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Abstract. Classical electromagnetism provides limited means to model electric generators. To extend the

classical theory in this respect, additional information on microscopic processes is required. In semicon-

ductor devices and electrochemical generators such information may be obtained by modelling chemical

composition. Here we use this approach for the modelling of dye-sensitised solar cells. We simulate the

steady-state current-voltage characteristics of such a cell, as well as its transient response. Dynamic simu-

lations show optoelectronic hysteresis in these cells under transient light pulse illumination.

PACS. 82.47 Applied electrochemistry – 72.40 Photoconduction and photovoltaic effects – 73.63 Electronic

transport in nanoscale materials and structures

1 Introduction

In certain physical systems the main process is the gener-

ation of electric power by chemical reactions. By itself, the

classical (phenomenological) electromagnetic theory pro-

vides limited means to the modelling of these systems.

Consequently, they have drawn a lot of attention from the

physics and chemistry research communities, and addi-

a E-mail: tuomas.kovanen@tut.fi, Fax: +358331152160

tional information on microscopic processes has been com-

bined with the classical theory for a more detailed model.

When employing the classical theory, generation and

dissipation are usually confined to distinct parts of space.

In the dissipative part, the electric field intensity e of a

given charge distribution is determined by the Poisson

equation of electrostatics together with the charge con-

servation law and the classical Ohm’s law. In the gener-

ator part of space, on the other hand, the product of e

and the current density j needs to be made negative. To
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accomplish this, the Ohm’s law could be modified by an

additional source current term assumed to be known in

advance.

For some purposes, a more detailed model than pro-

vided by the classical theory can be useful. Such a model

necessarily involves an alternative for Ohm’s law to be

used in the description of current generation. In addi-

tion to the current density, also charge density ρ is not

known in advance but need to be obtained as a part of the

problem solution. Here we employ the modelling of chem-

ical composition for the above mentioned tasks. Since we

have been unable to find a treatment where the physical-

chemical setting is introduced in logical order, a detailed

formalisation is given in the first part of the paper.

Examples in which the classical approach is usually

adjusted in this way include semiconductor devices and

various types of solar cells [1–6]. A particular example

is a dye-sensitised solar cell in which generation occurs

throughout a film of macroscopic thickness [7, 8]. In the

latter part of the paper, we demostrate the method by

generating a model for dye-sensitised solar cells. From the

point of view of these cells, we focus here on their dynamic

behaviour under transient light pulse illumination.

2 Formalisation

Let us consider a physical system as being composed of dif-

ferent subsystems. In constructing and superposing these

subsystems, quantities for which addition and scalar mul-

tiplication make physical sense are of particular impor-

tance for modelling purposes. These two elementary oper-

ations open the way to efficiently employ mathematics in

a modelling process, that is, in the translation of physical

assumptions and laws into form accessible by experimenta-

tion. The value of mathematics is thus in assisting us with

practical problems, and, on the other hand, a request for

such assistance makes its use indispensable.

2.1 The chemical subsystem

To describe chemical composition in the spatial domain,

we assume the precence of appropriate energy carriers

called substances. These can be, for instance, certain mole-

cules, electrons or photons. By composition we refer to

quantities that indicate amounts of substances per unit

volume at each mesoscopic point of space.1 Formally, a

proper quantity for each element s of a set of substances

is the substance density ns, see Appendix A for details.

Since each point of space can be considered as an open

system, transport of substances exists. In addition, sub-

stances are generated and regenerated locally by chemical

reactions. Proper quantities to take these processes into

account are substance fluxes js and generation rates rs.

Also, energy is stored and released in the spatial domain,

1 At each mesoscopic point of space there is statistical abun-

dance of quanta of energy carriers for their density to be a

meaningful concept. Also, the length scale of the largest spa-

tial inhomogenities smoothed out in the model determines

the smallest length scale under explicit consideration. Length

scales much smaller than this limit are then referred micro-

scopic. Unless otherwise stated, all points of space referred in

this paper are mesoscopic.
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and quantities that characterise the response of the free

energy density to changes in substance densities will be of

crucial importance. Such quantities are named with hind-

sight as electrochemical potentials µs, the detailed defini-

tion of which is given in Appendix B.

To obtain starting points (axioms) for modelling, phys-

ical and chemical knowledge of relationships between these

quantities is utilised. Such laws serve as predicates for

the quantities and may be used to define relations be-

tween them, see Appendix A for details. A conjunction

of carefully chosen laws (expressed as the intersection of

relations) will then uniquely determine these quantities.

A type of conservation law is that the substance flowing

out of each space point per unit time must be generated

at the point or the substance density at this point must

change accordingly. This idea is employed in the model by

introducing continuity relations

{(ns, rs, js) : divjs + ∂tns = rs} (1)

for each substance s. In addition, we need to express the

behaviour of background materials in an appropriate way.

Relying on the second law of thermodynamics we require

that substance is transported to the direction of lower elec-

trochemical potential until equilibrium is reached [9–11].

