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Abstract We study the radiative heat transfer between a spheroidal metallic nanoparticle and a planar
metallic sample for near- and far-field distances. In particular, we investigate the shape dependence of the
heat transfer in the near-field regime. In comparison with spherical particles, the heat transfer typically
varies by factors between 1/2 and 2 when the particle is deformed such that its volume is kept constant.
These estimates help to quantify the deviation of the actual heat transfer recorded by a near-field scanning
thermal microscope from the value provided by a dipole model which assumes a perfectly spherical sensor.

PACS. 44.40.+a Thermal radiation – 78.67.Bf Nanocrystals, nanoparticles, and nanoclusters – 41.20.Jb
Electromagnetic wave propagation; radiowave propagation

1 Introduction

The optical properties of metallic nanoparticles depend
significantly on their shapes, as has been demonstrated,
e.g., for elliptical gold particles attached to the apex of
fiber-based probes for near-field optical microscopy [1].
Similarly, the thermal near-field radiation exchanged be-
tween a nanometer-sized particle at temperature TP and a
closely spaced surface at different temperature TS is influ-
enced by the particle’s shape, although its linear extension
may be significantly smaller than the dominant thermal
wavelength. This shape-dependence occurs even when the
particle’s volume, and thus the total amount of radiating
matter, is kept constant. In this paper we quantify this
effect for the case of spheroidal metallic nanoparticles.

Thermally induced near fields have attracted much ex-
perimental and theoretical attention in last years [2,3].
Several experiments and models have been designed in or-
der to measure and describe the radiative heat transfer
in the near-field regime, i.e., for distances smaller than
the thermal wavelength. In this regime tunneling of ther-
mal photons leads to a magnitude of heat transfer which
can exceed that achieved by black-body far-field radia-
tion by several orders of magnitude. Possible applications
of this phenomenon include, in particular, thermophoto-
voltaic devices [4,5,6,7,8].

The near-field radiative heat transfer between two di-
electric bodies has been calculated within the framework
of Rytov’s fluctuational electrodynamics [9] for various
geometries, including two semi-infinite planar bodies and
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layered structures (see, e.g., [10,11,12,13,14,15,16,17]), two
spheres (e.g., [18,19,20]), a sphere above a semi-infinite
body (e.g. [13,21,22,23,24,25]), and certain other two-di-
mensional geometries [26]. Early experiments to detect
the radiative heat transfer between two effectively semi-
infinite bodies with flat surfaces have been performed by
Hargreaves [27], and by Domoto et al. [28] Also a pioneer-
ing, but unconclusive experiment [29] by Xu et al. needs
to be mentioned. An accurate measurement using glass
plates separated by a micron-sized gap has been reported
only recently by Hu et al. [30] Moreover, there now ex-
ist experimental setups measuring the near-field radiative
heat transfer between a sphere and a flat sample [31,32,33],
involving spheres with radii of some 10 µm.

Relying on the same basic principle, a near-field scan-
ning thermal microscope (NSThM) has been developed
by Kittel et al. [34,35,36] for recording the radiative heat
transfer at probe-sample distances even down to some
nanometers. The sensor of this device consists of the tip of
a scanning tunneling microscope, functionalized to act as
a thermocouple, so that here the sensor-sample geometry
differs significiantly from those geometries for which the
radiative heat transfer has been calculated exactly. The
foremost part of such a tip typically has a radius of less
than 50 nm.

If one regards this active part of the NSThM sensor
as a sphere, one may employ the familiar dipole model
(see, e.g., [13,21,22,23,24]) for describing the results ob-
tained with such an instrument quantitatively. However,
the actual shape of the sensor is somewhat prolonged,
resembling more an ellipsoid than a sphere, and varies
from specimen to specimen, due to the difficult produc-
tion process. Such variations of the geometry will have
consequences for the signal measured with the NSThM.
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This is what motivates our present investigation of the
shape-dependence of the near-field radiative heat trans-
fer: In this work, we study the change of the near-field
radiative heat transfer in response to shape variations of
ellipsoidal nanoparticles above a flat sample. Besides help-
ing one to estimate errors implied by the use of the dipole
model, there may also be other, more general nanotech-
nological applications.

The paper is organized as follows: In Sec. 2 we briefly
review the dipole model for calculating the near-field heat
transfer between a dielectric sphere and a planar sample.
This step mainly serves to collect the required material
in a form which can be easily generalized. In Sec. 3 we
extend this dipole model to the geometry of an ellipsoidal
particle above a flat sample. The near-field heat transfer
for this geometry is then calculated explicitly in Sec. 4. In
Sec. 5 we discuss the shape dependence of the heat transfer
as the axes of the ellipsoid are varied, and compare our
results to the heat transfer between a flat sample and a
sphere.

