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1 IRCCyN UMR CNRS 6597, University of Nantes, France
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Abstract. This paper presents a path-based distance where local dis-
placement costs vary both according to the displacement vector and
with the travelled distance. The corresponding distance transform al-
gorithm is similar in its form to classical propagation-based algorithms,
but the more variable distance increments are either stored in look-up-
tables or computed on-the-fly. These distances and distance transform
extend neighborhood-sequence distances, chamfer distances and gener-
alized distances based on Minkowski sums. We introduce algorithms to
compute, in Z2, a translated version of a neighborhood sequence distance
map with a limited number of neighbors, both for periodic and aperi-
odic sequences. A method to recover the centered distance map from the
translated one is also introduced. Overall, the distance transform can be
computed with minimal delay, without the need to wait for the whole
input image before beginning to provide the result image.

1 Introduction

In [8] discrete distances were introduced along with sequential algorithms to

compute the distance transform (DT) of a binary image, where each point is

mapped to its distance to the background. These discrete distances are built from

adjacency and connected paths (path-based distances): the distance between two

points is equal to the cost of the shortest path that joins them. For distance d4
(“d" in [8]), defined in the square grid Z2, each point has four neighbors located

at its top, left, bottom and right edges. Similarly, for distance d8 (“d∗" in [8]),

each point has four extra diagonally located neighbors. In both cases, d4 and

d8, the cost of a path is defined as the number of displacements. These simple

distances have been extended in different ways, by changing the neighborhood

depending on the travelled distance ([9,2]), by weighting displacements [5,2], or

even by a mixed approach of weighted neighborhood sequence paths [10].

Section 2 presents definitions of distances, disks and some properties of non-

decreasing integer sequences that will be used later. Section 3 introduces a new

generalization of path-based distances where displacement costs vary both on the

displacement vector and on the travelled distance. An application is presented

in section 4 for the efficient computation of neighborhood-sequence DT in 2D.



2 Preliminaries

Lambek-Moser inverse of a integer sequence [4]. Let the function f de-

fine a non-decreasing sequences of integers (f(1), f(2), . . . ) For the sake of sim-

plicity, we call f a sequence. The inverse sequence of f , denoted by f†, is a

non-decreasing sequence of integers defined by:

f(m) < n ⇔ f†(n) �< m . (1)

An interesting property of a sequence f and its inverse f† is that, by adding

the rank of each term to these two sequences, we obtain two complementary

sequences f(m) +m and f†(n) + n [4]. This property extends the results given

by Ostrowski et al. [7] about Beatty sequences [1]. From [4], we deduce that the

inverse of the sequence f(m) = �τm� with a scalar τ , is f†(n) = �n
τ − 1� so

f(m) +m = �(1+ τ)m� and f†(n) +n = �(1+ 1
τ )n− 1� are two complementary

sequences. If τ is irrational, these sequences are Beatty sequences and, for any

positive n, �(1 + 1
τ )n− 1� is equal to �(1 + 1

τ )n� as given in [1].

Proposition 1. f†(f(m) + 1) + 1 is the rank of the smallest term greater than
m where f increases.

Proof.

f†(f(m) + 1) + 1 = m� ⇔
�
f†(f(m) + 1) < m�

f†(f(m) + 1) ≥ m� − 1

⇔
�

f(m�) ≥ f(m) + 1

f(m� − 1) < f(m) + 1

⇔ f(m�) > f(m) and f(m� − 1) ≤ f(m) .

If we extend f with f(0) = 0, and define g by g(0) = 0, g(n+1) = f†(f(g(n))+
1) + 1, then f(g(n)) takes, in increasing order, all the values of f , each one

appearing once.

Definition 1 (Discrete distance). A function d : Zn×Zn → N is a translation-

invariant distance if the following conditions holds ∀x, y, z ∈ Zn, ∀λ ∈ Z:

1. translation invariance d(x+ z, y + z) = d(x, y) ,
2. positive definiteness d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y ,
3. symmetry d(x, y) = d(y, x) ,

In the following sections, we will drop definiteness and symmetry to define “asym-

metric pseudo-distances".

