constant term, without deterministic component and with constant and time trend terms). They also investigate the consequences of the 'local to finite' variance analysis assessing that the size distortion of the DF test as the departure from the standard finite variance set up tends to decrease as the sample size tends to infinite. [START_REF] Dickey | Distribution of the Estimators for Autoregressive Time-Series with Unit Root[END_REF] based their analysis on the asymptotic properties of the OLS estimator. Important variations of the DF tests are their extensions to other estimation methods such as Maximum Likelihood (Shin andLee, 2000, Skin andFuller, 1998), the generalised least squares detrending under a fixed local alternative [START_REF] Elliott | Efficient tests for an autoregressive unit root[END_REF], Xiao and Phillips, 1998[START_REF] Hwang | Alterative methods of detrending and the power of unit root tests[END_REF] and the weighted symmetric estimator [START_REF] Park | Alternative estimators and unit root tests for the autoregressive process[END_REF]Fuller, 1995, Fuller, 1996). [START_REF] Hassler | On the power of unit root test against fractional alternatives[END_REF] claim that the Augmented Dickey Fuller (hereafter ADF) compared to fractional alternatives loses considerable power when augmented terms are added.

On the other hand, [START_REF] Krämer | Fractional integration and the augmented Dickey Fuller test[END_REF] finds that ADF is consistent if the order of autoregression does not tend to infinity too fast. [START_REF] Bisaglia | On the power of the Augmented Dickey-Fuller test against fractional alternatives bootstrap[END_REF], using Monte Carlo simulations, clarify this contradiction and find that the ADF bootstrap works in general better than the ADF even if the power of the test is quite low, especially if the data generating process is a nonstationary fractional integrated one.

On the contrary, Halkos and Kevork (2005a) Finally, a number of researchers have developed tests for a single structural break with unknown break points in various dynamic models [START_REF] Andrews | Tests for parameter instability and structural change with unknown change point[END_REF][START_REF] Perron | Nonstationary and level shifts with an application to purchasing power parity[END_REF]Sen, 2004;[START_REF] Blot | Convergence of fiscal policies in EMU: a unit-root tests analysis with structural break[END_REF]. In most cases, these tests were either designed to test for a structural change in regression coefficients with stationary series or for a unit root against a stationary alternative with an unknown single break point. The applications of these tests were extremely successful in analysing breaking points in variables like real exchange rates, real GNP and other integrated processes [START_REF] Banerjee | Recursive and sequential tests of the unit root and trend break hypothesis: Theory and international evidence[END_REF][START_REF] Perron | Nonstationary and level shifts with an application to purchasing power parity[END_REF]Zivot and Andrews, 1992;[START_REF] Charemza | Is inflation stationary?[END_REF][START_REF] Harvey | Evidence for common features in G7 macroeconomic time series[END_REF]. 

TESTING FOR A UNIT ROOT IN ARIMA (0,2,1)

For the non-invertible MA(1),

1 t t t y + = µ
, given a sample of size T, the ln of the exact likelihood function is given by ( ) ( )
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where Hamilton, 1994). So, whenever ~ is less than -1, the test is applied by taking the reciprocal of ~.
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In the introductory section we illustrated the dual relationship between the random walk model and ARIMA (0,2,1). That is, overdifferencing the random walk model leads to ARIMA (0,2,1) with parameter 1 = , as well as, the random walk model can be considered as a special case of ARIMA (0,2,1) with 1 = . This means that applying the test H o : 1 = , against H 1 : 1 > , to second differences of a time series realisation is equivalent of testing in the same series for the existence of a unit root. The only problem, which occurs in such a case is that taking second differences, the actual sample size is reduced from T to T-2. For this reason, we applied a linear interpolation to the initially suggested critical values of Halkos and Kevork, resulting to those presented in . The initial conditions, as well as, comments about the validity of the random number generator have been already discussed in the introductory section. In each replication, and for nominal T=25, 50, 100, 250, 500, after subtracting the mean of second differences, we fit an MA(1) without a constant term to second differences in each replication, by maximising (3). The maximisation process was performed in E-VIEWS.