2 Dipole model

The near-field heat transfer between a spherical particle
with temperature TP and a sample with a planar sur-
face and temperature TS can be estimated by means of
a simplified dipole model developed previously by several
authors (e.g., [2,3,13,21,22,23,24]). To this end, one first
considers the thermally fluctuating electric and magnetic
fields Ef and Hf outside the sample, being generated by
thermally fluctuating charges in its interior. These fluctu-
ating fields consist of a propagating and of an evanescent
part. The heat flux radiated by the sample is given by the
mean Poynting vector 〈Ef×Hf〉 and yields the well known
Kirchhoff-Planck radiation law, to which only the propa-
gating modes contribute, whereas the evanescent modes
do not figure here, since they are bound to the surface of
the sample.

Now, if an additional spherical particle with radius R
is placed at a distance a above the sample, as depicted in
Fig. 1, the fluctuating fields Ef and Hf induce an electric
dipole moment p and a Foucault current jed within the
particle. As emphasized by Chapuis et al. [24], this eddy
current jed is particularly important for metallic particles.
It causes losses inside the particle which can be described
by means of an effective magnetic dipole moment meff ,
in analogy to the electric dipole moment p. We assume
a À R, so that higher multipoles may be neglected; in
principle, this restriction to sufficiently large distances a
could be removed by including higher multipoles. Within
the dipole approximation, the energy absorbed by the par-
ticle can then be written as

〈PS→P〉 = 〈ṗ ·Ef〉+ 〈ṁeff ·Hf〉 ; (1)

the angular brackets denote an ensemble average. For a
homogenous and isotropic particle the relations between
the induced dipole moments and the fields are given by

p = ε0 αE
pEf (2)

εP

TP

ε
STS

R

a

Figure 1. Sketch of a spherical nanoparticle with radius R,
temperature TP, and permittivity εP placed at a distance a
above a planar sample with temperature TS and permittiv-
ity εS.

and
meff = µ0 αH

p Hf , (3)

where αE
p and αH

p symbolize the electric and magnetic po-
larizabilities of the particle; ε0 and µ0 are the permittiv-
ity and the permeability of the vacuum, respectively. In
general, the polarizabilities have a directional dependence
and therefore are described by a tensor. For the highly
symmetric case of a sphere, this tensor reduces to a scalar
multiple of the unit tensor, so that the polarizabilities are
represented by scalar values in this case. It is essential to
keep in mind that only non-magnetic materials are taken
into account here, so that the absorption 〈ṁeff · Hf〉 is
solely ascribed to the loss due to eddy currents.

With the help of Eqs. (2) and (3) one obtains the ex-
pression

〈PS→P〉(TS) =
∫ ∞

0

dω ω
[
Im(αE

P)ε0〈|Ef |2〉ω

+Im(αH
P)µ0〈|Hf |2〉ω

] (4)

for the energy transferred from the sample to the parti-
cle [24,37]. Here 〈|Ef |2〉ω denotes the frequency-dependent
correlation function of the electric field, i.e., the expecta-
tion value of the product of the Fourier transform Ef(ω)
of the fluctuating electric field and its complex conjugate;
the correlation function 〈|Hf |2〉ω of the magnetic field is
defined analogously.

Reversely, fluctuating charges inside the sphere of tem-
perature TP give rise to energy transfer from the sphere
to the flat surface. The power absorbed within the sam-
ple, denoted 〈PP→S〉(Tp), can be calculated in the same
manner as 〈PS→P〉(TS) above. The resulting expression
differs from the expression (4) only through the temper-
ature, so that 〈PP→S〉(Tp) = 〈PS→P〉(TP). As the energy
flux 〈PP→S〉 is directed oppositely to 〈PS→P〉, the resulting
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overall heat transfer between the particle and the sample
has the form [24,37]

〈PS↔P〉 = 〈PS→P〉(TS)− 〈PS→P〉(TP) . (5)

The correlation functions 〈|Ef |2〉ω and 〈|Hf |2〉ω in Eq. (4)
are known from fluctuational electrodynamics [9]. If one
assumes that the sample occupies the infinite half space
z ≤ 0, as in Ref. [2], one gets

〈Ef,i E∗
f,i〉ω = Θ(ω, TS)

2ω

πε0c2

{

∫

κ<k0

d2κ

(2π)2
1

4kz0

[(
e⊥ ⊗ e⊥

)
ii

(
1− |r⊥|2

)

+
(
epr
‖ ⊗ epr

‖
)
ii

(
1− |r‖|2

)]

+
∫

κ>k0

d2κ

(2π)2
e−2γ a

2γ

[
Im(r⊥)