Definition 2 (Disk). The disk D(p, r) of center p and radius r and the sym-
metrical disk Ď(p, r) are the sets:

D(p, r) = {q : d(p, q) ≤ r} ,
Ď(p, r) = {q : d(q, p) ≤ r} .

(2)



Table 1. Example of a non-decreasing sequence f and its Lambek-Moser inverse. f is
the cumulative sequence of the periodic sequence (1, 2, 0, 3), f† its inverse. f†(f(n) +
1)+1 locates the rank of the next f increase. For instance, f(6) = 9, f†(f(6)+1)+1 = 8
is the rank of appearance of the first value greater than 9, which is 12 in this case.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
f(n) 1 3 3 6 7 9 9 12 13 15 15 18 19 21
f†(n) 0 1 1 3 3 3 4 5 5 7 7 7 8 9

f†(f(n) + 1) + 1 2 4 4 5 6 8 8 9 10 12 12 13 14 16

By definition, any disk of negative radius is empty and the disk of radius 0 only

contains its center (D(p, 0) =
�
p
�
).

Definition 3 (Distance transform). The distance transform DTX of the bi-
nary image X is a function that maps each point p to its distance from the closest
background point:

DTX : Zn → N
DTX(p) = min

�
d(q, p) : q ∈ Zn \X

�
.

(3)

Alternatively, since all points at a distance less than DTX(p) to p belong to

X (Ď(p,DTX(p) − 1) ⊂ X) and at least one point at a distance to p equal to

DTX(p) is not in X (Ď(p,DTX(p)) �⊂ X) then:

DTX(p) ≥ r ⇔ Ď(p, r − 1) ⊂ X . (4)

The DT is usually defined as the distance to the background which is equiva-

lent to the distance from the background by symmetry. The equivalence is lost

with asymmetric distances, and this definition better reflects the fact that DT

algorithms always propagate paths from the background points.

In this paper, we consider path-based distances, i.e. distance functions that

associate to each couple of points (p, q), the minimal cost of a path from p to q.
For a simple distance, a path is a sequence of points where the difference between

two successive points is a displacement vector taken in a fixed neighborhood N ,

and the cost (or length) of a path is the number of its displacements. The cost

of the path (p0, . . . , pn, pn + v) derives from the cost of the path (p0, . . . , pn):

L(p0, . . . , pn) = r ⇒ ∀v ∈ N ,L(p0, . . . , pn, pn + v) = r + 1 . (5)

Rosenfeld and Pfaltz specifically forbid paths where a point appears more than

once [8]. This restriction has no effect on the distance because a path where a

point appears more than once can not be minimal. In a similar manner, they

exclude the null vector from the neighborhood, forbidding a point to appear

several times consecutively. As before, it has no effect on the distance. Notice

that, in terms of distance, forbidding a path is equivalent to giving it an infinite

cost, so that it can not be minimal. (5) can be rewritten as:

L(p0, . . . , pn) = r ⇒ ∀v,L(p0, . . . , pn, pn + v) = r + cv ,



where

cv =

�
1 if v ∈ N
∞ otherwise

.

For a NS-distance characterized by the sequence B:

L(p0, . . . , pn) = r ⇒ ∀v,L(p0, . . . , pn, pn + v) = r + cBv (r) , (6)

where the displacement cost cBv (r) is 1 for a displacement vector in the neigh-

borhood B(r + 1) and infinite otherwise:

cBv (r) =

�
1 if v ∈ NB(r+1)

∞ otherwise
(7)

For a weighted distance with mask M = {(vk;wk) ∈ Zn × N∗}1≤k≤m, the dis-

tance increment only depends on the displacement vector, but not on the distance

already travelled:

L(p0, . . . , pn) = r ⇒ ∀v,L(p0, . . . , pn, pn + v) = r + cv , (8)

cv =

�
w if (v;w) ∈ M
∞ otherwise

Briefly, the displacement cost for a vector v and the travelled distance r, is 1 or

∞, independently of r for simple distances, is equal to 1 or ∞ whether v belongs

or not to NB(r) for a NS-distance, is in N∗∪{∞} according to the chamfer mask

and independently of r for a weighted distance.