This is done by introducing pointwise mappings Ls, such

that js = −Ls(gradµs). Using these mappings, the idea

can be employed by introducing relations

{(µs, js) : js = −Ls(gradµs)} (2)

for each substance s. Denoting the array of all substance

densities as nS , we express the dependence of generation

rates on composition by introducing pointwise mappings

Fs, such that rs = Fs(nS), and further relations

{(nS , rs) : rs = Fs(nS)}, (3)

which are referred in chemistry as rate laws [11]. To obtain

the substance densities as a part of the solution, we would

still need relations between µs’s and ns’s. This need will

drive us to decompose electrochemical potentials into two

parts. For this, we turn our focus to the electric subsystem.

2.2 Connection to the electric subsystem

Informally, the charge density ρ is a sum of contributions

by different charged substances. To make use of the idea,

we introduce relation

{(nS , ρ) : ρ =
∑

s

qsns}, (4)

where each coefficient qs is the charge per unit amount of

substance s. The same idea applies for the current density

j. Therefore, we introduce relation

{(jS , j) : j =
∑

s

qsjs}. (5)

By considering (1), (4) and (5) together, it can be seen

that the charge conservation divj+∂tρ = 0 further implies

a relation for generation rates. That is, we have

{(rS) :
∑

s

qsrs = 0}, (6)

which is imposed in the construction of the rate laws.

Let us next introduce quantities that characterise the

response of the electric energy density to changes in sub-

stance densities. These quantities are named here sub-

stance potentials µel
s , and they are constructed in view
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of the correspondence µel
s = qsφ

el with the electric po-

tential φel, see Appendix B for details. It is notable that

the substance potentials need not coincide with the exper-

imentally relevant electrochemical potentials introduced

above. To explain this difference (as is done for electrolytes

in [12]), microscopic processes are called for.

At this point we decompose the electrochemical po-

tentials into microscopic (or chemical) and mesoscopic (or

electric) parts by introducing the chemical potential of

substance s as the difference µch
s = µs − µel

s . Since µel
s

and φel are related the electrochemical potential can be

written as µs = µch
s + qsφ

el. The substance fluxes are also

decomposed according to the above decomposition of po-

tentials. For this, mappings Ls are required to be additive,

and relations (2) are replaced with relations

{(φel, µch
s js) : js = −Ls(gradµch

s ) − Ls(qsgradφel)}, (7)

which describe the chemical and electric influences to the

individual substance fluxes in separate parts. In the above

relations the mappings Ls are further required to be odd,

so the model includes the idea that zero flux is obtained

by balancing the two influences, which is the content of

the (generalised) Einstein relation. To express the point-

wise dependence of µch
s ’s on ns’s, we introduce pointwise

mappings Hs, such that µch
s = Hs(ns), and relations

{(ns, µ
ch
s ) : µch

s = Hs(ns)} (8)

for each substance s.

By taking the intersection of (1), (3), (7) and (8), we

get2

{(nS , φel) : − div(Ls(gradHs(ns)) + Ls(qsgradφel)) + ∂tns

= Fs(nS)}, (9)

for each substance s. By further taking the intersection of

(4), (9) and the relation of electrostatics,

{(ρ, φel) : −div(ǫgradφel) = ρ}, (10)

we obtain a unique element (up to boundary conditions)

(nS , ρ, φel) which satisfies all the requirements of the mod-

elling. Furthermore, according to (5) and (7), the current

density is given as

j = −
∑

s

qsLs(gradµch
s ) −

∑
s

qsLs(qsgradφel), (11)

which can be interpreted as an extended Ohm’s law. Re-

lations (9) and (10) form what is called the coupled drift-

diffusion-reaction problem, in which the substance diffu-

sivity is defined as Ds = Ls ◦ ∂µch
s /∂ns (pointwise deriva-

tive, not the Fréchet derivative of Appendix B), and the

substance conductivity is defined as σs = qsLs ◦ qs.

Finally, in view of a concrete instance such as the dye-

sensitised solar cell, the set of substances, the chemical

reactions present and the constitutive relations (3), (7)

and (8) are left to be determined.

2 Strictly speaking, the relations need to be considered

as subsets of the same set (the linear space of elements

(nS , φel, µch
S , rS , j

S
) in this case) to take the intersection. This

should be kept in mind throughout this paper.
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3 Application

Detailed modelling of dye-sensitised solar cells (referred by

dye cells below) under steady-state operation have been

performed elsewhere [13]. With an eye for these results

we aim to generate a model with some predictive power

concerning the dynamic behaviour of the cell, and sim-

ulate the steady-state operation mainly for illustration

purposes. To the authors’ knowledge, such dynamic mod-

elling have been restricted to a model that includes only

one substance [14]. Alternatively, one has considered time-

harmonic situations [15–20].

3.1 Structure and operation of the dye cell

Let us first have a brief overview of the dye cell. In this

device the large surface area of a nanoporous semicon-

ductor electrode is employed to attach a large amount of

photoactive dye on the surface where the photochemical

reactions take place. The structure of the cell is shown

in Fig. 1. The continuous performance of the cell is made

possible by the electrolyte which reduces the photoexcited

dye while the electrons released to the semiconductor are

transported through the nanoparticle network, the con-

ducting substrate and the external load to the counter

electrode and again back to the electrolyte [7, 21].

