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In this article the optimisation of pipe network with hot water is presented. The mathematical model, consisting of the non -linear objective function and system of non -linear equations for the hydraulics limitations is developed. On its basis the computer program for determination optimal tree path with the use of simplex method was solved. For economic estimation the capitalized value method, which consider all costs of investment and operation was used. The results are presented for real case study network with 24 nodes and 33 pipe sectors.

Introduction

Nowadays efforts connected to energy savings demand the search for new technical scientific expertise in the field of heating techniques [1 -4]. The focus of research is on better and more efficient use of primary energy [5].

If we limit ourselves to district heating energy systems, we may state that these systems ensure savings in the process of use of primary energy and are acceptable from the ecological point of view. The whole system is represented as a non-linear target function by non-linear equations of hydraulic limitations and by minimizing the non-linear function the optimal design and dimensions of the pipe network are defined [START_REF] Goricanec | Dimensioning and design of tree path transport pipe networks[END_REF][START_REF] Dobersek | Calibration of pipe networks for district heating using the nonlinear optimisation method[END_REF].

One method for modelling pipe networks is by linear programming, consisting of optimisation with limitations [START_REF] Saul | Linear Programming Methods and Aplications[END_REF], meaning the search for the best possible, optimal solution of the stated problem within given conditions.

Nowadays two methods for solving linear programmes are used, both of them interactive, searching for a gradually better solution, until the optimum value is achieved.

Mostly, simplex methods focused on searching for permissible solutions within the monotonous defined extreme point of the convex polyhedron of possible solutions and a defined base of the vector space, are used.

District heating systems

District heating systems are intended for the distribution of heat energy by a fluid from a heating source to different users [START_REF] Levenspiel | Engineering Flow and Heat Exchange[END_REF][START_REF] Garbai | The Economic Optimum Of The Setting Up Of Loop District Heating Networks[END_REF][START_REF] Krope | Zmanjšanje tla nih izgub v vro evodnih cevnih mrežah = The reduction of friction losses in district-heating pipelines[END_REF]. The pressure losses of the system are defined by the non-linear Darcy-Weisbach equation [START_REF] Roberson | Engineering fluid mechanics[END_REF]: 
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The mathematical model ( 2) is soluble with a simplex algorithm [START_REF] Sierksma | Linear and integer programming: Theory and practice[END_REF].

The conditions in the form of non-equations are transferred into equations by introducing additional variables. 
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The possible surplus is subtracted and the non-equation becomes an equation:
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The additional variable (x n+1 ) was added and we now have to consider this with conditions, but it has no influence on the objective function due to the fact that its coefficient (c n+1 ) is zero.

This modified linear programme is complemented with artificial variables (x n+m+1 ) to find the primary interior point where the simplex calculations are to begin.
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We complement the objective function with a new variable and ascribe to it the coefficient (c n+m+1 ):
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The artificial variables serve for determination of the base allowed solution. In the last step the objective function is transferred from the minimum type to the maximum type:
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Due to the fact that the first result is not necessarily optimal, we execute the optimality test. If the solution is not optimal a new base is required.

Optimisation of pipe network

For an effective and accurate description we handle the pipe network as a linear, directed graph, where the fluid entrance points are named as supplied nodes, fluid exit points are user nodes and the nodes where no external inflow or outflow is present as fictive nodes [START_REF] Garbai | Optimizing Problems Of Loop District Heating Networks[END_REF][START_REF] Garbai | Flow In Energy Pipe Network Systems Muszaki Könyvkiadó[END_REF].

If we define the number of pipes as N c and N v as the number of nodes for the tree pipe network then the number of nodes is always less than the number of pipes for the structure with loops.

The fluid flow in the net has the direction from the node with higher pressure to the node with lower pressure and is from i to j positive and in the other direction negative. With that we have to consider the first Kirchoff`s law which says that the sum of all flows into a node equals the sum of all outflows.

The optimal path with minimal transport costs can be defined by two methods of linear programming, the transport method and the simplex method.