(
e⊥ ⊗ e⊥

)
ii

+ Im(r‖)
(
eev
‖ ⊗ eev

‖
)
ii

]}

(6)

for the electric correlation function, where

Θ(ω, T ) =
~ω

e~ωβ − 1
(7)

is the Bose function with the inverse temperature β =
1/(kBT ). Moreover, the unit vectors

e⊥ :=
1
κ

(−ky, kx, 0)t

epr
‖ :=

1
k0κ

(
kxkz0, kykz0, κ

2
)t

eev
‖ :=

1
k0κ

(
kxγ, kyγ, κ2

)t

(8)

have been introduced, writing κ2 = k2
x + k2

y together with
kz0 =

√
k2
0 − κ2 and γ =

√
κ2 − k2

0. As usual, k0 = ω/c,
where c is the velocity of light in vacuum. In addition, we
write

r⊥ =
kz0 − kz

kz0 + kz

r‖ =
εSkz0 − kz

εSkz0 + kz

(9)

for the Fresnel reflection coefficients, with kz =
√

εk2
0 − κ2.

The first integral in Eq. (6), with κ < k0, describes the
propagating part of the fluctuating field, whereas the sec-
ond integral with κ > k0 describes the evanescent part.
The expression for 〈Hf,iH

∗
f,i〉ω is obtained from Eq. (6)

by interchanging r⊥ ↔ r‖ and 1
ε0
↔ 1

µ0
, due to a corre-

sponding symmetry of the electric and magnetic Green’s
functions.

Knowing the correlation functions above a half space,
the mean power absorbed by the particle above a planar

surface can be calculated from Eq. (4), provided the polar-
izabilities αE

P and αH
P are given. In the case of a spherical

particle of radius R these quantities can be derived from
Mie scattering theory [38]. Denoting the particle’s rela-
tive permittivity as εP, and introducing the dimensionless
variables x = k0R and y =

√
εPk0R, one finds [19,38]

αE
P = 2πR3 (2εP + 1) (sin(y)− y cos(y))− y2 sin(y)

(εP − 1) (sin(y)− y cos(y)) + y2 sin(y)

αH
P =

πR3

3

[(
x2 − 6

)

y2

(
y2 + 3y cot(y)− 3

)− 2x2

5

] (10)

for x ¿ 1, implying that the particle’s radius should be
small compared to the dominant thermal wavelength, R ¿
λth. If we demand even |y| ¿ 1, meaning that the radius
be smaller than the skin depth at thermal frequencies, the
above expressions reduce to

αE
P = 4π R3 εP − 1

εP + 2
, (11)

αH
P =

2π

15
R3 (k0R)2 (εP − 1) . (12)

Evidently, the expression for αE
P equals the well known

Clausius-Mossotti formula.
Before proceeding, we specify the relevant orders of

magnitude. For bulk metals the relative permittivity is
well described by the Drude model [39]

ε = 1− ω2
p

ω (ω + iωτ )
. (13)

For gold at room temperature the plasma frequency is
ωp = 1.4 × 1016 s−1, while the relaxation rate figures
as ωτ = 3.3 × 1013 s−1. Taking the thermal frequency
ωth ≈ 1014 s−1 one then finds (

√
|ε|k0)−1 ≈ 21 nm, set-

ting a rough upper limit to the radius of a gold sphere for
which the expressions (11) and (12) may still hold with
reasonable accuracy. When treating such minuscule parti-
cles we have to modify the Drude permittivity (13) in or-
der to account for surface scattering, since the bulk mean
free path of the electrons, which is about 42 nm for gold,
reaches the same order of magnitude as the spheres’ di-
ameters. For spherical particles of radius R the required
correction is achieved by the replacement [40]

ωτ → ω̃τ =
3
4

vF

R
, (14)

where vF is the Fermi velocity. Taking vF = 1.4×106 m/s
for gold, and setting R = 20 nm, we obtain ω̃τ = 5.3 ×
1013 s−1, less than two times the bulk value. On the other
hand, size quantization effects become essential only for
radii below 2 nm, and may therefore be neglected here.

3 Dipole model for ellipsoidally shaped
particles

The near-field radiative heat transfer between a flat sam-
ple with temperature TS and an ellipsoidally shaped par-
ticle with temperature TP, as sketched in Fig. 2, can be
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expressed through equations similar to Eqs. (4) and (5),
but instead of employing the expressions α

E/H
P for the po-

larizabilities of a sphere, the proper polarizability tensors
for an ellipsoidal particle have to be taken into account.

ε
STS

εP

TP R

R

s

p

a

Figure 2. Sketch of a spheroidally shaped particle with semi-
axes Rs and Rp. The semi-axis with length Rp lies along the
spheroid’s axis of rotation.