3.2 Relevant substances

Keeping in mind the preceding ideas, we begin with spec-

ifying the set of substances. A typical electrolyte contains

at least iodide/triiodide redox pair (I-/I-
3), lithium ions

(Li+) and tert-butylpyridine (tBP ) [18, 22]. In the semi-

conductor nanoparticles, free electrons can be trapped to

localised energy states [8]. Hence, in the active electrode

region two types of electrons are of interest, trapped elec-

trons e-
t and conduction electrons e-

c, in addition to the

electrolyte species. This is not the case in the counter elec-

trode where only conduction electrons need to be consid-

ered. Finally, by including photons hν, the relevant sub-

stances can be collected into

{hν, e-
c, e

-
t, I

-, I-
3, Li+, tBP}. (12)

This selection of substances means that the dye, the elec-

trolyte solvent and the semiconductor crystal structure

are taken into account only by the constitutive relations.

Often, in modelling the dye cell, also the effect of photons,

ions and molecules on the transport and generation of the

modelled substances is dubbed into the constitutive rela-

tions.3 Accordingly, the resulting set of substances consists

of only conduction and trapped electrons. It is typically

thought that the larger the set of substances, the deeper

the physical and/or chemical understanding. Here we con-

sider conduction and trapped electrons explicitly to obtain

a dynamic model for the cell.

3.3 Chemical reactions

Chemical reactions occur in each point of the active elec-

trode (anode) and at the surface of the counter electrode

3 This is not justified a priori, but it requires certain special

properties from the situation. Such properties are discussed in

sections 3.4 and 3.5.
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(cathode). The reactions may be written using chemical

formalism as follows [8, 23]:

Anode:

2hν + 3I- → I-
3 + 2e-

c,

e-
c → e-

t

e-
t → e-

c

I-
3 + 2e-

c → 3I-,

I-
3 + 2e-

t → 3I-,

I-
3 + e-

c + e-
t → 3I-.

Cathode: I-
3 + 2e-

c → 3I-.

Here we have written the net photoreaction at the an-

ode which does not explicitly state the precence of the

dye. Notice that the cathode reaction occurs also at the

anode. This recombination reaction is considered to be a

significant degrading factor of the cell performance, and it

largely motivates the mesoscopic modelling of the cell.

3.4 Constitutive relations

There is a controversy of what should be done with the

constitutive relations of field theories in general. One con-

ception defends their determination strictly by measure-

ment to confine any uncertainty into such measurements,

while others try to derive them from the fundamental as-

sumptions of microscopic theories. In connection with dye

cells both of the approaches have gained interest, and here

we will also employ both of them.

3.4.1“Flux laws” (Ls)

In accordance with the band theory of solids, relation (7)

for conduction electrons is given as

{(φel, µch
e-
c
, je-

c
) : je-

c
= −

ne-
c
ue-

c

|qe-
c
|

(gradµch
e-
c

+ qe-
c
gradφel)},

(13)

where ue-
c

is the mobility [24], which holds information

on the microstructure of each mesoscopic point of Fig. 1.

Here we have identified µe-
c
with the difference of the quasi-

Fermi level of electrons and the Fermi-level at equilibrium.

The trap states are localised in space so for trapped elec-

trons the mobility is zero. Therefore, the trapped electron

flux vanishes so relation (7) is

{(φel, µch
e-
t
, je-

t
) : je-

t
= 0}. (14)

3.4.2“Potential laws” (Hs)

By treating conduction electrons as a non-degenerate (clas-

sical) gas [24], relation (8) for conduction electrons is given

as

{(ne-
c
, µch

e-
c
) : µch

e-
c

= kBT ln(
ne-

c

neq
c

)}, (15)

where neq
c is the equilibrium conduction electron density

in the dark, kB is Boltzmann’s constant, and T is tem-

perature. Here we have further identified qe-
c
φel with the

deviation of the conduction band edge from its equilibrium

level. As a consequence of the predicate in relation (14),

the relation (8) for trapped electrons will not be needed.
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3.4.3“Rate laws” (Fs)

The rate law of generation of conduction electrons is com-

posed of contributions of the different reactions at the an-

ode. That is, we have

{(nhν , ne-
c
, ne-

t
, re-

c
) : re-

c
=F p

e-
c
(nhν)

