Optimal local taxation and French municipal tax distortions

Marie-Estelle Binet

To cite this version:

Marie-Estelle Binet. Optimal local taxation and French municipal tax distortions. Applied Economics, 2008, 40 (03), pp.327-332. 10.1080/00036840500427874 . hal-00581927

HAL Id: hal-00581927

https://hal.science/hal-00581927

Submitted on 1 Apr 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Optimal local taxation and French municipal tax distortions

Journal:	Applied Economics		
Manuscript ID:	APE-05-0194.R1		
Journal Selection:	Applied Economics		
Date Submitted by the Author:	19-Sep-2005		
JEL Code:	E62 - Fiscal Policy\|Public Expenditures, Investment, and Finance	Taxation <, H21 - Efficiency	Optimal Taxation $<, \mathrm{H} 41$ Public Goods < , H71 - State and Local Taxation, Subsidies, and Revenue <
Keywords:	local taxation, optimality, congestion		

powered by ScholarOne
Manuscript Central ${ }^{\text {m }}$

Optimal local taxation and French municipal tax distortions

September 18, 2005

Abstract

This article presents both theoretical and empirical findings in the field of optimal local taxation i.e neutral in locational decision. This topic should throw light on the question of tax policy and tax reform. We extend Wildasin's (1987) model, including mobile capital. In this way, we include his marginal cost of congestion taxation rule relating to mobile households (proposition 1). This extension provides us with a new rule (proposition 2): the optimal share-out of taxes among household residents and firms in municipalities. To illustrate these results, we discuss the French municipal tax system properties and we pick out its main distortions.

1 Introduction

Tax incidence and the question of optimal taxation are important topics for economic analysis. (see Ramsey (1927), Diamond and Mirlees (1971) or Slemrod (1990) concerning main traditional results). More recently, tax incidence has been the subject of many applied studies (see Sundar C. and al (2000) about taxes on capital gains, Castañer and al (2004) or Thurston (2002) on the subject of personal income tax, Giosa and De Pi \widetilde{n} eres (1999) concerning factor prices distortions resulting from trade tax policies).

Here, we focus on the valuation of local taxation. Traditionally, in tax incidence theory, territories are treated as closed. By contrast, in local public economics, the openness of the jurisdictions plays a major part. In this article, factors and population freely flow across jurisdictions. Indeed, capital tax effects on investment are neglected. Further, the total supply of capital
in the economy is supposed fixed. Finally, we search the local tax structure causing no distortions or neutral in location decisions, i.e. which will be considered as justified by mobile taxpayers. They will not have incentives to migrate.

This article is organized around two sections. The first section models how local government tax policy affects the locational choices of mobile factors across jurisdictions, and we ask under what conditions these policies lead to an efficient equilibrium. The model extends Wildasin's analysis (1987) including mobile capital across jurisdictions. In this way, we are able to distinguish between the congestion costs, due to household and production activity. First, we recall the marginal cost of congestion taxation rule, also developed by Wildasin (1987). Furthermore, we are also able to discuss a major new topic: the optimal share-out of taxation among household residents and capital owners in municipalities. The second section discusses the French municipal taxes in the light of the above theoretical results.

2 Model of the locational assignment of factors.

The fundamental goal of this section is to understand how local government taxes affect resource allocation. We undertake three steps. The first one is to specify the efficient assignment of the two mobile factors to localities. In the second one, we define the corresponding equilibrium conditions. To finish, we compare the previous results to establish the conditions under which the locational equilibrium will be efficient. The efficiency depends on the structure of municipal taxes: If taxes are set appropriately, they will generate no distortions and mobile factors will not have incentives to migrate in order to avoid paying taxes.

2.1 Locational efficiency

Let us assume there is a fixed number of municipalities $M \geqq 2$, within which factors (capital and household workers) are mobile. Each locality provides a fixed amount of homogeneous land T_{i}. N stands for the total household
population and K for the total capital supply to be invested in the economy. We suppose that all household taxpayers are identical (in tastes and endowment), so the government need not be concerned with questions of vertical or horizontal equity. See for example Moreland (2004) upon the question of optimal income tax rates level when wages rates differ.

Each unit of capital k_{i} and labor n_{i} are employed in only one locality (see (2) and (3)). Let $F_{i}\left(n_{i}, k_{i}, T_{i}, g_{i}\right)$ be a well-behaved constant returns to scale production function for the jurisdiction i to produce a single private numeraire good x_{i} and local public services. Equation (1) establishes fullemployment of private production. Let $U\left(x_{i}, g_{i}\right)$ be the utility function of a household resident in locality i, which depends on its private consumption and on the local public services.