Denoting the three semi-axes as Rx, Ry, Rz, we re-
quire a À max{Rx, Ry, Rz} ≡ Rmax to substantiate the
dipole approximation, while keeping Rmax smaller than
the skin depth, thus allowing for approximately homoge-
neous fields inside the ellipsoids. It is textbook knowledge
that the induced dipole moment p of an ellipsoidal par-
ticle is connected with the incident field Ef through the
relation [41]

pi = ε0 VE
εP − 1

1 + (εP − 1)ni
Ef,i (15)

with VE = 4π
3 RxRyRz specifying the volume of the par-

ticle, and εP its permittivity. It is assumed here that the
components of p and Ef are given in the principal-axis
system of the ellipsoid. The polarizability tensor then is
diagonal, with diagonal elements given by

αE
E,i = VE

εP − 1
1 + (εP − 1)ni

. (16)

The quantities ni are the so-called depolarization coeffi-
cients. They are written as [41]

ni =
RxRyRz

2

∫ ∞

0

ds
1

(s + R2
i )R(s)

(17)

with R(s) =
√

(s + R2
x)(s + R2

y)(s + R2
z). These coeffi-

cients depend only on the shape of the ellipsoid, not on

its volume. They obey the relations

3∑

i=1

ni = 1 and ni ≥ 0 . (18)

For the special case of a sphere with Rx = Ry = Rz ≡ R,
Eq. (17) yields n1 = n2 = n3 = 1/3, so that Eq. (16)
correctly reduces to the Clausius-Mossotti formula (11).
In the case of spheroid, i.e., of a rotational ellipsoid with
two equal semi-axes, Rx = Ry ≡ Rs and Rz ≡ Rp, the
coefficients ni take the form [41]

n1(e) = n2(e) =
1
2
(
1− n3(e)

)
,

n3(e) =





1−e2

2e3

(
ln

(
1+e
1−e

)
− 2e

)
, Rs < Rp

1+e2

e3

(
e− arctan(e)

)
, Rs > Rp ,

(19)

with

e2 =





1− R2
s

R2
p

, Rs < Rp

R2
s

R2
p
− 1 , Rs > Rp .

(20)

For calculating the effective magnetic polarizability of
an ellipsoid, we follow a strategy outlined by Tomchuk and
Grigorchuk [40], and use the identity

ω Im(αH
E,i)µ0〈|Hf,i|2〉ω = Re

∫

VE

d3r 〈jed ·Ef,ed
∗〉ω , (21)

thus shifting the emphasis from the effective magnetic mo-
ment meff to a fluctuating eddy field Ef,ed. This requires
that the material is non-magnetic, so that meff is entirely
due to eddy currents jed. The eddy field obeys the equa-
tions

∇×Ef,ed(ω) = iωµ0Hf(ω) , (22)
∇ ·Ef,ed(ω) = 0 ; (23)

in principle, the second equation constitutes a boundary
condition for Ef,ed. Because we assume Rmax to be smaller
than the skin depth, Hf can be considered as constant
within the volume of the particle, so that the eddy field
Ef,ed depends linearly on the spatial coordinates. The re-
sulting relation between Ef,ed and Hf reads [40]

Ef,ed,x(ω) = iωµ0R
2
x

(
zHf,y(ω)
R2

z + R2
x

− yHf,z(ω)
R2

x + R2
y

)
. (24)

The other components of the electric eddy field are ob-
tained by cyclic permutation of the indices. We empha-
size that the underlying assumption of constant fields Hf

within the particle is not well fulfilled in cases where the
particle’s characteristic linear dimensions are on the order
of the skin depth, which is about 21 nm for gold at room
temperature. In such cases, the formalism outlined here
may still yield the correct orders of magnitude, but not
exact numbers.

Next, one has the identity [40]

jed(ω) = ωε0ε
′′
PEf,ed(ω) , (25)
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which relates the induced eddy currents to Ef,ed, with ε′′P
denoting the imaginary part of the particle’s permittivity.
Thus, for a spheroid the absorbed energy (21) is found to
be

Re
∫

VE

d3r 〈jed ·Ef,ed
∗〉ω =

ω3

c2
µ0ε

′′
P

VE

10
×

[
〈|Hf,z|2〉ωR2

s + 〈|Hf,x|2 + |Hf,y|2〉ω
2R2

sR
2
p

R2
s + R2

p

]
.

(26)

The effective polarizability is finally read off by comparing
this expression with the second term in Eq. (4). Again
the polarizability tensor has non-zero entries only on its
diagonal, with imaginary parts given by

Im(αH
E,x) = Im(αH

E,y) =
(k0Rs)2R2

p

R2
s + R2

p

VEε′′P
5

,

Im(αH
E,z) =

(k0Rs)2

10
VEε′′P .

(27)

For a sphere with Rs = Rp = R, both expressions give the
correct imaginary part of the Mie formula (12).

 30

 20

 10

 0  1  2  3  4  5

Im
(α

E
E
) 

/ I
m

(α
P

E
)

Rs / Rp

Im(αE,x
E) + Im(αE,z

E)

Im(αE,x
E)

Im(αE,z
E)

Figure 3. Imaginary parts Im(αE
E,x) and Im(αE

E,z) of the elec-
tric polarizabilities (16) at ωth = 1014 s−1 for a spheroidal gold
particle, and their sum, vs. the ratio Rs/Rp. The spheroid’s
volume VE is kept constant at that of a sphere with radius
R = 20 nm; surface scattering is taken into account. Data are
normalized by the imaginary part of the electric polarizability
Im(αE

P) of the sphere.