+ F t
e-
c
(ne-

c
, ne-

t
) + F cb

e-
c
(ne-

c
)},

(16)

where the generation rate of conduction electrons by pho-

tons is

F p
e-
c
(nhν) = −Fhν(nhν) (17)

and the generation rate of conduction electrons by trap-

ping and detrapping can be given as

F t
e-
c
(ne-

c
, ne-

t
) = kdetrapne-

t
− ktrap(1 −

ne-
t

Ntrap
)ne-

c
, (18)

where kdetrap is the rate constant of detrapping, ktrap is

the rate constant of trapping, and Ntrap is the density

of traps [15, 19]. Equation (18) is a simplification of the-

ories where the trapped electrons are distributed in en-

ergy [26, 27]. To employ such theories it would be neces-

sary to determine the trapped electron density (per unit

volume and energy) also in “energy space”. Finally, the

generation rate of conduction electrons by recombination

(negative quantity) is taken as first order in excess con-

duction electron density [15,20]. That is

F cb
e-
c
(ne-

c
) = −kcb(ne-

c
− neq

c ), (19)

where kcb is the rate constant of recombination from the

conduction band. The above rate law is a simplification

of experimental evidence suggesting that recombination is

second order in electron density [18]. To obtain an expres-

sion for F p
e-
c
(nhν) in (16), the generation rate of photons

(negative quantity) Fhν(nhν) appearing on the right hand

side of (17) is usually given a priori as a function of po-

sition and time. This corresponds to the assumption that

the photon density is independent of the densities of other

substances in the cell.

For the rate law of generation of trapped electrons, we

have

{(ne-
c
, ne-

t
, re-

t
) : re-

t
= F t

e-
t
(ne-

c
, ne-

t
) + F tb

e-
t
(ne-

t
)}, (20)

where the generation rate of trapped electrons by trapping

and detrapping is

F t
e-
t
(ne-

c
, ne-

t
) = −F t

e-
c
(ne-

c
, ne-

t
), (21)

and the generation rate of trapped electrons by recombi-

nation with electrolyte (negative quantity) is taken as first

order in excess trapped electron density [28], that is

F tb
e-
t
(ne-

t
) = −ktb(ne-

t
− neq

t ), (22)

where ktb is the rate constant of recombination of the

trapped electrons, and neq
t is the equilibrium trapped elec-

tron density in the dark.

Finally, we emphasise that the present formulation of

the rate laws excludes the effect of the density variations

of ions and molecules on the generation rates. The use of

such rate laws is justified here due to the large density of

electolyte species which is only slightly perturbed under

cell operation according to earlier modelling results [13].
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3.5 Formulation

The axioms necessary for mathematical modelling have

now been collected into relations (1), (13), (14), (15), (16)

and (20). By taking the intersection of these relations, we

get the coupled drift-diffusion problem with trapping and

recombination expressed by relations

{(ne-
c
, ne-

t
, φel) : −div(De-

c
gradne-

c

+ ne-
c
ue-

c
gradφel) + ∂tne-

c
= −Fhν(nhν) + kdetrapne-

t

− ktrap(1 −
ne-

t

Ntrap
)ne-

c
− kcb(ne-

c
− neq

c )}, (23)

and

{(ne-
c
, ne-

t
) : ∂tne-

t
= −kdetrapne-

t
+ ktrap(1 −

ne-
t

Ntrap
)ne-

c

− ktb(ne-
t
− neq

t )}, (24)

and further relation

{(ne-
c
, ne-

t
, nI- , nI-

3
, nLi+ , φel) : −div(ǫgradφel)

= qe-
c
ne-

c
+ qe-

t
ne-

t
+

∑
s∈{I-,I-

3
,Li+}

qsns}. (25)

Notice that although the ions are not considered explic-

itly in the chosen modelling they need to be taken into

account in (4), and hence in (25). Clearly, we have taken

a shortcut when leaving them out of the model. However,

this was done with the knowledge of an earlier modelling

result [13]. According to this result, the local charge neu-

trality is maintained (to a good approximation) in the

active electrode under cell operation, corresponding to a

vanishing electric field according to relation (25). Relying

on this result, we leave out relation (25) and the electric

field term in (23).

3.6 Current and voltage

We need the global electric quantities, the cell current and

the cell voltage, in terms of conduction electron density.

As stated in Appendix C, the problem is reduced to one

dimension, and the spatial domain consisting of the active

electrode is parametrised by x ∈ [0, d], such that x = 0 is

the substrate interface and x = d is the electrolyte inter-

face of the active electrode. As a result, the cell current

(per unit area) I is given directly by (5), (13) and (15) as

I(t) = −j(0, t) · n(0) = −
∑

s∈{e-c,I-,I-
3
,Li+}

qsjs(0, t) · n(0)

= −qe-
c
De-

c

∂ne-
c
(x, t)

∂x |x=0
, (26)

since the current due to the ions vanish at x = 0. The cell

voltage, on the other hand, needs some argumentation. Let

us assume for a while that the counter electrode is part

of the spatial domain. Then, excluding the ohmic voltage

drop caused by the conducting substrate, the (positive)

cell voltage V is given as

V (t) =
µe-

c
(counter electrode, t)

qe-
c

−
µe-

c
(0, t)

qe-
c

. (27)

Typically, it is assumed that the counter electrode is in its

equilibrium state of the dark, so that the electrochemical

potential vanishes there. This leads to the widely employed

expression

V (t) = −
µe-

c
(0, t)

qe-
c

= −
kBT

qe-
c

ln(
ne-

c
(0, t)

neq
c (0)