In the following, we propose to use a displacement cost, denoted by cv(r),
with values in N∗∪{∞}, that depends both on the displacement vector v and on

the travelled distance r. According to the previous remarks, the cost associated

to the null displacement will always be unitary:

∀r ∈ N, c0(r) = 1 . (9)

3 Path-based Distance with Varying Weights

Definition 4 (Path). We call path from p to q, any finite sequence of points
P = (p = p0, p1, . . . , pn = q) with at least one point, and denote by P(p, q), the
set of these paths.

Notice that this definition of a path is not related to any adjacency relation.

The sequence P = (p) is allowed as a path from p to itself. It is distinct from

P = (p, p), the path from p to itself with a null displacement.

Definition 5 (Partial and total costs of a path). Let N be a set of vectors
containing the null vector 0 and the positive displacement costs cv (with c0(r) = 1
and cv �∈N (r) = ∞). The total cost of the path P = (p0, p1, . . . , pn) is:

L(P ) = Ln(P ) , (10)



where Li(P ) is the partial cost of the path truncated to its i+1 first points (i.e.,
to its i first displacements):

L0(P ) = L(p0) = 0 , (11)

Li+1(P ) = L(p0, . . . , pi+1) = Li(P ) + cpipi+1
(Li(P )) . (12)

Definition 6. We use the notation Cvk(r) = r + cvk(r). cvk(r) is the relative

cost of the displacement vk when the distance travelled so forth is r. Cvk(r)
represents the partial cost of the path after this displacement (the absolute cost

of this displacement):

Li+1(P ) = Li(P ) + cpipi+1
(Li(P )) = Cpipi+1

(Li(P )) . (13)

Definition 7. The pseudo-distance induced by
��

vk

�
, cvk

�
is defined by:

d(p, q) = 0 ⇔ p = q

d(p, q) = min
P∈P(p,q)

�
L(P )

�
.

Definition 8. We call minimal relative (resp. absolute) cost of displacement,
denoted by ĉ (resp. Ĉ), the quantity ĉv(r) = min

�
cv(s) + s − r, ∀s ≥ r

�
(resp.

Ĉv(r) = min
�
Cv(s), ∀s ≥ r

�
).

Proposition 2 (Preservation of cost order by concatenation). Appending
the same displacement to existing paths preserves the relation order of their costs.
Let P = (p1, · · · , pnP ) and Q = (q1, · · · , qnQ) be two paths with costs L(P ) and
L(Q), v a vector and P � = (p1, · · · , pnP , pnP +v), Q� = (q1, · · · , qnQ , qnQ+v) the
extended paths with costs L(P �) and L(Q�) measured with minimal displacement
costs. Then:

L(P ) ≤ L(Q) ⇒ L(P �) ≤ L(Q�) . (14)

Proof. From (13), L(P �) = Ĉv(L(P )) and L(Q�) = Ĉv(L(Q)). By definition of
Ĉv , s ≤ r ⇒ Ĉv(s) ≤ Ĉv(r), which gives (14).

Proposition 3. Let N =
�
vk

�
be a set of vectors and, cv(r), the displacement

costs for these vectors. There exists a path P from p to q of cost L(P ) = r
measured with costs cv(r) if and only if there exists a path P � from p to q of cost
L�(P �) = r measured with the minimal displacement costs ĉv(r).

p0

p1

p2 p3

cp0p1(0) cp1p2(L1(P ))

cp2p3(L2(P ))

Fig. 1. Total cost of a path P = (p0, p1, p2). Costs of displacements p0p1, p1p2 and
p2p3 depend on the partial costs L0(P ) = 0, L1(P ) = cp0p1(0) + 0 and L2(P ) =
cp1p2(L1(P )) + L1(P ). The total cost of P is cp2p3(L2(P )) + L2(P ).