In each replication, to update and 2 in successive iterations, we used the Marquard first derivative method, where first derivatives were evaluated analytically. The computation of

( ) ( ) 2 , L ln
was repeated until the improvement between iterations was less than 0.001. The Marquardt algorithm modifies the Gauss-Newton by adding a correction matrix to the Hessian approximation. This ridge correction copes with numerical problems in case the outer product is near singular, improving the convergence rate. Estimation using the analytical evaluation of first derivatives was preferred as it involves fewer function evaluations, and therefore is faster than evaluating the derivatives analytically.

As starting values for and 2 , we used those provided by E-VIEWS, using the method of backcasting (Box and Jenkins;[START_REF] Dickey | Estimation and hypothesis testing for non-stationary time series[END_REF]. EVIEWS backcasts MA terms by computing the unconditional residuals and using the backward recursion to compute backcast values. To start this recursion the values for the innovations beyond the estimation sample are set to zero and a forward recursion is used for estimating the values of the innovations using the backcasted values of the innovations and the actual residuals. The sum of squared residuals is minimized, after having being formed as a function of and relying on the fitted values of the lagged innovations.

The backcast step, forward recursion and the minimization of SSR are repeated till the convergence of estimates of .

The standard errors of the estimated and 2 were computed from the Gauss-Newton Hessian. Gauss-Newton follows Newton-Raphson replacing the negative of the Hessian using for and the outer product is necessarily positive and semi-definite. But in case that it is away from the maximum, we may approximate poorly the overall shape of the function. This implies the need for more iterations for convergence. , the power remains at very low levels, even with a sample of size 500. Further, for all the examined cases, the probability of being in uncertainty ranges below 4%. The cases where low power is observed will be further discussed in section 5, where we shall investigate, from the forecasting point of view, the consequences of not rejecting the null hypothesis on the validity of prediction intervals generated using the random walk model. Pindyck and Rubinfeld (1988) as an F-ratio test.

Regarding the three tests, adding lagged difference terms of t y to the right-hand side of (4) and ( 5), the sample size is reduced. For this reason, before the implementation of the tests, an appropriate linear interpolation was applied again to the corresponding DF critical values.

Additionally to this, adding j t y terms to the right-hand side of ( 4) and ( 5), not rejecting the unit root null hypothesis in tests leads to ARIMA (P,1,0). On the contrary, not including such lagged difference terms of the dependent variable in the testing models, the rejection of the null leads to the rejection of the random walk model. where t and s are respectively the t-statistic and the standard error from applying OLS regression to (6), ˆ the standard error of the regression,
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, and q the truncation lag defined as the largest integer not exceeding

( ) 9 2 T 01 . 0 4
. In this test, the null hypothesis is rejected whenever PP t is less than the corresponding Mac-Kinnon critical values.

Tables 3 up to 7 present the results from the application of all the previous tests on ARIMA (0,2,1), for different sample sizes T=25, 50, 100, 250, 500, as is approaching to -1 + .

Considering t INT , t TREND , and PP tests, the first interesting remark is a non-negligible probability to estimate a positive , something which contradicts the nature of the alternative hypothesis, <0, in these tests (see table 3). For t INT , and PP, and for every combination of T and , this probability ranges close to 0.50, while no significant differences are observed between the two tests. Besides, adding lagged difference terms of the dependent variable to the right hand side of (4), no considerable changes are observed, while increasing the sample size these probabilities rise slightly in both tests. On the other hand, t TREND statistic displays lower probabilities of a positive compared to the other two tests. Furthermore, the probability related to t TREND statistic is rather low either for small samples or for quite close to -1. Increasing the sample size, this probability is getting larger and larger, approaching =1, the probability declines, as well as, adding j t y terms to the right hand side of (5), the probability declines again.

For the previous three tests, tables 4 displays their "conditional" power, at nominal level of significance 10%. The term conditional implies that the power has been estimated as a percentage of replications where the null hypothesis is rejected, from the subset of replications, where a negative -estimate is obtained. For the three tests, the estimated conditional power increases as T is getting larger, but decreases as is approaching -1 + . However, the most important feature, regarding t INT and t TREND tests, is that for large T (e.g T 100), when is not very close to -1, adding more j t y terms in (4) and ( 5), trying to correct autocorrelation in the error term, we lead the tests to lower power. Comparing now the performance between the three 13 tests, which one of the three attains the highest power depends upon the sample size and how close is to -1. For example, for small samples (e.g. T 50) and not close to -1, PP attains the highest power, while for T=500, t INT succeeds the highest power, even when = -0.98.