), (28)

where the latter equality follows from relation (15) with

the assumption that µe-
c

= µch
e-
c
.
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3.7 Boundary conditions

To specify the electron densities uniquely, boundary and

initial conditions are still required. For clarification we re-

view here three types of conditions. To begin with, the

current-voltage characteristics of the cell – the macro-

scopic counterpart of (11) – is obtained for steady state by

successively adjusting the cell voltage through the voltage

range of interest and solving for the current. As the cell

voltage is related to conduction electron density by (28)

this can be done by introducing relation

{ne-
c

: ne-
c
(0) = neq

c (0)e−q
e
-
c
V/(kBT ) and

dne-
c
(x)

dx |x=d
= 0},

(29)

where the latter part of the predicate expresses the zero

electron flux to the electrolyte. The procedure of finding

the unique element of the intersection of (23), (24) and

(29) is given in Appendix C for light illumination from

the substrate side of the cell. The current-voltage curves

thus obtained are given in the results section.

The above method, however, cannot be used in the

modelling of transient responses with a fixed load resis-

tance since the voltage corresponding to the fixed resis-

tance depends on light intensity (and possibly on the his-

tory of light intensity), and it cannot be known in advance.

To model transient responses with an arbitrary load resis-

tance R, the Ohm’s law V = RI need to be imposed.

This corresponds to a nonlinear boundary condition, and

it results in relation

{(ne-
c
, ne-

t
) : −

kBT

qe-
c

ln(
ne-

c
(0, ·)

neq
c (0)

) = −Rqe-
c
De-

c

∂ne-
c
(x, ·)

∂x |x=0
,

∂ne-
c
(x, ·)

∂x |x=d
= 0, ne-

c
(·, 0) = nref

c ,

and ne-
t
(·, 0) = nref

t }, (30)

where nref
c and nref

t specify the initial condition to a refer-

ence steady state.

We perform transient simulations only for the short-

circuit current and open-circuit voltage. Both situations

can be realised by using the kinetic rate constant of elec-

tron extraction kext. Accordingly, we introduce relation

{(ne-
c
, ne-

t
) : Dc

∂nc(x, ·)

∂x |x=0
= kext(nc(0, ·) − neq

c (0)),

∂ne-
c
(x, ·)

∂x |x=d
= 0, ne-

c
(·, 0) = nref

c and ne-
t
(·, 0) = nref

t }.

(31)

The open-circuit case when negligible amount of electrons

is extracted to the circuits is obtained by setting kext =

0, and the short-circuit situation when nc(0) = neq
c (0) is

(formally) obtained in the limit kext = ∞. It is notable

that a finite resistance situation cannot be modelled by a

finite value of kext since this would contradict the Ohm’s

law V = RI. The method to take the intersection of (23),

(24) and (31) is given in Appendix C.

3.8 Parameter values

The parameter values of the constitutive relations used in

the modelling were taken from literature and are listed in

Table 1. The order of magnitude values for the first order

recombination rate constants, as well as for the rate con-

stants of trapping and detrapping, were estimated based
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Table 1. Parameter values used in the modelling, and their

sources.

parameter value source

d 10−5m [18]

T 300K [19]

Dc 10−6m2s−1 [19]

kcb 10s−1 estimated [18,19]

ktb 10s−1 estimated [18,19]

ktrap 107s−1 estimated [18,19]

kdetrap 106s−1 estimated [18,19]

α 2.5 · 105m−1 [18]

Ntrap 2.3 · 1024m−3 [19]

n
eq
c 1011m−3 [19]

on references [18,19], and further adjusted to obtain typi-

cal steady-state current-voltage characteristics for various

light intensities. Other parameter values were taken di-

rectly from the references indicated.

3.9 Results

Simulated steady-state current-voltage characteristics are

shown in Fig. 2 for two different light intensities. As the

curves are typical for these cells [13], we may hope for that

also dynamic simulations show reasonable results. We fo-

cus on two dynamic relations predicted by the model, one

between the light intensity Ihν and the short-circuit cur-

rent ISC, and the other between Ihν and the open-circuit

voltage VOC. Fig. 3 and Fig. 4 show the simulation re-

sults for short-circuit and open-circuit situations under a

transient light pulse of five milliseconds in duration. It is

clearly shown that the electric quantities lag the light ex-

itation under such short light pulses. This is in contrast

to the normal operating conditions of a solar cell under

which the cell performance can be considered as succes-

sive steady states.

The fast transient simulations under short-circuit con-

ditions elucidate the cell performance under the effect

trapping–detrapping process. Typically, the process is taken

into account only partly by the use of an “effective” dif-

fusion coefficient (see, for instance, [31]). It is known that

a dynamic model involving only conduction electrons is

restricted to such a quasistatic regime under which the ef-

fective diffusion coefficient is sufficient to describe the cell

dynamics [31]. The model presented here allows the sim-

ulation of the time evolution of short-circuit current and

open-circuit voltage even beyond the quasistatic regime.