Each jurisdiction provides some public services G_{i} which are consumed by residents and jointly used with capital in the production process. Public goods exhibit congestion when the total amount provided by the local government (G) differs from the level actually consumed at the individual level (g), i.e. when $\alpha_{n}>0$ and $\alpha_{k}>0: g=\frac{G}{n^{\alpha_{n} k^{\alpha}}{ }_{k}}$. The degree of residential congestion is measured by α_{n} (respectively α_{k} for industrial congestion). To produce G_{i} units of local public goods, we need $C_{i}\left(G_{i}, n_{i}, k_{i}\right)$ units of numeraire. Then, considering the mobile factor n_{i} for instance, when $\frac{\partial C_{i}}{\partial n_{i}}=0$, the local public good is pure. By contrast, when the corresponding marginal congestion cost $\frac{\partial C_{i}}{\partial n_{i}}>0$, then the local public good is subject to congestion or impure. The term $\frac{\partial C_{i}}{\partial n_{i}}>0$ (or equally $\frac{\partial C_{i}}{\partial k_{i}}>0$) means that additional local public spending is required if public services' users marginally increase, with a given individual level g.

Several conditions must be satisfied to reach an efficient allocation of resources. As for a closed economy, markets for goods and factors must be efficient as well as the public goods provision. Furthermore, in our system of open economy, mobile factors and households must also be assigned in an efficient way. All in all, locational efficiency conditions can be derived from the following maximization problem :

$$
\operatorname{Max} \mathrm{U}_{1}\left(x_{1}, g_{1}\right) \text { u.c. }\left\{\begin{array}{c}
U_{i}\left(x_{i}, g_{i}\right)=U_{1}\left(x_{1}, g_{1}\right), i=2 . . M \\
\text { (1) } \sum_{i=1}^{n}\left[F_{i}\left(n_{i}, k_{i}, T_{i}, g_{i}\right)-n_{i} x_{i}-C_{i}\left(n_{i}, k_{i}, G_{i}\right)\right]=0 \\
\text { (2) } N-\sum_{i} n_{i}=0 \\
(3) K-\sum_{i} k_{i}=0
\end{array}\right.
$$

2．2 Competitive equilibrium

Here，we describe the agents＇behavior in our economy．Firms maximize their profits in competitive markets．Furthermore，two budget constraints（one for the local government and one for the representative household resident）are depicted．

Each jurisdiction raises revenue by levying various kinds of local taxes： tax on land rents $\left(\sigma_{i}^{r}\right)$ ，on capital returns $\left(\sigma_{i}^{k}\right)$ ，and residential head taxes $\left(\sigma_{i}^{n}\right)$ ．Then，the balanced－budget constraint for municipality i is：

$$
\begin{equation*}
C\left(n_{i}, k_{i}, G_{i}\right)=n_{i} \sigma_{i}^{n}+\sigma_{i}^{r} r_{i} T_{i}+\sigma_{i}^{k} s k_{i} \tag{9}
\end{equation*}
$$

Indeed，households are equally endowed with ownership of the land and capital，outside of the locality of residence $(j \neq i)$ ．Then，in locality j ，land
rents denoted $r_{j} T_{j}$ and net return of capital $s k_{j}$ are taxed at source. Then, the budget constraint for a household in jurisdiction i can be written:

$$
\begin{equation*}
x_{i}=w_{i}-\sigma_{i}^{n}+\sum_{j}\left(1-\sigma_{j}^{r}\right) r_{j} \frac{T_{j}}{N}+\sum_{j} s \frac{K_{j}}{N}=w_{i}-\sigma_{i}^{n}+\theta \tag{10}
\end{equation*}
$$

The individual capital share (respectively land share) is supposed to be $\frac{K_{j}}{N}\left(\frac{T_{j}}{N}\right)$ and w_{i} represents the gross local wage. Let us denote as θ the total income stemming from land and financial investments.

Profit maximization by local competitive firms leads to the following three conditions :

$$
\begin{align*}
& w_{i}=\frac{\partial F_{i}}{\partial n_{i}} \tag{11}\\
& r_{i}=\frac{\partial F_{i}}{\partial T_{i}} \tag{12}\\
& \left(1+\sigma_{i}^{k}\right) s=\frac{\partial F_{i}}{\partial k_{i}} \tag{13}
\end{align*}
$$

To reach an efficient competitive equilibrium, one must satisfy the two locational efficiency conditions for mobile capital (7) and labor (6). Locational efficiency can be achieved for mobile households in the economy if we combine equations (6) with (10) and (11) to obtain :

$$
\begin{equation*}
\frac{\partial F_{i}}{\partial n_{i}}-x_{i}-\sigma_{i}^{n}=-\theta \tag{14}
\end{equation*}
$$