Tables 5, 6 and 7 present the power (again at nominal level of significance 10%) of the tests, for which the problem of a negative -estimate is not met. For this reason, the power was estimated with reference to the total number of 1000 replications for each case. For P=0, the power of 3 statistic is higher than the power of 2 and 3 . Besides, the power of 3 test, (a) declines as takes values closer to -1, (b) increases by drawing a larger sample, and (c) has a downward trend for not very close to -1, by adding more j t y terms in the right-hand side of (5). Regarding now 1 and 2 tests, adding lagged difference terms of the dependent variable to the right hand side of ( 4) and ( 5), we observe extremely high powers. Especially, for not so close to -1, the maximum power is attained in most of the cases at P=1. But we should not forget that for models (4) and ( 5) with P 1, rejecting Ho in 1 and 2 leads not only to reject the null hypothesis but also the hypothesis that the population model is integrated of order 2.

Tables 3-7 about here

FORECASTING ARIMA (0,2,1) USING THE RANDOM WALK MODEL

In table 2, testing a unit root on ARIMA (0,2,1), there are cases (combinations of T and ) where the power remains at low levels. In such cases, therefore, it is very likely to accept that the process of generating the data is the random walk model, when in fact this is not true. The consequences of such a wrong decision are investigated in the current section, by evaluating the validity of the prediction interval for a future value ( )

l T y
of ARIMA (0,2,1), using, however, the random walk prediction equation and error variance for the period l forecast, computed as The first criterion of evaluation is the coverage of the prediction interval ( )
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namely, the percentage the interval to include the true value, with reference all those replications where the random walk null hypothesis cannot be rejected. Table 8 presents the coverage, but only for those combinations of T and of table 2, where the method based on testing the unit root on ARIMA (0,2,1) gave low power. The general remark is that keeping l close to T, accordingly to the values of T and , coverage is acceptable, as it is over 90%. On the other hand, increasing l , coverage declines reaching low levels, especially using very large samples.

The second criterion concerns the precision of prediction interval ( 7), expressed as the ratio of its average half length (computed as the mean of half length of prediction intervals constructed from those replications where the random walk null hypothesis cannot be rejected) over the true value of the half length. It is known for ARIMA models that, given information up to time T, the conditional distribution of ( )

l T y is normal with mean ( ) l T y ˆ and variance ! ! " # $ $ % & + = 1 1 j 2 j 2 1 l .
For ARIMA (0,2,1), the weights are computed recursively from

( ) 1 1 j j + + =
. Using the last relationship, the variance of the period l forecast error for ARIMA (0,2,1) is given by

( ) ( ) ( ) ( ) ( )( ) ( )( ) ' ( ) + + + + = 1 1 6 1 2 1 1 1 y ŷ E 2 2 2 T T l l l l l l (8)
Thus the true value of the half-length, in the context of our simulation experiments, is computed by multiplying (8) by 2, replacing 1 2 = , and using the appropriate value for . Table 9 displays this ratio, again at those cases of table 2, where we meet low power. The ratio although is above one in all cases, indicating a smaller precision than it should be expected, it reduces by increasing l , resulting however in smaller coverage. Summarising, therefore, using the random walk model to predict future values of ARIMA (0,2,1) when is close to -1, for l close to T, coverage is ranged at satisfactory levels, but we take as a penalty a lower precision. 

SUMMARY AND CONCLUSIONS

In this paper we show that taking second differences in the random walk model generates an ARIMA (0,2,1) with parameter 1 = . The reverse argument also holds, as a random walk model can be also considered as a special case of ARIMA (0,2,1) with 1 = . Using this dual relationship between a random walk model and an ARIMA (0,2,1), we illustrate that the behaviour of the latter model in levels and first differences, when is close but greater to -1, resembles the behaviour of either the random walk model with drift or the behaviour of the stationary AR(1) with autoregressive coefficient close to unity [Halkos & Kevork(2005b)]. The last finding leads us to suggest a new alternative hypothesis, in the form of replications from ARIMA (0,2,1) with close but greater to -1, to estimate and to compare the power of alternative methods of unit root tests, using Monte Carlo simulations. Considering the first method, for any greater than -0.95, a sample over 250 observations generates acceptable power, while for very close to -1, unfortunately, only an enormously large sample might lead to satisfactory levels of power. Regarding now the two tests based on t-statistics together with the PP test, which one of the three attains the highest power depends upon the sample size, and how close is to -1. Finally, comparing the power of tests without including lagged difference terms of the dependent variable to the right hand side of the corresponding models, the 3 statistic performs better than the other two. However, with the inclusion of lagged difference terms, the 1 and 2 statistics produce extremely high powers,

rejecting not only the unit root null hypothesis but also the hypothesis that the population model is ARIMA (0,2,1). Two other interesting findings should be also reported for some of the tests tests, adding more and more lagged difference terms of the dependent variable to the right hand side of the testing models, in an effort to eliminate autocorrelation in the error term, unfortunately the power shows a downward trend.