With the parameter values used, the short-circuit hys-

teresis behaviour is clearly visible when the cell is illu-

minated with light pulses of duration of milliseconds or

shorter. It was noticed that at short-circuit conditions the

detrapping rate constant in particular is a sensitive param-

eter that controls the extent of hysteresis. For instance, if

the rate constant is reduced by two orders of magnitude

then to observe hysteresis light pulses of a few hundreds

of milliseconds are needed.

Even though the trapping–detrapping process need not

be included explicitly in the model to describe the cell dy-

namics at typical working conditions of a solar cell, it may

be important to study its role in the hysteresis effect. Espe-

cially, to describe the cell dynamics beyond the quasistatic
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regime a detailed account of the process is required. In

particular, this may be necessary in other devices that

use similar hybrid material structures, and where repro-

ducible and fast transient behaviour is of importance. For

instance, hysteresis behaviour of a TiO2-dye-electrolyte

based photoconductor has been observed recently [32].

4 Conclusions

Limitations in using classical electromagnetism in mod-

elling local generation of electric power can be circum-

vented by considering chemical composition in detail. The

modelling of chemical composition allows one to incorpo-

rate information on microscopic processes in the classical

description. This can be done by decomposing the influ-

ence quantity (electrochemical potential) into microscopic

(labeled chemical) and mesoscopic (labeled electric) parts.

A key step in the approach is to establish the constitutive

relations of the chemical subsystem – this step essentially

determines the uncertainty of modelling.

The dye-sensitised solar cell appears as an interesting

example in which the microscopic part of the influence

quantity seems to play the dominant role. In this con-

nection, we point out assumptions that are often made

to construct a model for the cell. To solve the steady-

state and dynamic boundary value problems, we employ

spaces of square integrable functions in methods based

on finite elements. Steady-state simulations resulted in

current-voltage characteristics closely resembling those typ-

ically obtained in experiments. Dynamic simulations were

performed to evaluate open-circuit voltage and short-circuit

current dependence on the illumination intensity of the

cell under a transient light pulse illumination. This is the

first time that a model is presented that is capable of de-

scribing the time evolution of these quantities under the

full influence of trapping and detrapping of electrons. A

question is raised on the role of this electronic process

in the optoelectronic hysteresis effect observed under fast

light pulse transients.

Acknowledgement

Scholarship (TK) from FinNano research program of the

Academy of Finland under FUNANO consortium (con-

tract No 118040) is greatfully acknowledged. T.K. acknowl-

edges Finnish Cultural Foundation for additional financial

support.

Appendix A: Mathematical background

Physical quantities, like the substance density, are con-

sidered as functions in space and time. For instance, by

considering the space and time as a cartesian product of

Ω and Γ , the substance density is denoted as function

ns : Ω ×Γ → R, whereas the image of a point (x, t) by ns

would be called ns(x, t). In many cases, the set Ω can be

considered as a subset of the three dimensional Euclidean

space, and Γ is the closed interval [0, T ] of R. By recalling

the idea of addition and multiplication mentioned earlier,

a prerequisite for the physical quantities considered in this

paper is that each quantity belongs to the (abstract) lin-

ear space of appropriate functions. That is, one can add
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functions of the same space and multiply them by a scalar

to obtain a new function of this space.

Relations between physical quantities are subspaces of

cartesian products of the corresponding function spaces.

As an example, if quantities a and b are functions of the

spaces A and B, and F is a mapping from A to B, a

physical law b = F (a) serves as a predicate for a and b,

and it defines a relation R = {(a, b) ∈ A × B : b = F (a)}

(a subspace of A × B). In this paper, we denote this as

{(a, b) : b = F (a)} for short. A conjuction of two laws is

expressed as the intersection of the two relations R1 and

R2 defined by the laws, that is R1 ∩ R2.

Appendix B: Definitions

For the definition of the electrochemical potential, we first

consider the density of free energy at each point in space

and time, g(x, t), as a function of composition.4 Elec-

trochemical potentials are constructed to express the re-

sponse of the free energy density to variations in substance

densitites. Since substance density at a point y can affect

to the free energy density at another point x (Coulomb

interactions are included), the electrochemical potential

µs is defined for each substance s at each point (x, t) as

the “derivative of g(x, t) at composition nS to the direc-

tion ns”, and is denoted as ∂nS
g(ns) (the argument (x, t)

is dropped for notational simplicity). The operator ∂nS
g

4 To make a connection to the thermal subsystem, we iden-

tify this energy with the (electrochemical) Gibbs free energy

by assuming constant temperature and pressure [9]. Hence, all

non-thermal and non-mechanical energy exchange is included.

(bounded and linear) is the Fréchet derivative at nS , de-

fined by

lim
h→0

|g(nS + h) − g(nS) − ∂nS
g(h)|

‖ h ‖
= 0,

where ‖ · ‖ is a norm given for the substance densities.

It is noticed that the potentials constructed in this way

need not be continuous in space. However, they are usually

required to be continuous in certain parts of space called

regularity regions. In practice, these regions are specified

a priori based on the qualitative understanding of the sit-

uation. In this paper, the derivatives are restricted to the

regularity regions of the potential in question.