Finally, as total income investment is the same in all the jurisdictions, with a special value equal to $\frac{-\pi}{\mu}$, the local head tax on mobile households must equal the corresponding marginal cost of congestion: $\sigma_{i}^{n}=\frac{\partial C_{i}}{\partial n_{i}}$. Conversely when public services are pure, the optimal tax level on mobile households is then equal to zero. Identically, combining (7) with (13) leads to the second efficient equilibrium condition:

$$
\begin{equation*}
\left(1+\sigma_{i}^{k}\right) s-\frac{\partial C_{i}}{\partial k_{i}}=\frac{\rho}{\mu} \tag{15}
\end{equation*}
$$

If $s=\frac{\rho}{\mu}$ is an unchanging value in all the jurisdictions, we obtain the efficient capital taxation level: $\sigma_{i}^{k} s=\frac{\partial C_{i}}{\partial k_{i}}$.

Finally, the conditions necessary for locational efficiency are summarized in the two following propositions:

Proposition 1 The marginal cost of congestion taxation rule，Wildasin （1987）：

When public goods exhibit congestion，the marginal cost of congestion $\frac{\partial C_{i}}{\partial n_{i}}$ is an efficient taxation level to internalize congestion externality，that is to say the cost of providing the extra public good to maintain individual public services when faced by an expanded household population．With expenditure held fixed，an increase in the number of public users，necessarily mobile， causes a deterioration of public services，which must be internalized to reach an efficient solution．If local public goods are pure，efficiency does not require the taxation of mobile residents．Whatever the nature of local public goods， land rent taxation is justified，setting σ_{i}^{r} so as to satisfy（9）．Several authors including Arnott and Stiglitz（1979），and then Yinger（1982）have shown that land rent taxation is efficient because public services increase land value by a capitalization effect．

Proposition 2 The optimal share－out of taxes among mobile house－ hold residents and capital owners

The same rule must be applied to mobile capital as long as production jointly employs public services and generates crowding effects．All in all， an efficient local taxation requires one to distinguish and measure exactly the marginal cost of congestion from the two different mobile users of public goods．In other words，we must share precisely the tax pressure between capital owners and household residents to internalize the cost of congestion induced respectively by each kind of public services user．

All in all，many kinds of taxes could potentially play the role of an efficient tax to internalize congestion，irrespective of the tax base definition．The marginal cost of congestion taxation rule only requires consideration of the amount of tax paid．Each household and each owner of one unit of capital must pay the local authority a total amount equal to the cost of providing the extra public good to maintain individual public services when faced by an expanded public services user．

We have now established the efficient local taxation rules，and we now need to discuss the properties of the French municipal taxes．The French pub－ lic sector has two major hierarchical levels：central government and local（so called＇territorial＇）authorities．The latter can be divided into three，although

3.1 Optimal spreading of taxes among mobile household residents and capital owners

Most empirical studies show that local public services exhibit a high degree of congestion (see Borcherding and Deacon (1972)). In France, similar conclusions are reached in Guengant, Josselin and Rocaboy (1995, 2002). However, to illustrate the application of Proposition 2, we must focus our attention on particular studies which include two different sources of crowding effects: mobile household residents and capital or firms' production activity. To our knowledge, this kind of analysis is rare, probably because relevant data to measure capital is not easy to collect. In France, only two contributions can be used even if they are not fully satisfactory.

In Guengant, Josselin and Rocaboy (1995), production activity congestion is assessed by temporary labor migration in the municipality. Their study uses a set of 799 French municipalities of at least 10,000 inhabitants. They estimate a specification similar to Borcherding and Deacon's formulation. Using a similar methodology, Guengant (1992) gets comparable results:
congestion costs induced by household residents is preponderant with a congestion elasticity equal to 0.8 (respectively 0.2 for firms activity). All in all, despite the imperfect measure of congestion from production activity, these studies show that tax on mobile household resident should be predominant.

We now focus on the share of local tax receipts for the numerous municipalities of less than 10,000 inhabitants; relevant values are shown in table 1.

Table 1. Tax receipts (per capita) by population size, 1996

share of receipts	-700	$700-2,000$	$2,000-5,000$	$5,000-10,000$	whole
TFB	27%	28%	28%	28%	28%
TFNB	23%	10%	4%	2%	7%
TH	23%	24%	22%	22%	23%
TP	28%	38%	46%	48%	42%
M	25249	6908	2655	898	35710

M is the number of municipalities. TP tax receipts for the municipalities of at least 10,000 inhabitants are presented in the table below:

Table 2: TP tax receipts by population size, 1996

	$10-20,000$	$20-50,000$	$50-100,000$	$100-300,000$	$+300,000$	whole
TP	$47,9 \%$	$47,5 \%$	$50,3 \%$	$44,9 \%$	$37,2 \%$	$46,8 \%$
N	470	306	70	33	4	883

Among these local taxes, TP ranks first giving the highest revenue (more than 40% in most of these municipalities). Tax on building occupants (TH), compared to mobile household residents is smaller (between 20 and 25\%), which seems to refute the optimal spreading of taxes principle.