Up to now, the most known disadvantage of unit root tests has been the extremely low power when the parameter(s) of the model representing the alternative hypothesis take values close to limiting situations. On the other hand, this paper brings forward an additional problem concerning the selection of the appropriate unit root test, even when in the alternative hypothesis model its parameter(s) are not taking values close to a certain limit. For example, the "trend and intercept model" with an autoregressive coefficient not very close to unity cannot be easily differentiated and identified from an ARIMA (0,2,1) with close but greater to -1. This happens because in finite samples, both models display similar patterns in the plots of levels and in the sample autocorrelation and partial autocorrelation functions of first differences. And for the "trend and intercept model", Halkos & Kevork (2005a) showed that the 3 statistic should be preferred, while this paper suggests for ARIMA (0,2,1) the null hypothesis H o : 1 = being tested to second differences of the series.

We believe that the research on unit root tests, apart from developing new methods, should also take a new direction on exploring the consequences of reaching a wrong conclusion due to the low power of a specific unit root test. This is something that we also explore in the current paper. More specifically, regarding the first method, in cases where it attains low power, we study the validity of the prediction interval for a future value of ARIMA (0,2,1), when, however, we use the prediction equation and the error variance for the period l forecast of the random walk. Besides, the validity is explored only to those replications where the random walk hypothesis cannot be rejected. The results indeed are not disappointed, looking at the estimated probability (coverage) the prediction interval to include a future value of ARIMA (0,2,1) periods l ahead. Keeping l low, the prediction interval with half-width 2 times the square root of the random walk error variance attains coverage more than 90%. For such cases, however, the average half-length of the prediction interval might reach to be four times more than its true value. 
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-0,7358 -0,7243 -0,6775 -0,6578 -0,4675 -0,3685 50 -0,8287 -0,8222 -0,7980 -0,7891 -0,7087 -0,6692 100 -0,8933 -0,8897 -0,8765 -0,8720 -0,8387 -0,8248 250 -0,9422 -0,9403 -0,9340 -0,9316 -0,9176 -0,9127 500 -0,9635 -0,9625 -0,9587 -0,9573 -0,9493 -0,9464 -0.90 0,451 0,447 0,457 0,019 0,029 0,036 0,456 -0.95 0,430 0,440 0,451 0,012 0,016 0,029 0,437 -0,98 0,426 0,434 0,452 0,007 0,013 0,027 0,442 50 -0.90 0,471 0,477 0,476 0,054 0,050 0,057 0,474 -0.95 0,461 0,460 0,459 0,015 0,012 0,019 0,463 -0,98 0,434 0,446 0,460 0,006 0,005 0,006 0,442 100 -0.90 0,498 0,500 0,496 0,493 0,174 0,154 0,144 0,133 0,496 -0.95 0,497 0,491 0,495 0,500 0,059 0,049 0,047 0,048 0,497 -0,98 0,483 0,483 0,483 0,481 0,004 0,008 0,006 0,008 0,485 250 -0.90 0,493 0,495 0,494 0,489 0,489 0,398 0,368 0,348 0,321 0,299 0,493 -0.95 0,474 0,476 0,473 0,481 0,481 0,251 0,233 0,223 0,219 0,201 0,473 -0,98 0,463 0,466 0,469 0,465 0,467 0,051 0,048 0,044 0,044 0,048 0,464 500 -0.90 0,563 0,563 0,558 0,555 0,546 0,538 0,467 0,446 0,416 0,397 0,368 0,344 0,561 -0.95 0,505 0,504 0,504 0,503 0,505 0,504 0,383 0,375 0,367 0,352 0,342 0,325 0,505 -0,98 0,511 0,508 0,504 0,508 0,507 0,507 0,184 0,178 0,173 0,173 0,167 0,162 0,511 -0.90 0,071 0,058 0,057 0,077 0,104 0,080 0,097 -0.95 0,046 0,030 0,044 0,083 0,102 0,080 0,066 -0,98 0,030 0,027 0,038 0,099 0,109 0,083 0,050 50 -0.90 0,168 0,140 0,124 0,072 0,072 0,072 0,192 -0.95 0,050 0,050 0,039 0,085 0,098 0,092 0,073 -0,98 0,012 0,023 0,020 0,100 0,108 0,096 0,034 100 -0.90 0,458 0,388 0,347 0,292 0,054 0,037 0,040 0,043 0,405 -0.95 0,187 0,175 0,141 0,138 0,055 0,054 0,060 0,059 0,209 -0,98 0,029 0,033 0,033 0,029 0,089 0,096 0,078 0,080 0,039 250 -0.90 0,724 0,671 0,617 0,569 0,524 0,223 0,177 0,147 0,125 0,097 0,659 -0.95 0,532 0,515 0,488 0,489 0,464 0,072 0,072 0,051 0,047 0,041 0,518 -0,98 0,194 0,200 0,185 0,170 0,173 0,054 0,043 0,042 0,046 0,050 0,209 500 -0.90 0,828 0,778 0,719 0,667 0,606 0,545 0,484 0,394 0,320 0,264 0,217 0,175 0,752 -0.95 0,770 0,746 0,718 0,704 0,669 0,645 0,271 0,234 0,202 0,188 0,173 0,151 0,731 -0,98 0,444 0,431 0,417 0,407 0,400 0,396 0,067 0,062 0,060 0,052 0,056 0,055 0,431 -0,90 0,934 0,921 0,893 0,872 0,866 -0,95 0,931 0,925 0,915 0,899 0,891 -0,98 0,935 0,934 0,927 0,904 0,899 50 -0,90 0,941 0,920 0,869 0,860 0,855 0,729 -0,95 0,944 0,949 0,907 0,925 0,917 0,877 -0,98 0,951 0,953 0,929 0,941 0,944 0,929 100 -0,90 0,919 0,909 0,861 0,834 0,805 0,681 0,601 -0,95 0,936 0,941 0,930 0,912 0,893 0,858 0,807 -0,98 0,941 0,950 0,943 0,939 0,941 0,932 0,920 250 -0,95 0,950 0,930 0,892 0,884 0,869 0,756 0,667 0,616 -0,98 0,956 0,960 0,948 0,944 0,928 0,899 0,884 0,862 500 -0,98 0,947 0,933 0,918 0,923 0,920 0,871 0,834 0,794 0,672 