Proof. Consider the cost of P after i displacements, Li(P ) = Li(p0, p1, . . . , pi),
we note m0 = 1,m0<i≤n = 1 + Li(P ) − Li−1(P ) − ĉpi−1pi(Li−1(P )) = 1 +

cpi−1pi(Li−1(P ))− ĉpi−1pi(Li−1(P )) and Mi =
�i

j=0 mi the cumulated sum of
mi. Clearly, if L(P ) is finite then each mi is finite and positive because ĉv(r) is
less than or equal to cv(r) by construction. Let P � be the (finite) path obtained
by mi occurrences of each point pi:

P � = (p0, p1 . . . p1� �� �
m1

, . . . , pi . . . pi� �� �
mi

, . . . , pn . . . pn� �� �
mn

) .

We take as an induction hypothesis that the partial cost of P � after mi occur-
rences of pi, L�

Mi−1(P
�), is equal to Li(P ). It holds for i = 0 because L�

M0−1(P
�) =

L�
m0−1(P

�) = L�
0(P

�) = 0 = L0(P ). If the hypothesis holds for i − 1, then the
partial cost of P � after the first occurrence of pi is L�

Mi−1
(P �) = Li−1(P ) +

ĉpi−1pi(Li−1(P )), and after mi − 1 repeats of pi, equals: L�
Mi−1+mi−1(P

�) =
L�
Mi−1(P

�) = Li−1(P )+ĉpi−1pi(Li−1(P ))+mi−1 = Li−1(P )+cpi−1pi(Li−1(P )) =
Li(P ) and the hypothesis is true at rank i. Therefore, for every path of finite cost
r measured with L, there exists a path with the same cost measured with L�. This
is shown in Fig. 2a.

Conversely, let P � be a path with finite cost measured by L�. We build a
path P where each point of P � appears m�

i times consecutively with m�
i such

that m�
i − 1 + cpipi+1

(L�
i(P

�) + m�
i − 1) = ĉpipi+1

(L�
i(P

�)). By definition of ĉ,
∀r, ∃s : ĉv(r) = cv(s)+s−r, so m�

i exists. Let M �
0 = 0 and M �

0<i≤n =
�i−1

j=0 mj,
be the cumulated sum of the previous terms of m�

i.
The induction hypothesis is that the partial cost of P , measured with L, at

the first occurence of pi, LM �
i
(P ), is equal to L�

i(P
�). It holds for i = 0 with

a null partial cost LM �
0
(P ) = L0(P ) = 0 = L�

0(P
�). If the hypothesis holds at

rank i, the partial cost of P , after m�
i − 1 repetitions of pi, if LM �

i+m�
i−1(P ) =

LM �
i
(P ) +m�

i − 1 = L�
i(P

�) +m�
i − 1, and at the first occurence of pi+1, equals

L�
i(P

�)+m�
i−1+cpipi+1

(L�
i(P

�)+m�
i−1) = L�

i(P
�)+ ĉpipi+1

(L�
i(P

�)) = L�
i+1(P

�)
and the hypothesis also holds at rank i+ 1. An example of such a path is shown
on Fig. 2b.

Corollary 1. Displacement costs cv and ĉv induce the same pseudo-distance.

According to (9), any path from p to q of cost less than r can be extended

with null displacements to reach cost r:

L(p0, . . . , pn = q) = s < r ⇒ L(p0, . . . , pn = q, . . . , q� �� �
1+r−s

) = r (15)

Proposition 4. There exists a path of cost r from p to q if and only if d(p, q) ≤
r.

Proof. If a path of cost r from p to q exists then by definition of the distance,
d(p, q) = r if P cost is minimal, d(p, q) < r otherwise. Conversely, if d(p, q) = s
then there exists a path of cost s from p to q that, according to (15), can be
extended to cost r ≥ s.