In Figs. 3 and 4 we plot the imaginary parts of the
electric and of the magnetic polarizability (16) and (27)
at the thermal frequency ωth = 1014 s−1 against the ratio
Rs/Rp, keeping the volume VE constant at that of a sphere
with radius R = 20 nm. The Drude expression (13) has
been taken for the permittivity, with the plasma frequency
ωp = 1.4 × 1016 s−1 for gold at room temperature, while
surface scattering has been taken into account through the
replacement (14), inserting the geometric mean (R2

sRp)1/3

for R. This replacement is not fully correct for nonspheri-
cal particles [40]: In principle, one then has different scat-
tering times for different directions, leading to anisotropy

 1

 2

 3

 0  1  2  3  4  5

Im
(α

E
H

) 
/ I

m
(α

P
H

)

Rs / Rp

Im(αE,x
H) + Im(αE,z

H)

Im(αE,x
H)

Im(αE,z
H)

Figure 4. Imaginary parts Im(αH
E,x) and Im(αH

E,z) of the
magnetic polarizabilities (27) at ωth = 1014 s−1 for a
spheroidal gold particle, and their sum, vs. the ratio Rs/Rp.
The spheroid’s volume VE is kept constant at that of a sphere
with radius R = 20 nm; surface scattering is taken into ac-
count. Data are normalized by the imaginary part of the mag-
netic polarizability Im(αH

P) of the sphere.

of the permittivity. In order to estimate the resulting error,
we compare in Fig. 5 the electric absorptivities provided
by the Drude permittivity with the simple surface correc-
tion (14), and without any correction at all. While the ef-
fect of the correction is clearly visible, the general trends
are not altered. Hence, a more refined correction taking
anisotropy into account should not give drastically differ-
ent results, at least not in the interval 1/5 ≤ Rs/Rp ≤ 5
considered.

 1e-25

 1e-26

 1e-27
 0  1  2  3  4  5

lo
g(

 Im
(α

E
E
) 

/ m
3  )

Rs / Rp

Im(αE,x
E) corr. 

Im(αE,z
E) corr.

Im(αE,x
E) bulk

Im(αE,z
E) bulk

Figure 5. Electric absorptivities for spheroidal gold particles
with a fixed volume corresponding to that of a sphere with
radius R = 20 nm, both with (corrected) and without (bulk
data) surface scattering taken into account.

The curve progressions observed here can be under-
stood intuitively. For the electric polarizability depicted
in Fig. 3 the absorptivity Im(αE

E,z) decreases monotoni-
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cally with increasing ratio Rs/Rp, whereas the absorptiv-
ity Im(αE

E,x) increases. For Rs/Rp ¿ 1 the spheroidal par-
ticle becomes needle-like along the z-direction; hence, the
polarizability in z-direction is much greater than that in
x- or y-direction. On the other hand, when Rs/Rp À 1 the
spheroid is pancake-like and lies parallel to the x-y-plane;
therefore the polarizability in the directions perpendicular
to the z-direction dominates.

In the case of the magnetic polarizability shown in
Fig. 4 one observes that both Im(αH

E,x) and Im(αH
E,z) go

to zero in the formal limit Rs/Rp → 0. This is clear be-
cause these two quantities represent absorptivities caused
by eddy currents perpendicular to the x- and to the z-
direction, respectively. Accordingly, for thin needle-like
spheroids with Rs/Rp ¿ 1 both absorptivities disappear,
because no eddy current can arise then. In the opposite
case, for Rs/Rp À 1, eddy currents can be easily induced
perpendicular to the z-direction in the pancake-like par-
ticle, whereas perpendicular to the x-direction no eddy
currents occur, as before. Hence, for Rs/Rp →∞ one ex-
pects Im(αH

E,z) →∞ and Im(αH
E,x) → 0. Since Im(αH

E,x) is
positive for all values of Rs/Rp and goes to zero in both
limiting cases there has to be a maximum, which occurs
near Rs/Rp = 1, as witnessed by Fig. 4.

4 Radiative heat transfer between an
ellipsoidal nanoparticle and a planar surface

In accordance with Sec. 2, the radiative heat transfer from
a planar sample to an ellipsoidal nanoparticle is expressed,
in analogy to Eq. (4), as

〈PS→E〉(TS) =
∫ ∞

0

dω ω
[
Im(αE

E,i)ε0〈|Ef,i|2〉ω

+Im(αH
E,i)µ0〈|Hf,i|2〉ω

]
,

(28)

where summation over repeated indices is implied. It is
assumed here that the particle is oriented as in Fig. 2, so
that the surface normal is parallel to a principal axis of
the ellipsoid. As discussed before, this form (28) is quite
general, requiring only the specification of the polarizabili-
ties of the nanoparticle, and of the correlation functions of
the fluctuating fields above the sample’s surface. The ex-
pression 〈PE→S〉 for the energy flux from the nanoparticle
back to the sample can again be obtained from Eq. (28)
by substituting the temperature TP for TS.