  evaluated simple versions of the Dickey-Fuller test under the null hypothesis of a random walk model or an alternative non-stationary mean reverted process. Through Monte Carlo simulations they show that, apart from few cases, testing the existence of a unit root, using both McKinnon critical values and an F test, recommended by Pindyck and Rubinfeld, they obtain actual type I error and power very close to their nominal levels.

  an appropriate simulation strategy after maximising (3),Halkos and Kevork (2005c) offer a new set of critical values for testing H o : 1 = , against H 1 : 1 > , in samples of size T = 25, 50, 100, 250, 500. The case of an estimate of less than -1 does not contradict the alternative hypothesis, as (3) is maximised at 1

  approximation of the sum of the outer product of the gradient vectors and its contribution to the objective function. In this way we have just to evaluate the first derivatives,

  Four such general methods are considered in the current research. The first is based on testing H o : 1 = to second differences, rejecting the random walk null hypothesis using a set of critical values suggested byHalkos & Kevork (2005c) for finite samples. The second method refers to tests based on the t-statistic of the estimated coefficient of the lagged dependent variable in the right hand side of the "intercept" and the "trend-and-intercept" models. The third method includes tests based on the known statistics, which are calculated by estimating the unrestricted and the restricted forms of the "intercept model" ( 1 test) and the trend-and-intercept model ( 2 and 3 tests). Finally the last method concerns the non-parametric Phillips-Perron (PP) test, which is applied after again the estimation of the "intercept" model, without the presence of lagged difference terms of the dependent variable in the right hand side.