(a)
p0 p1 p2

+5 +3

+3
+1+1

+2

+1

r 0 1 2 3 4 5 6
cv(r) 5 2 ∞ ∞ ∞ 3 1
ĉv(r) 3 2 5 4 3 2 1

(b)
p0 p1 p2

+3 +4

+1

+2
+1

+1
+1

+1 r 0 1 2 3 4 5 6
cv(r) 5 2 ∞ ∞ ∞ 3 1
ĉv(r) 3 2 5 4 3 2 1

Fig. 2. (a) Given P = (p0, p1, p2), shown with dashed lines, has a total cost L(P ) = 8
measured with displacement costs cv . P � = (p0, p1, p1, p1, p2, p2), solid lines, is built
in such a way that its cost L�(P �) measured with minimal displacement costs ĉv , is
equal to L(P ) = 8. (b) Given P � = (p0, p1, p2), shown with solid lines, has a total cost
L�(P �) = 7 measured with displacement costs ĉv . P = (p0, p0, p1, p1, p1, p1, p2), dashed
lines, is built in such a way that L(P ) = L�(P �) = 7.

Corollary 2. For any value of r greater than or equal to d(p, q), there exists a
path from p to q which cost is exactly r. The closed disk centered in p with radius
r is the set of points for which a path from p of cost equal to r exists:

q ∈ D(p, r) ⇔ ∃P ∈ P(p, q),L(P ) = r . (16)

An iterative construction rule of disks is deduced from (16):

∀r > 0, D(p, r) =
�

v∈N

�
q : ∃P ∈ P(p, q − v) and Cv(L(P )) = r

�

=
�

v∈N
s :Cv (s)=r

D(p+ v, s) (17)

4 Minimal Delay Distance Transform

In [12], Wang and Bertrand, proposed a single scan asymmetric generalized

DT based on a neighborhood for which there exists a scanning order such that

when a point p in the image is scanned, all neighbors of p have already been

scanned (forward scan condition). Then, they extended this result to a sequence

where two neighborhoods with forward scan condition are alternated (i.e., B =
(1, 2)) [13]. In the following we propose a method to compute an asymmetric

generalized DT based on any number of neighborhoods having forward scan

condition used in an arbitrary order defined by a sequence B, either periodic

or not. For our purpose, we will use translated versions of regular NS-distances

neighborhoods, in order to meet the forward scan condition for each of them.

The resulting translated distance map can easily be transformed back into a

regular, symmetrical, NS-distance map.



Proposition 5. The DT of an image X with the distance induced by the neigh-
borhood N and the displacement costs Cv is such that:

DTX(p) =

�
0 if p �∈ X

min
�
Ĉv(DTX(p− v)),v ∈ N ∗� otherwise

(18)

where Ĉv represents the minimal absolute displacement costs corresponding to
Cv (definition 8).

Proof. Case p �∈ X directly results from definitions 3 and 7. Suppose now that
p ∈ X so any path from q �∈ X to p has at least one displacement. Prop. 3
states that distances induced by

��
vk

�
, Cvk

�
and

��
vk

�
, Ĉvk

�
are equal so we

consider the latter cost increments for which prop. 2 holds. According to prop.
2, if P = (q = p0, . . . , pn = p − v) is a minimal path from q to p − v then
P � = (q = p0, . . . , pn, p+v) has a minimal cost — among paths from q to p with
second last point p−v — equal to Ĉv(L(P )). So Ĉv(DTX(p−v)) is the shortest
distance from a point q �∈ X to p via p−v. Since all paths which last displacement
v does not belong to N have an infinite cost and can not be minimal, (18) holds.

4.1 Generalized Distance Transform

When all vectors in N ∗ are directed forward relatively to the scan order, (18)

propagates paths from background pixels in a single scan. As a consequence,

a generalized DT using any number of neighborhoods N1 . . .Nn, selected by a

sequence B,B(i) ∈ [1, n], derives directly from (7, 18) and minimal costs given

by:

Ĉv(r) = min
�
s : s > r and v ∈ NB(s)

�
. (19)

let χv(r) denote the characteristic function of the set NB(r) (i.e., χv(r) =
1 if v ∈ NB(r); 0 otherwise) and χΣ

v (r) its cumulative sum (χΣ
v (r) =

�
s≤r

χv(r)).