When the specific expressions for a spheroid above a
planar sample are inserted into Eq. (28), the propagating

modes with κ < k0 yield the contribution

〈Ppr,S→E〉 =
2
π

∫ ∞

0

dω Θ(ω, TS)k2
0

∫

κ<k0

d2κ

(2π)2
1

4kz0

{

Im(αE
E,x)

[
(1− |r⊥|2) +

k2
z0

k2
0

(1− |r‖|2)
]

+Im(αE
E,z)

κ2

k2
0

(1− |r‖|2)

+Im(αH
E,z)

[
(1− |r‖|2) +

k2
z0

k2
0

(1− |r⊥|2)
]

+Im(αH
E,x)

κ2

k2
0

(1− |r⊥|2)
}

.

(29)

This reduces correctly to the known result for a sphere by
setting Rs = Rp = R:

〈Ppr,S→P〉 =
2
π

∫ ∞

0

dω Θ(ω, TS)k2
0

∫

κ<k0

d2κ

(2π)2
1

4kz0

×
{

Im(αE
P + αH

P)
[
(1− |r‖|2) + (1− |r⊥|2)

]}
.

(30)

Observe that sum of the polarizabilities figures here, be-
cause ε0〈|Ef |2〉ω = µ0〈|Hf |2〉ω for the propagating modes.
Accordingly, the relative size of Im(αE

P) and Im(αH
P) de-

termines whether the radiative heat transfer is dominated
by the electric or by the magnetic part. From Eqs. (29)
and (30) one can calculate the heat radiated by an el-
lipsoidal or a spherical nanoparticle in the absence of the
sample [42] by simply setting |r⊥| = |r‖| = 0 and inserting
the temperature TP instead of TS.

The heat transfer mediated by the evanescent modes
with κ > k0 from the sample to the spheroidal particle
takes the form

〈Pev,S→E〉 =
2
π

∫ ∞

0

dω Θ(ω, TS) k2
0

∫

κ>k0

d2κ

(2π)2
e−2γa

2γ

{
Im(αE

E,x)
[
Im(r⊥) +

γ2

k2
0

Im(r‖)
]

+ Im(αE
E,z)

κ2

k2
0

Im(r‖)

+ Im(αH
E,x)

[
Im(r‖) +

γ2

k2
0

Im(r⊥)
]

+ Im(αH
E,z)

κ2

k2
0

Im(r⊥)
}

.

(31)

Again this result leads directly to the corresponding ex-
pression for a sphere [24]:

〈Pev,S→P〉 =
∫ ∞

0

dω Θ(ω, TS) k2
0

∫

κ>k0

d2κ

(2π)2
e−2γa

2γ

{

Im(αE
P)

[
Im(r⊥) +

2κ2 − k2
0

k2
0

Im(r‖)
]

+Im(αH
P)

[
Im(r‖) +

2κ2 − k2
0

k2
0

Im(r⊥)
]}

.

(32)
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Note that in general one has ε0〈|Ef |2〉ω 6= µ0〈|Hf |2〉ω for
the evanescent modes. In contrast to the transfer by prop-
agating modes, this implies that the magnetic contribution
to the heat transfer, which is proportional to Im(αH

P), can
dominate the electric one [24] even if Im(αE

P) > Im(αH
P).

In the quasi-static regime, i.e., for distances a even
smaller than the substrate skin depth, one has κ À

√
|ε|k0,

so that Eq. (31) leads to the approximation

〈Pev,S→E〉 ≈ 2
π

∫ ∞

0

dω Θ(ω, TS) k2
0

∫ ∞

0

dκ

2π

κ2e−2κa

k2
0

×
{

Im(αE
E,x + αE

E,z)Im(r‖)

+ Im(αH
E,x + αH

E,z)Im(r⊥)
}

.

(33)

Furthermore, using the approximate expressions

Im(r‖) ≈
2ε′′S

|εS + 1|2 , (34)

Im(r⊥) ≈ ε′′Sk2
0

4κ2
(35)

for the imaginary parts of the reflection coefficients, the
integration over the wave number κ can be carried out,
giving

〈Pev,S→E〉 ≈ 2
π2

∫ ∞

0

dω Θ(ω, TS)

×
{

Im(αE
E,x + αE

E,z)
ε′′S

|εS + 1|2
1

(2a)3

+ Im(αH
E,x + αH

E,z)
k2
0ε
′′
S

32a

}
.