  The first concerns the t and PP test statistics, where a positive value might occur, something that contradicts the nature of the alternative hypothesis. Second, for the t and 3

Figure 1 :

 1 Figure 1: Sample autocorrelation and partial autocorrelation functions of first and second differences from the random walk model t 1 t t y 2 y + + =

  , using the exact maximum likelihood estimator of from

	the MA(1), and a certain simulation strategy, estimate appropriate percentiles, together with their
	standard errors, offering a new set of critical values for testing in finite samples H o :	1 = ,
	against H 1 :	1 > . In this way, appropriate regions for rejecting the null or being in uncertainty
	are defined.	
		F o
		r
		P
		e e r
		R e v i e w
			6

Table 1 .

 1 The critical values of table 1 can be used for testing a unit root in ARIMA (0,2,1) at nominal sample sizes T=25, 50, 100, 250 and 500, or actual ones T =

	23, 48, 98, 248, and 498, leading to rejection of H o when	ˆ >	U	, and to uncertainty whenever
	L	<	ˆ <	U	.											
			To estimate the power of the unit root test in ARIMA (0,2,1) using the critical values of
	table 1, for each value of = -0.90, -0.95, -0.98, we generated 1000 replications of size 600
	observations from model	y	t	=	2	y	t	1	y	t	2	+	t	+	t	1
					F o								
						r					
								P				
										e e r
																R e v i e w
																	9

Table 1

 1 

	about here

Table 2 about here 4. POWER OF UNIT ROOT TESTS ON ARIMA (0,2,1)

 2 , concerns the null hypothesis H o : µ=0, =0, and is applied by estimating first (4), and then its restricted form under H o . The null hypothesis is rejected whenever the calculated The third test is based again on the t TREND statistic of the estimated . The unit root null hypothesis, H o : =0, is rejected in favour of the alternative H 1 : <0, whenever t TREND is less than the corresponding Mac-Kinnon critical value. Furthermore, the next two tests are the common regression "F-tests" (as 1 was), known as 2 and 3 . For 2 , the null hypothesis H o : µ=0, =0,

	In this section, we evaluate traditional unit root tests on ARIMA (0,2,1), using the 1000
	replications already generated from model	y	t	=	2	y	t	1	y	t	2		+	t	+	t	1	, for
	= -0.90, -0.95, -0.98. In the following lines, we present first the theoretical properties of each
	test separately, and the way of implementing it in each replication from ARIMA (0,2,1).
	The first two tests are carried out by estimating using ordinary least squares (OLS) the
	"intercept" model																
	y	t	=	µ	+		y	t	1	+		1 = P j	j		y	t	j	+	t	(4)

The first test is based on the t INT statistic of the estimated parameter . Whenever t INT is less than the corresponding Mac-Kinnon critical value, we reject H o : =0, in favour of H 1 : <0. The second critical value of table V. In a similar manner, for 3 , when the ratio defined in 1 test is greater than the DF critical value of table VI, the null hypothesis H o : µ=0, =0, is rejected. The latter test is referred by

Table 1 :

 1 Critical values for a unit root test in ARIMA (0,2,1)

	o
	r
	P
	e e r
	R e v i e w
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Table 2 :

 2 Probability of rejecting a unit root in ARIMA(0,2,1); = 0.10

		Sample size								
		T=25		T=50		T=100		T=250		T=500	
		Uncertainty	Reject	Uncertainty	Reject	Uncertainty	Reject	Uncertainty	Reject	Uncertainty	Reject
	-0.90	0,025	0,160	0,024	0,197	0,037	0,367	0,013	0,872	0,000	0,994
	-0.95	0,029	0,143	0,024	0,149	0,024	0,192	0,036	0,406	0,019	0,808
	-0.98	0,024	0,141	0,026	0,131	0,017	0,158	0,022	0,204	0,025	0,277
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Table 3 :

 3 Probability of a positive t INT , t TREND , and PP

					t INT					t TREND		PP
	T	P=0	P=1	P=2	P=3	P=4	P=5	P=0	P=1	P=2	P=3	P=4	P=5
	25												

Table 4 :

 4 Conditional power of t INT , t TREND , and PP test statistics

					t INT					t TREND		PP
	T	P=0	P=1	P=2	P=3	P=4	P=5	P=0	P=1	P=2	P=3	P=4	P=5
	25												
			F o								
				r								
					P							
					e e r					
							R e v i e w		
													24

Table 5 :