Then according to prop. 1:

Ĉv(r) = [χΣ
v ]

†(χΣ
v (r) + 1) + 1 . (20)

Algorithm 1 produces a generalized DT using any sequence of neighborhoods

(N represents their union) in forward scan condition, using displacement costs

given by (20). A similar algorithm was already presented for the decomposition

of convex structuring polygons [6].

4.2 Translated NS-distance transform

The sequence of disks for a NS-distance induced by a sequence B is produced

by iterative Minkowski sums of neighborhoods:

D(p, 0) =
�
p
�
, D(p, r) = D(p, r − 1)⊕NB(r) .



Data: X: a set of points
Data: N : neighborhood in forward scan condition
Data: Ĉv : minimal absolute displacement costs
Result: DTX : generalized distance transform of X
foreach p in DT domain, in raster scan do

if p /∈ X then
DTX(p) ← 0

else
l ← ∞
foreach v in N do

l ← min
�
l; Ĉv(DTX(p− v)

�

end
DTX(p) ← l

end
end

Algorithm 1: Single scan asymmetric distance transform

For each neighborhood Nj , we apply a translation vector tj such that the trans-

lated neighborhood N �
j = Nj⊕

�
tj
�

is in forward scan condition. In a translation

preserved scan order, tj translates the first visited point in Nj to the origin. As-

suming a nD standard raster scan order:

tj = (0, . . . , 0� �� �
n−j

, 1, . . . , 1� �� �
j

) (21)

The translated neighborhoods N �
1 and N �

2 obtained with t1 = (0, 1) and

t2 = (1, 1) are depicted in Fig. 3a and Fig. 3b. Characteristic functions for

vectors in N �
1 \N �

2, N �
2 \N �

1 and N �
1 ∩N �

2 (see Fig. 3c-e) are respectively 1B , 2B

and the constant value 1 resulting in the following minimal displacement costs:

Ĉv(r) =






Ĉ1
v(r) = 1†

B(1B(r) + 1) + 1 if v ∈ N �
1 and v �∈ N �

2

Ĉ2
v(r) = 2†

B(2B(r) + 1) + 1 if v �∈ N �
1 and v ∈ N �

2

Ĉ12
v (r) = r + 1 if v ∈ N �

1 and v ∈ N �
2

Periodic sequence. When B is a periodic sequence, minimal relative costs ĉv
are also periodic sequences. Take the periodic sequence of the octagonal dis-

tance B = (1, 2), then 1B(r)r≥0 = (0, 1, 1, 2, . . . ), 1†
B(r)r>0 = (0, 2, 4, . . . ),

Ĉ1
v(r)r≥0 = (1, 3, 3, 5 . . . ) and ĉ1v(r)r≥0 = (1, 2, 1, 2 . . . ). Similarly, 2B(r)r≥0 =

(0, 0, 1, 1, 2, . . . ), 2†
B(r)r>0 = (1, 3, . . . ), Ĉ2

v(r)r≥0 = (2, 2, 4 . . . ) and ĉ2v(r)r≥0 =
(2, 1, 2, 1 . . . ).

Rate-based sequence. Suppose now that the sequence of neighborhoods is defined

as a Beatty sequence (as in [3]): B(r) = �τr�− �τ(r− 1)�, with τ ∈ [1, 2] so that

B(r) ∈ {1, 2}. 1B and 2B are respectively the cumulative sums of 2 − B(r) =
�(2− τ)r� − �(2− τ)(r− 1)� and B(r)− 1 = �(τ − 1)r� − �(τ − 1)(r− 1)�. Then



(a) (b) (c) (d) (e) (f)

Fig. 3. Neighborhoods used for the translated NS-distance transform. (a), and (b) are
respectively the type 1 and 2 translated neighborhoods, N �

1 and N �
2. (c) and (d) and

(e) are respectively N �
1 \ N �

2, N �
2 \ N �

1 and N �
1 ∩ N �

2, each set associated to a different
sequence of displacement costs. (f) is the whole set of neighbors, N �

1 ∪N �
2, used for the

translated NS-DT.