(36)

As expected, in the quasi-static regime one has 〈PE
ev,S→E〉 ∝

a−3 for the electric and 〈PH
ev,S→E〉 ∝ a−1 for the magnetic

contribution; these power laws are the same as those for a
sphere. Since the sums Im(αE

E,x+αE
E,z) and Im(αH

E,x+αH
E,z)

appear in the frequency integral, one may expect that in
this regime 〈Pev,S→E〉 behaves like the imaginary part of
the sum of the polarizabilities at the thermal frequency
when Rs and Rp are varied.

It needs to be stressed, however, that this approximate
result (36) has to be taken with some caution, since the
required short particle-sample distances may conflict with
those required by the dipole approximation.

5 Discussion

Now we study the shape dependence of the radiative heat
transfer between a spheroidal nanoparticle and a planar
sample numerically, on the basis of the full expressions (29)
and (31). To this end, we assume the temperatures TP =
100K for the particle and TS = 300K for the sample. The
permittivity of the sample is described by the bulk Drude
model (13) with parameters for gold; that of the particle

by the Drude expresson with the plasma frequency of gold,
and with the relaxation rate adapted to surface scatter-
ing, as before. Since we are interested in the variation of
the heat transfer caused by alterations of the shape of the
nanoparticle, we vary the ratio Rs/Rp in such a way that
the volume VE of the respective spheroidal nanoparticle
equals the volume VP of a sphere with radius R = 20 nm.
We estimate that the range 1/5 ≤ Rs/Rp ≤ 5 is about the
largest that is still compatible with the dipole approxima-
tion, and restrict ourselves to this interval.

 0
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 0  1  2  3  4  5
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E
 / 
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E

Rs / Rp
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2000 nm

Figure 6. Electric contribution PE
E to the radiative heat trans-

fer between a spheroidal gold particle with temperature TP =
100K and a planar gold surface with temperature TS = 300 K,
normalized to the corresponding value PE

P for a sphere. When
the ratio Rs/Rp is varied, the particle’s volume is kept constant
at that of a sphere with radius R = 20 nm. Line styles distin-
guish data for particle-sample distances ranging from 50 nm to
2000 nm.

In Fig. 6 we depict the electric contribution to the
total heat transfer PE

E vs. Rs/Rp for several distances a
between 50 nm and 2000 nm, normalized to the corre-
sponding energy transfer PE

P between the isochoric sphere
and the sample. Evidently, for small distances the curves
of PE

E /PE
P actually resemble those of Im(αE

E,x + αE
E,z) in

Fig. 3, as may have been conjectured from the quasi-
static approximation (36), notwithstanding its somewhat
shaky justification. On the other hand, for relatively large
distances the progression of PE

E /PE
P is similar to that of

Im(αE
E,z) alone. This behavior stems from the fact that in

the latter regime, i.e., at distances such that the propagat-
ing modes dominate the heat transfer, one has 〈|Ez,pr|2〉 À
〈|Ex,pr|2 + |Ey,pr|2〉, as documented in Fig. 7. In contrast,
in the near-field regime where the evanescent modes domi-
nate the transfer one finds 〈|Ez,ev|2〉 = 〈|Ex,ev|2+|Ey,ev|2〉,
so that Im(αE

E,x) and Im(αE
E,z) contribute in equal mea-

sure there.
Analogously, we plot in Fig. 8 the normalized mag-

netic contribution PH
E /PH

P to the total heat transfer, for
distances a extending from 50 nm up to 5000 nm. Similar
to the electric case, in the near-field regime the graphs
of PH

E /PH
P resemble that of Im(αH

E,x + αH
E,z) previously
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Figure 7. Ratios 〈|Ex|2+|Ey|2〉/〈|Ez|2〉 (full line) and 〈|Hx|2+
|Hy|2〉/〈|Hz|2〉 (dashed line) above a semi-infinite planar gold
sample at TS = 300 K, as function of the distance a.

shown in Fig. 4, since 〈|Hz,ev|2〉 = 〈|Hx,ev|2 + |Hy,ev|2〉
for small distances (see Fig. 7). On the other hand, for
relatively large distances a the plots of PH

E /PH
P are quite

similar to that of Im(αH
E,x) alone, since then 〈|Hz,pr|2〉 ¿

〈|Hx,pr|2 + |Hy,pr|2〉.

 0
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Figure 8. Magnetic contribution PH
E to the radiative heat

transfer between a spheroidal gold particle with temperature
TP = 100K and a planar gold surface with temperature TS =
300K, normalized to the corresponding value PH

P for a sphere.
When the ratio Rs/Rp is varied, the particle’s volume is kept
constant at that of a sphere with radius R = 20 nm. Line
styles distinguish data for particle-sample distances ranging
from 50 nm to 5000 nm.