Garbai and Krope present a graph-theoretical method to set up a network with optimum operational costs. Their method is based on the Bellmann optimum principle and the application of discreet dynamic programming [START_REF] Bellmann | Dynamic Programming[END_REF].

The mathematical model for defining the optimal tree path consists of the objective function of capitalised costs (  )
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Figure 3 shows the nonlinear relationship between capitalised costs and volume flow. ( )
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And the equation ( 10) became equation ( 11):
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Regarding capitalised costs the annuities are defined, based on a discount rate and composed of the sum of all and revenues transposed to equal yearly shares.

Within defining the annual costs they start from the start of the pipe network operation and end with the closure of the pipe network operation and are presented at the end of each year in equal portions. Between the annuity costs and capitalised costs the following dependence is valid:
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Defining the fluid transport costs over the pipe network we have to consider that the initial investment costs are very high. In the first step we define the costs of insulated pipes that are a function of the diameter with the following equation:
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The conversion on standard diameters is done with the use of economic method and is presented in [START_REF] Pristovnik | Two-phase flow in pipe line systems. Heating and airconditioning of buildings[END_REF].

The investment value for pumps depends on the utilisation rate and the pump price calculated per watt of power, the flow volume and the pressure drop that arises with the increase in pump capacity.
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The pumping costs depend on the electrical energy price, the pump power and the operational lifetime of the pipeline.
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The construction costs depend on pipe diameter in defined pipe sectors and on the construction site environment of the pipe network.
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Figure 4 shows the relationship between the pipe costs, pump and pumping costs and costs for constructions. 

The Optimisation of the District Heating System

The simplex method and the capitalised costs method were used for the optimisation of the district heating system (Figure 6). 

Results and discussion

By using the developed computer programme, which enables optimization of the pipe network using the simplex method two optimal branch trees was defined.

The first optimal branch tree, Figure 7 branch tree path are defined by the cost capitalisation method and are presented for each pipe in table 6. The second optimal branch tree, Figure 8 and tables 7, 8, 9 was received by Version 2. This is for the case when at passage on standard diameters we consider pipe costs while in objective function we consider only C 1 , C 2 , C 3 . Of some interest are the influences of price changes of construction work, pumps and electrical energy regarding the course and characteristics of the branch tree pipe network.

With equal construction and pump costs, if the costs of electric energy increase by 50% we get by the first version the third path (Figure 9) and by the second version second path. 

Conclusion

Determination by the optimal tree branch path was executed using the simplex method. The basic factors for determination of the path are economy and functionality of the tree pipe network. Because the solution of nonlinear systems requires the use of computers, a computer programme was developed, which considers all the limitations and requests of the given case.

The programme enables, after the determination of the optimal branch tree path and capitalised costs, also variations of different influential parameters and the evaluation of their influence on the district heating system as a whole. The optimal path, defined by the programme is not necessarily the shortest path, due to the fact that the branch tree pipe network is a function of the minimising both the investment and operational costs.

Within defining the optimal branch tree path the results

show the importance of which costs do we consider into objective function and which costs do we use at passage on standard pipe diameters, also the construction and operating costs of the system have important role. The path itself varies with the changing of construction costs, pump and electric energy costs. With their increase the investment, operational and maintenance costs also go up.

Therefore using the simplex method for each sole case the solution, representing the most reasonable fluid transport path from entering nodes to exiting nodes, was selected. 
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 112 Figure 1: Simplified flow diagram for optimal thermal insulation thickness (c s -insulation costs)
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 23 Figure 2: The difference between the static and dynamic economic methods by determining the economic thermal insulation thickness

  minimised. Capitalised costs of each pipe CC j are the sums of discounted values of investment in pipes, pumps, building expenses and operational costs. As the capitalised costs depend on the pipe diameter, which is discreet variable, and the diameters depend on the flow, the object function is non-linear. elements of the mathematical model are nonlinear equations of hydraulic limitations that represent the continuity of the pipe network and limitations of the simplex method representing the required no-negativity of the simplex variables.
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 455 Figure 4: Relationship between all annuity costs vs. pipe diameter for the q v = 0.04 m 3 /s and L = 1 m