1 1 1 1
1 1 2 2 2 2 1

1 2 2 2 3 3 2 2 1
1 2 2 2 2 3 4 3 2 1
1 2 1 1 2 2 3 2 2 1
1 1 1 2 2 2 1

1 1 1

1 1 1 1
1 1 1 1 1 1 1

1 1 1 2 2 2 2 1 1
1 1 2 2 2 2 2 2 2 1
1 2 2 2 2 2 3 3 2 1
1 2 2 2 3 3 3

2 2 4

(a) (b)

Fig. 4. (a) Octagonal DT of a binary image. (b) Translated octagonal DT. Highlighted
centers of disks (a) are translated to the same location, highlighted (b) with value 3.

1B(r) = �(2− τ)r�, 2B(r) = �(τ − 1)r�, 1†
B(r) = � r−1

2−τ � and 2†
B(r) = � r

τ−1 − 1�.
This allows to compute Ĉ1

v and Ĉ2
v on the fly. For the octagonal distance, τ = 3

2 ,

1B(r) = � r
2�, 2B(r) = � r

2�, 1
†
B(r) = 2r − 2 and 2†

B(r) = 2r − 1.

An exemple result of algorithm 1 for the translated octagonal distance (with

displacement costs obtained either from sequence B = (1, 2) either from τ = 3
2 )

is shown in Fig. 4b.

4.3 Symmetric DT from asymmetric DT

Let
�
t(r), r ∈ N∗� be a sequence of translation vectors such that the translated

disks D�(p, r) = D(p + t(r), r) and Ď�(p, r) = Ď(p − t(r), r) are increasing

according to the set inclusion. For a sequence of disks produced by translated

neighborhoods defined in (21), the translation vectors are:

t(r) = t(r − 1) + tB(r)

=
�

j

jB(r)tj

=




n�

j=n

jB(r), . . . ,
n�

j=1

jB(r)





In particular, for the 2D case:

t(r) = (2B(r),1B(r) + 2B(r)) = (2B(r), r) . (22)



Data: DT�
X : translated distance map of X

Result: DTX : centered distance map of X
foreach p in DT� domain do

if DT�(p) = 0 then
DT(p) ← 0

else
foreach j do

r ← max
�
1;DT�(p+ tj)

�

r ← j†B(jB(r)) + 1; // First r ≥ DT�(p− tj) such that B(r) = j
while r ≤ DT�(p) do

DT(p− t(r − 1)) ← r
r ← j†B(jB(r) + 1) + 1; // Next r such that B(r) = j

end
end

end
end
Algorithm 2: Obtention of a regular (centered) DT from a translated DT.

DT�
X has equivalence with values of DTX :

DTX(p) ≥ r ⇔ Ď(p, r − 1) ⊆ X

⇔ Ď�(p+ t(r − 1), r − 1) ⊆ X

⇔ DT�
X(p+ t(r − 1)) ≥ r . (23)

Consequently:

DTX(p) = r ⇔ DTX(p) ≥ r and DTX(p) < r + 1

⇔ DT�
X(p+ t(r)) ≤ r ≤ DT�

X(p+ t(r − 1)) . (24)

Knowing DT�
X(p) and DT�

X(p+t), we can deduce the values of DTX(p−t(r−1))
for all values of r between DT�

X(p+ t) and DT�
X(p) for which t(r) = t(r−1)+ t,

i.e., t = tB(r). Algorithm 2 recovers the values r of the centered DT by selecting

all r in the interval [DT�
X(p+tj),DT�

X(p)] such that B(r) = j. Iterating through

values r with B(r) = j is achieved using prop. 1. Values of DT�
X become available

before the whole image is computed. For instance, in a standard raster scan, as

soon as line y is processed, all lines of DT�
X above y − rmax are fully recovered

(where rmax denotes the maximal value of DT�
in that line).