For the definition of the substance potential, the elec-

tric energy density gel is considered. Parallelling the con-

struction above, substance potentials are defined as µel
s =

∂nS
gel(ns). For the correspondence of µel

s and the electric

potential φel, we express (4) by a linear pointwise map-

ping q̂S , such that ρ = q̂S(nS), and we further give gel

as a composition mapping gel = vel ◦ q̂S by using a new

mapping vel. Then, by the chain rule, it follows that

µel
s = ∂nS

gel(ns)

= ∂ρv
el(ρ)

∂q̂S
∂ns

(nS)

= φelqs (B.1)

for each substance s such that qs 6= 0, where the latter

derivative is taken pointwisely.

Appendix C: Solution procedures

The structure of the dye cell has enough symmetry to re-

duce the problem to one spatial dimension. We parametrise



Kovanen et.al.: Modelling chemical composition in electric systems 13

the resulting spatial domain by x ∈ [0, d], such that x = 0

is the substrate interface and x = d is the electrolyte inter-

face of the active electrode. We further consider illumina-

tion from the substrate side of the cell to give the driving

term for the problem using photon flux at the boundary,

Ihν(t) = −jhν(0, t) · n(0) for all t ∈ [0, T ], as

−Fhν(nhν) = gIhν , (C.1)

where g describes the a priori fixed spatial variation. The

function g is typically given using the absorption coeffi-

cient α as g(x) = αe−αx [15, 19]. Before proceeding, we

clarify our notation somewhat. That is, we set

nc = ne-
c
, (C.2)

nt = ne-
t
, (C.3)

D = De-
c
, (C.4)

N = neq
c (0)e−q

e
-
c
V/(kBT ), (C.5)

c = ktrap(1 −
nt

Ntrap
) + kcb, (C.6)

f = gIhν + kdetrapnt + kcbneq
c . (C.7)

Steady-state situation

With the above notation, for a given nt, the conduction

electron density nc that belongs to the intersection of (23),

(24) and (29) satisfies

−
d

dx
D

dnc

dx
+ cnc = f in (0, d), (C.8a)

nc = N on {0}, (C.8b)

dnc

dx
= 0 on {d}. (C.8c)

For nc given, on the other hand, the trapped electron den-

sity of the intersection satisfies

−kdetrapnt + ktrap(1 −
nt

Ntrap
)nc

− ktb(nt − neq
t ) = 0 in [0, d]. (C.9)

To solve the combined problem of (C.8) and (C.9) we em-

ploy the finite element method and a fixed point iteration

procedure to solve the nonlinearity caused by the used

trapping rate law.

It is noticed that the chemical subsystem is constructed

in such a way that the pairs (µs, ns), (µs, rs) and (gradµs, js)

are related to energies or powers. As a consequence, the

existence of the constitutive relations suggests us to search

such solutions nc and nt that are square integrable in the

domain together with their gradients – the square integra-

bility guarantees the finiteness of energy.5 In the case of

(C.8), we end up in searching for an approximation to its

variational formulation from the following subspace of the

linear space C0([0, d]) of continuous functions in [0, d]:

SN
h ={χ ∈ C0([0, d]) : χ affine in each interval

[xj−1, xj ], where {xi} is a partition of [0, d]

such that 0 = x0 < x1 < · · · < xM = d,

and χ(0) = N}. (C.10)

(Affine function is a function of the form f(x) = αx + β.)

Since this is also a subspace of an appropriate Sobolev

space [30], a relevant problem (the solution of which, if

5 This is the case if there are strictly positive coefficients

representing the constitutive relations that are bounded below

and above [29].
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smooth enough, satisfies (C.8)) can be set to find nc ∈ SN
h

such that

a(nc, χ) = (f, χ) for all χ ∈ S0
h, (C.11)

where

a(u, v) =

∫ d

0

(D
du

dx

dv

dx
+ cuv)dx, (C.12)

(u, v) =

∫ d

0

uvdx. (C.13)

By employing hat functions {λi}
M
i=1 ⊂ S0

h, λi(xj) = δij

(the Kronecker delta), as a basis for S0
h, we can write

nc ∈ SN
h by using a finite number of degrees of freedom as

nc = Nλ0 +
∑M

j=1 Njλj , where the hat function Nλ0 is an

extension of the boundary value N . By using the hat func-

tions {λi}
M
i=1 also as the weight functions χ in (C.11), we

obtain M equations for the unknowns Nj , j = 1, . . . ,M ,

which are solved at each step of the fixed point iteration

procedure. The algorithm goes as

1. Guess Nj for j = 1, . . . ,M,

2. Solve the coefficients for nt from (C.9),

3. Solve new coefficients Nj for j = 1, . . . ,M, from (C.11),

4. Go to step 2 until converged.

Intuitively, the “fixed point” means that for a given nc,

(C.9) results in some nt, and by (C.11) we have nc again,

which must be the same we started from. To prove that the

iteration procedure self-consistently converges to a unique

fixed point for all initial guesses, it would be sufficient to

show that the associated mapping (which maps the array

of nodal values Nj to new nodal values) is a contraction

mapping. This is bypassed here but in practice the proce-

dure does converge.