  The network consists of 33 pipeline sectors and 24 nodes. Hot water flowing at high pressure enters the system in the node TOM1 and exits in T3, T4, T8, T9, T10, T12, T13, T15, T20 and T22, other nodes on figure3are virtual, and represent the branching of pipes.Data needed for the optimisation of the pipe network are presented in tables 1, 2 and 3.
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 6 Figure 6: Loop pipe network of all possible routes of the district heating system
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 56 was received by Version 1. This is for the case when at passage on standard diameters we consider only pipe costs while in objective function we consider all costs (C 1 , C 2 , C 3 and C 4 ).
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Table 1 :

 1 Pipe data

	Pipe	L [m]	
	1	210	10
	2	400	5
	3	150	5
	4	200	15
	5	200	5
	6	220	5
	7	100	5
	8	160	5
	9	210	15
	10	90	5
	11	140	5
	12	210	5
	13	150	15
	14	320	5
	15	110	10
	16	130	10
	17	160	5
	18	180	15
	19	90	5
	20	140	15
	21	230	5
	22	310	5
	23	90	10
	24	340	5
	25	180	5
	26	180	10
	27	150	5
	28	170	15
	29	120	10
	30	160	5
	31	150	15
	32	120	10
	33	80	5

Table 2 :

 2 Input and output data in nodes

	Node	q v ×10 -3 [m 3 /s]
	1	47.50
	2	0
	3	-2.20
	4	-7.60
	5	0
	6	0
	7	0
	8	-9.8
	9	-7.3
	10	-3.4
	11	0
	12	-4.8
	13	-5.2
	14	0
	15	-2.5
	16	0
	17	0
	18	0
	19	0
	20	-3.0
	21	0
	22	-1.7
	23	0
	24	0

Table 3 :

 3 Physical and economical data

	Input pressure	10 6 Pa
	Input fluid temperature	110°C
	Output fluid temperature	70°C
	Density	934.8 kg/m 3
	Kinematics viscosity	0.226×10 -6 m 2 /s
	Operating time	8760 h/a
	Interest rate	0.1
	Price of electrical energy	7.1×10 -5 EUR/Wh
	Pump price	0.15 EUR/W
	Pumps lifetime	10 year
	Pumps efficiency	0.75
	Pipe network lifetime	40 year
	Pipe roughness	0.4 mm
	Coefficient of pipe costs polynomial:
	A	18 EUR
	B	291 EUR/m
	C	229 EUR/m 2
	Coefficient of construction costs polynomial:
	D	287 EUR
	E	310 EUR/m
	F	1275 EUR/m 2

Table 4 :

 4 Output pressure in nodes

	Node	p [Pa]	Node	p [Pa]
	1	1000000	13	929678.
	2	989448.	14	911975.
	3	899868.	15	921361.
	4	932760.	16	934913.
	5	947095.	17	954457.
	6	972226.	18	923717.
	7	967123.	19	901952.
	8	959943.	20	875753.
	9	944151.	21	851575.
	10	988733.	22	858976.
	11	969521.	23	891215.
	12	956542.	24	921451

Table 5 :

 5 Optimisation results by the first version

	Pipe	D [m]	qv [m 3 /s]	v [m/s]	p [Pa]
	1 0.2191	0.03160	0.838	10552.
	3 0.0570	0.00220	0.862	32892
	6 0.1937	0.03160	1.072	17222
	7 0.2191	0.03160	0.838	5103
	8 0.2191	0.03160	0.838	7180
	9 0.1778	0.02180	0.878	15792
	10 0.11143 0.00980	0.955	11391
	11 0.0825	0.00470	0.879	20434
	15 0.0635	0.00250	0.789	19544
	17 0.1524	0.01590	0.872	11267
	18 0.1330	0.01250	0.900	19212
	19 0.0635	0.00250	0.789	15064
	20 0.1270	0.01000	0.789	12979
	21 0.0889	0.00520	0.838	26864
	26 0.0700.	0.00300	0.780	26199
	27 0.0825	0.00470	0.879	21764
	28 0.0510	0.00170	0.832	42976
	33 0.0635	0.00250	0.789	13552