5 Conclusion

In this paper, a path-based pseudo-distance scheme where displacement costs

vary both with the displacement vector and with the travelled distance was pre-

sented. This scheme is generic enough to describe neighborhood-sequence dis-

tances, weighted distances as well as generalized distances produced by Minkow-

ski sums. It was shown that a set of displacement costs can be provided in a



minimal form, where each displacement vector is assigned a non-decreasing se-

quence of costs, without altering the distance function. These non-decreasing

sequences are directly applied in the distance transform algorithm to keep track

of the costs of minimal paths from the background. An application to a translated

neighborhood-sequence distance transform in a single scan was presented along

with a method to recover the proper, centered, distance transform. Combined

methods provide partial result with a minimal delay, before the input image is

fully processed. Their efficiency can benefit all applications where neighborhood-

sequence distances are involved, particularly when pipelined processing architec-

tures are involved, or when the size of objects in the source image is limited.

The pseudo-distance presented here is strongly linked to the properties of

non-decreasing integer sequences studied by Lambek and Moser. An implemen-

tation in C language is publicly available at http://www.irccyn.ec-nantes.
fr/~normand/LUTBasedNSDistanceTransform.

References
1. Beatty, S.: Problem 3173. The American Mathematical Monthly 33(3), 159 (Mar

1926)
2. Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision,

Graphics, and Image Processing 27(3), 321–345 (Sep 1984)
3. Hajdu, A., Hajdu, L.: Approximating the Euclidean distance using non-periodic

neighbourhood sequences. Discrete Mathematics 283(1-3), 101–111 (Jun 2004)
4. Lambek, J., Moser, L.: Inverse and complementary sequences of natural numbers.

The American Mathematical Monthly 61(7), 454–458 (Aug-Sep 1954)
5. Montanari, U.: A method for obtaining skeletons using a quasi-Euclidean distance.

Journal of the ACM 15(4), 600–624 (Oct 1968)
6. Normand, N.: Convex structuring element decomposition for single scan binary

mathematical morphology. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.)
DGCI 2003. LNCS, vol. 2886, pp. 154–163. Springer Berlin / Heidelberg, Naples,
Italy (Nov 2003)

7. Ostrowski, A., Hyslop, J., Aitken, A.C.: Solutions to problem 3173. The American
Mathematical Monthly 34(3), 159–160 (Mar 1927)

8. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Jour-
nal of the ACM 13(4), 471–494 (Oct 1966)

9. Rosenfeld, A., Pfaltz, J.L.: Distances functions on digital pictures. Pattern Recog-
nition 1(1), 33–61 (Jul 1968)

10. Strand, R.: Weighted distances based on neighbourhood sequences. Pattern Recog-
nition Letters 28(15), 2029–2036 (Nov 2007)

11. Strand, R., Nagy, B., Fouard, C., Borgefors, G.: Generating distance maps with
neighbourhood sequences. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F.
(eds.) DGCI 2008. LNCS, vol. 4992, pp. 295–307. Springer Berlin / Heidelberg,
Lyon, France (Apr 2008)

12. Wang, X., Bertrand, G.: An algorithm for a generalized distance transformation
based on Minkowski operations. In: International Conference on Pattern Recogni-
tion. vol. 2, pp. 1164–1168 (Nov 1988)

13. Wang, X., Bertrand, G.: Some sequential algorithms for a generalized distance
transformation based on Minkowski operations. IEEE Transactions on Pattern
Analysis and Machine Intelligence 14(11), 1114–1121 (Nov 1992)

http://www.irccyn.ec-nantes.fr/~normand/LUTBasedNSDistanceTransform
http://www.irccyn.ec-nantes.fr/~normand/LUTBasedNSDistanceTransform

	Path-Based Distance with Varying Weights and Neighborhood Sequences