Dynamic situation

Parallelling the above strategy, for a given nt, the conduc-

tion electron density nc that belongs to the intersection of

(23), (24) and (31) satisfies

∂nc

∂t
−

∂

∂x
D

∂nc

∂x
+ cnc = f in (0, d) × (0, T ],

(C.14a)

D
∂nc

∂x
− kext(nc − neq

c ) = 0 on {0} × [0, T ], (C.14b)

∂nc

∂x
= 0 on {d} × [0, T ], (C.14c)

nc = nref
c on [0, d] × {0},

(C.14d)

whereas, for nc given, the trapped electron density of the

intersection satisfies

∂nt

∂t
= −kdetrapnt + ktrap(1 −

nt

Ntrap
)nc

− ktb(nt − neq
t ) in [0, d] × (0, T ], (C.15a)

nt = nref
t on [0, d] × {0}. (C.15b)

To solve the problem the finite element method is equipped

with time discretisation, and the fixed point iteration pro-

cedure is performed at each time step. The initial con-

dition was specified to the steady-state situation of low

illumination (approximately 10−3 sun) by first solving the

corresponding steady-state problem for nref
c and nref

t .

This time we employ the function space

Sh ={χ ∈ C0([0, d]) : χ affine in each interval

[xj−1, xj ], where {xi} is a partition of [0, d]

such that 0 = x0 < x1 < · · · < xM = d}. (C.16)

We further employ the time discretisation that nk
c ∈ Sh

(resp. nk
t ∈ Sh) is the approximation of nc(t) (resp. nt(t))
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at t = tk = k△t, where △t is the time step and k ∈ N.

Then, an approximation to the variational formulation of

the time discretised version of (C.14) is defined by the

problem: Find nk
c ∈ Sh recursively for k > 0 such that

(△t−1(nk
c − nk−1

c ), χ) + ak−1/2(
1

2
(nk

c + nk−1
c ), χ)

= b(fk−1/2, χ) for all χ ∈ Sh, (C.17a)

n0
c = Ihnref

c , (C.17b)

where

(u, v) =

∫ d

0

uvdx, (C.18)

ak−1/2(u, v) =

∫ d

0

(D
∂u

∂x

∂v

∂x
+ ck−1/2uv)dx

+ kextu(0)v(0), (C.19)

b(fk−1/2, v) =

∫ d

0

fk−1/2vdx + kextn
eq
c (0)v(0), (C.20)

and

ck−1/2 = ktrap(1 −
1

2Ntrap
(nk

t + nk−1
t )) + kcb, (C.21)

fk−1/2 = gIhν(tk−1/2) + kdetrap
1

2
(nk

t + nk−1
t ) + kcbneq

c ,

(C.22)

and Ihnref
c is the interpolant of nref

c ∈ C0([0, d]) in Sh. The

same time stepping is used for (C.15), so that nk
t is defined

recursively for k > 0 by

△t−1(nk
t − nk−1

t ) +
kdetrap

2
(nk

t + nk−1
t )

− ktrap(1 −
1

2Ntrap
(nk

t + nk−1
t ))

1

2
(nk

c + nk−1
c )

+
ktb

2
(nk

t + nk−1
t ) − ktbneq

t = 0, (C.23a)

n0
t = Ihnref

t . (C.23b)

The basis for Sh is given by hat functions {λi}
M
i=0 ⊂ Sh,

λi(xj) = δij . To obtain finite element equations nk
c and nk

t

are expressed in this basis to write (C.17) and (C.23) in

matrix form. Finally, the solution procedure can be stated

as follows:

1. Set initial conditions n0
c and n0

t .

2. Set k = 1.

3. Solve nk
c and nk

t by fixed point iteration from

(C.17) and (C.23).

4. Set k = k + 1, go to the previous step.

The method is close to the Crank-Nicholson-Galerkin met-

hod (see [30]) equipped with the fixed point iteration pro-

cedure. Here, however, the bilinear form a(·, ·) depends on

the time step which is not considered in the analysis of

the standard method. We skip further mathematical anal-

ysis, and are satisfied with the practical functioning of the

algorithm.
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conducting electrolyte

counter electrode

active electrode 

semiconductor nanoparticles

~ 10 nm

(  ∼10µ m)

electrolyte

photoactive dye
molecules

 substrate

Fig. 1. The schematic structure of the dye cell. The black

dot whose enlargement is shown represents a mesoscopic point

in the chosen modelling. The enlargement shows a microscopic

picture.
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Fig. 2. Simulated current-voltage characteristics under two

different illumination levels (the levels correspond to approxi-

mately 1 sun and 0.1 sun irradiances).
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Fig. 3. Short-circuit simulation under fast transient light

pulse. Light intensity versus time (top), short-circuit current

versus time (center), and the corresponding Ihν
ISC-curve (bot-

tom). The arrows show the direction of time evolution.
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