3.2 French municipal taxes and the marginal congestion cost rule

To assess the main four French municipal taxes in the light of proposition 1, we first discuss their tax base. Furthermore, we also propose to work out the optimal tax paid by mobile taxpayers in a set of small French municipalities.

3.2.1 French municipal tax bases

3.2.2 Optimal taxation of mobile household municipal taxpayers

The optimal taxation level which must be levied on mobile municipal taxpayers can easily be computed using a congestion specification similar to Borcherding and Deacon (1972), which includes all sources of congestion :

$$
\begin{equation*}
f(N, A, K)=N^{-\alpha_{n}} A^{-\alpha_{A}} K^{-\alpha_{k}} \tag{16}
\end{equation*}
$$

where N, A and K measure respectively total household population, working people residing temporarily and capital units invested in the municipality. In this way we identify all public services users. One alternative model of congestion is often used in the literature. As suggested by Edwards (1980) or De Mello (2002), the Camaraderie effect means that there may be a population level where sharing congestible goods increases benefits to each user until these are eroded by crowding. But these studies can't be used here because the corresponding estimates only include residential crowding effects.

Consequently, the public spending level actually consumed at the individual level can be written:

$$
\begin{equation*}
g=N^{-\alpha_{n}} A^{-\alpha_{A}} K^{-\alpha_{k}} G \tag{17}
\end{equation*}
$$

4 Concluding remarks

This article presents both theoretical and empirical findings in the field of optimal local taxation. The model extends Wildasin's analysis (1987), including mobile capital across jurisdictions. In this way, we recall his marginal cost of congestion taxation rule. Furthermore, we are also able to discuss a major new topic: the optimal share-out of taxation among household residents and

Ramsey F. (1927), " A contribution to the theory of taxation", Economic Journal, 37, 47-61.

Slemrod J. (1990), "Optimal taxation and optimal tax-system", Journal of Economic Perspectives, 2, 157-78.

Sundar C.S, Hill J.M and Lajaunie J.P. (2000), "Tax incentives and individual investor behaviour", Applied Economics Letters, 7, 91-94.

Thurston N.K. (2002), "Physician behavioural responses to variation in marginal income tax rates: longitudinal evidence", Applied Economics, 34, 2093-2104.

Wildasin D.(1987), "Theoretical analysis of local public economics", Handbook of Regional and Urban Economics, 2, chap 29, 1131-78.

Yinger J. (1982), "Capitalization and the theory of local public finance", Journal of Political Economy, 90, 917-43.

6 Appendix

Town	$\alpha_{n}=0,1$	$\alpha_{n}=0,2$	$\alpha_{n}=0,5$	TH	CTH
Acigné	1306	2612	6530	1787	2904
Betton	1608	3217	8041	1937	3148
Brécé	1521	3041	7603	1730	2811
Bruz	1507	3014	7536	1854	3013
Cesson-Sévigné	1739	3478	8695	1309	2127
Chantepie	1665	3330	8325	1202	1953
Chapelle Fougeretz	1553	3106	7764	2071	3365
Chapelle Thouarault	1160	2320	5800	1546	2512
Chartres	2966	5931	14828	1196	1944
Chavagne	1929	2858	7144	1775	2884
Chevaigne	1381	2763	6907	1474	2395
Cintré	1743	3485	8713	1999	3248
Clayes	1318	2637	6591	1228	1996
Geveze	1673	3347	8367	1311	2130
L'Hermitage	1333	2665	6663	1300	2113
Montgermont	2483	2966	7416	1950	3169
Mordelles	1454	2907	7269	1688	2743
Noyal-Chatillon	1380	2759	6898	1787	2904
Noyal s/ Vilaine	1700	3400	8500	1206	1960
Pacé	1605	3210	8024	2038	3312
Parthenay	1202	2404	6009	1055	1714
Pontpéan	1033	2067	5166	1400	2275
Le Rheu	1541	3081	7703	2006	3260
StErblon	1473	2946	7365	1735	2819
StGilles	1569	3139	7846	2110	3429
StGrégoire	1829	3658	9145	1933	3141
StJacques	1397	2794	6986	1741	2829
StSulpice	1232	2463	6159	1485	2413
Thorigné	1698	3397	8492	2237	3635
Leverger	1930	3859	9648	1248	2028
Vern	1504	3007	7518	1456	2366
Vézin	1732	3463	8658	1696	2756
Rennes	1568	3137	7242	2062	3351