Table 6 :

 6 Capitalized costs

	Pi.	CC1 [EUR]	CC2 [EUR]	CC3 [EUR]	CC4 [EUR]	CC [EUR]
	1	19920	110	2760	89360	112150
	3	5420	20	600	47370	53410
	6	18660	180	4500	88840	112180
	7	9480	50	1330	42550	53410
	8	15180	70	1880	68080	85210
	9	16530	110	2850	82120	101610
	10	4990	40	920	31210	37160
	11	6240	30	790	45990	53050
	15	4210	20	400	35080	39710
	17	11070	60	1480	59530	72140
	18	11180	80	1990	64570	77820
	19	3440	10	310	28700	32460
	20	8400	40	1070	49670	59180
	21	10740	50	1160	76350	88300
	26	7270	30	650	57970	65920
	27	6680	30	850	49280	56840
	28	5810	20	600	53220	59650
	33	3060	10	280	25510	28860
		168280	960	24420	995400	1189060

Table 7 :

 7 Output pressure in nodes by second version

	Node	p [Pa]	Node	p [Pa]
	1	1000000	13	929678
	2	989448.	14	911975
	3	900614	15	921361
	4	933506	16	934913
	5	949518	17	954457
	6	972226	18	914753
	7	965478	19	893868
	8	952674	20	967669
	9	934341	21	869284
	10	988733	22	876685
	11	969521	23	891215
	12	956542	24	914182

Table 8 :

 8 Optimisation results by the second version

	Pipe	D [m]	qv [m 3 /s]	v [m/s]	p [Pa]
	1 0.2191	0.03160	0.838	10552
	3 0.0570	0.00220	0.862	32892
	4 0.1270	0.00980	0.774	16012
	5 0.1143	0.00980	0.955	22708
	6 0.1937	0.03160	1.072	17222
	7 0.1778	0.02180	0.878	6748
	8 0.1683	0.02180	0.9801	12804
	9 0.1270	0.01030	0.813	18333
	11 0.0700	0.00300	0.780	19588
	13 0.0510	0.00170	0.832	38492
	15 0.0635	0.00250	0.789	19544
	17 0.1524	0.01590	0.872	11267
	18 0.1330	0.01250	0.900	19212
	19 0.0635	0.00250	0.789	15064
	20 0.1270	0.0100	0.789	1279
	21 0.0889	0.00520	0.838	26864
	26 0.0700	0.00300	0.780	26199
	27 0.0700	0.00300	0.780	20886
	30 0.0510	0.00170	0.832	37497
	33 0.0635	0.00250	0.789	13552

Table 9 :

 9 Capitalized costs by the second version

	Pi.	CC1 [EUR]	CC2 [EUR]	CC3 [EUR]	CC4 [EUR]	CC [EUR]
	1	19920	110	2760	0	22790
	3	5420	20	60	0	5500
	4	12000	50	1300	0	13350
	5	11100	70	1840	0	13010
	6	18660	180	4500	0	23340
	7	7870	50	1220	0	9140
	8	12020	90	2310	0	14420
	9	12590	60	1560	0	14210
	11	5650	20	490	0	6160
	13	5130	20	540	0	5690
	15	4210	20	400	0	4630
	17	11070	60	480	0	11610
	18	11180	80	990	0	12250
	19	3440	10	310	0	3760
	20	8400	40	70	0	8510
	21	10740	50	160	0	10950
	26	7270	30	650	0	7950
	27	6060	20	520	0	6600
	30	5470	20	530	0	6020
	33	3060	10	280	0	3350
		181260	1010	20970	0	203240
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