 5 Power of Dickey-Fuller 1 statistic

	Page						
	T		P=0	P=1	P=2	P=3	P=4	P=5
	25	-0.90	0,042	0,964	0,740		
		-0.95	0,017	0,972	0,766		
		-0,98	0,011	0,972	0,771		
	50	-0.90	0,136	0,999	0,986		
		-0.95	0,036	1	0,994		
		-0,98	0,012	1	0,996		
	100	-0.90	0,404	0,997	0,995	0,992	
		-0.95	0,134	1	1	1	
		-0,98	0,016	1	1	1	
	250	-0.90	0,719	0,981	0,976	0,967	0,956
		-0.95	0,502	1	1	1	1
	500	-0,98 -0.90 -0.95 -0,98	0,138 0,843 F 0,745 o 1 0,971 0,999 0,391 1	1 0,959 0,998 1	1 0,943 0,998 1	1 0,930 0,997 1	0,915 0,997 1
				r			
				P		
				e e r	
						R e v i e w
								25
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Table 6 :

 6 Power of Dickey-Fuller 2 statistic

								Page
	T		P=0	P=1	P=2	P=3	P=4	P=5
	25	-0.90	0,068	0,935	0,703			
		-0.95	0,059	0,956	0,744			
		-0,98	0,055	0,966	0,760			
	50	-0.90	0,149	0,999	0,975			
		-0.95	0,073	1	0,991			
		-0,98	0,057	1	0,991			
	100	-0.90	0,364	0,998	0,997	0,990		
		-0.95	0,130	1	1	1		
		-0,98	0,060	1	1	1		
	250	-0.90	0,712	1	0,999	0,997	0,989	
		-0.95	0,469	1	1	1	1	
		-0,98	0,128	1	1	1	1	
	500	-0.90	0,850	0,996	0,993	0,989	0,981	0,968
		-0.95	0,733	1	1	1	1	1
		-0,98	0,377	1	1	1	1	1
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Table 7 :

 7 Power of Dickey-Fuller 3 statistic

	T		P=0	P=1	P=2	P=3	P=4	P=5
	25	-0.90	0,111	0,127	0,094			
		-0.95	0,092	0,123	0,084			
		-0,98	0,098	0,118	0,086			
	50	-0.90	0,191	0,162	0,147			
		-0.95	0,118	0,111	0,113			
		-0,98	0,095	0,107	0,101			
	100	-0.90	0,420	0,354	0,305	0,274		
		-0.95	0,176	0,150	0,138	0,133		
		-0,98	0,104	0,099	0,095	0,089		
	250	-0.90	0,725	0,683	0,635	0,598	0,553	
		-0.95	0,516	0,487	0,461	0,445	0,417	
		-0,98	0,173	0,163	0,166	0,158	0,144	
	500	-0.90	0,861	0,819	0,779	0,723	0,677	0,632
		-0.95	0,747	0,724	0,706	0,676	0,643	0,623
		-0,98	0,418	0,411	0,408	0,395	0,385	0,371
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Table 8 :

 8 Coverage of prediction intervals

		l	period	forecast						
	T	1	2	3	4	5	10	15	20	40
	25									

Page 28 of 33 Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

  

	Submitted Manuscript
	F o
	r
	P
	e e r
	R e v i e w
	29

Table 9 :

 9 Ratio of the estimated average half-length of the prediction interval over its true one

		LAG								
	T	1	2	3	4	5	10	15	20	40
	25	-0,90 2,37	2,26	2,15	2,05	1,96				
		-0,95 2,36	2,30	2,24	2,19	2,14				
		-0,98 2,36	2,34	2,32	2,29	2,27				
	50	-0,90 2,53	2,41	2,29	2,19	2,09	1,71			
		-0,95 2,37	2,31	2,25	2,20	2,15	1,92			
		-0,98 2,34	2,32	2,29	2,27	2,25	2,14			
	100	-0,90 3,44	3,28	3,12	2,98	2,85	2,33	1,96		
		-0,95 2,53	2,47	2,41	2,35	2,30	2,05	1,85		
		-0,98 2,40	2,38	2,35	2,33	2,31	2,20	2,10		
	250	-0,95 3,67	3,58	3,49	3,41	3,33	2,97	2,68	2,44	
		-0,98 2,57	2,55	2,52	2,50	2,47	2,36	2,25	2,15	
	500	-0,98 2,89	2,86	2,83	2,80	2,77	2,64	2,52	2,41	2,05
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