The ratio of the magnetic to the electric contribution
PH

E /PE
E is drawn in Fig. 9, again for distances from 50 nm

to 5000 nm. For all distances considered the magnetic con-
tribution to the heat transfer is much greater than the
electric one, unless Rs is much smaller than Rp. This fact
has been discussed in detail by Chapuis et al. [24] for
a spherical metallic nanoparticle above a planar metallic

sample. Here we find that the curves of the ratio PH
E /PE

E
exhibit a maximum near Rs/Rp = 1, so that the domi-
nance of the magnetic part is somewhat less pronounced
for nanoparticles with shapes differing from a sphere. For
markedly needle-like, prolate particles with a very small
ratio Rs/Rp, the graphs suggest that the electric contri-
bution could even dominate the magnetic one, because
the induction of Foucault currents would be suppressed
by the needle-like shape. We remark that for non-metallic
nanoparticles and non-metallic samples the contribution
due to induced eddy currents can be neglected anyway, so
that for such materials it is always the electric contribu-
tion which dominates the heat transfer.

5

3

1

-1
 0  1  2  3  4  5

lo
g(
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E

H
 / 

P
E

E
)
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50 nm
100 nm
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1000 nm
5000 nm

Figure 9. Logarithm of the ratio PH
E /PE

E of the magnetic to
the electric contribution to the heat transfer vs. Rs/Rp, for the
situation considered in Figs. 6 and 8.

We conclude from Figs. 6 and 8 that the near-field
heat transfer between a metallic nanoparticle and a sample
depends to a sizeable extent on the nanoparticle’s shape
even when the total radiating volume is kept constant. In
the example considered, the electric contribution to the
heat transfer is enhanced for strongly prolate spheroids
by a factor of about 10 as compared to a perfect sphere,
and by a factor of about 4 for strongly oblate ones. On
the other hand, the magnetic contribution is substantially
reduced in the needle-like case, but exceeds the sphere
value by a factor of about 2 for pancake-like particles,
always assuming the orientation specified in Fig. 2.

6 Conclusions

We have investigated the radiative heat transfer between
a metallic spheroidal nanoparticle and a planar metallic
probe for small and large distances, on the basis of the an-
alytical expressions (29) and (31) for the heat transfer me-
diated by propagating and evanescent modes, respectively.
By numerical analysis for the example of a spheroidal gold
particle above a gold surface we have investigated in detail
the precise shape dependence of the radiative heat transfer
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in both the near-field and the far-field regime. Further-
more, we have derived the approximate expression (36)
for the nonretarded evanescent regime, which provides a
qualitative understanding of the numerical results.

 1.2e-12

 9e-13

 6e-13

 3e-13
 0  1  2  3  4  5
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 / 

W

Rs / Rp
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Sphere

Figure 10. Heat transfer between a gold spheroid with tem-
perature TP = 100K and a planar gold surface with tem-
perature TS = 300 K separated by 100 nm. The volume of
the spheroid is kept constant at that of a sphere with radius
R = 20 nm when Rs/Rp is varied. The horizontal line marks
the value of the heat current between the isochoric sphere and
the sample.

Figure 10 shows the absolute total heat transfer be-
tween a gold spheroid with temperature TP = 100 K and
a planar gold surface with temperature TS = 300K for the
separation a = 100 nm, again fixing the spheroid’s volume
at that of a sphere with radius R = 20 nm when chang-
ing the aspect ratio. For Rs/Rp = 1/5 the heat transfer
between spheroid and sample is only about half of that
between sphere and sample, whereas for Rs/Rp = 5 the
spheroid-sample transfer is roughly two times as efficient
as that occurring in the sphere-sample geometry. The very
fact that there exists such a marked shape dependence
might be of interest for nanoscale thermal engineering, in-
sofar as it appears possible to control the amount of heat
transported at nanoscale distances by carefully designing
the shapes of both the emitting and the absorbing pieces.

Our discussion is subject to several restrictions: There
is the dipole approximation (1) made right at the outset,
the assumption of constant fields Hf inside the particle
entering into Eq. (24), and the simplified correction (14)
for surface scattering. Taken together, these simplifica-
tions render our analysis approximate, rather than exact,
although they should still capture the essential physics.
Further issues that should be investigated in future works
concern the possible effects of spatial dispersion [43], and
of surface roughness [44].

With respect to the problem of quantifying the actual
heat transfer in a near-field scanning thermal microscope,
our study helps to pin down the error margin. A typ-
ical NSThM sensor tip is larger than the nanoparticles
considered in our examples, and does possess an internal

structure, but again the precise shape of the sensor will
influence the heat current it records. In view of our model
calculations, we estimate that the values obtained on the
grounds of the dipole model under the assumption of an
ideal spherical sensor may deviate, in the appropriate dis-
tance regime, by up to an order of magnitude from the
true values, but probably not by more.
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