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Introduction

Recall that a partial type π over a set A in a simple theory is onebased if for any tuple ā of realizations of π and any B ⊇ A the canonical base Cb(ā/B) is contained in the bounded closure bdd(āA). In other words, forking dependence is either trivial or behaves as in modules: Any two sets are independent over the intersection of their bounded closures. One-basedness implies that the forking geometry is particularly well-behaved; for instance one-based groups are bounded-byabelian-by-bounded. The principal result in [START_REF] Frank | Some remarks on one-basedness[END_REF] is that one-basedness is preserved under analyses (i.e. iterative approximations by some other types): a type analysable in one-based types is itself one-based. This generalized earlier results of Hrushovski [START_REF] Hrushovski | The Manin-Mumford conjecture and the model theory of difference fields[END_REF] and Chatzidakis [START_REF] Chatzidakis | A note on canonical bases and modular types in supersimple theories[END_REF]. Onebasedness is the first level in a hierarchy of possible geometric behaviour of forking independence first defined by Pillay [START_REF] Pillay | A note on CM-triviality and the geometry of forking[END_REF] and slightly modified by Evans [START_REF] Evans | Ample dividing[END_REF], n-ampleness, modelled on the behavior of flags in n-space. Not 1-ample means one-based; not 2-ample is equivalent to a notion previously introduced by Hrushovski [START_REF] Hrushovski | A new strongly minimal set[END_REF], CM-triviality. Fields are n-ample for all n < ω, as is the non-abelian free group [START_REF] Ould | Ampleness in the free group[END_REF]. In [START_REF] Pillay | A note on CM-triviality and the geometry of forking[END_REF] Pillay defines n-ampleness locally for a single type and shows that a superstable theory of finite Lascar rank is non n-ample if and only if all its types of rank 1 are; his proof implies that in such a theory, a type analysable in non n-ample types is again non n-ample.

We shall give a definition of n-ampleness for invariant families of partial types, and generalize Pillay's result to arbitrary simple theories. Note that for n = 1 this gives an alternative proof of the main result in [START_REF] Frank | Some remarks on one-basedness[END_REF]. Since for types of infinite rank the algebraic (bounded) closure used in the definition is not necessarily appropriate (for a regular type p one might, for instance, replace it by p-closure), we also generalize the notion to Σ-closure for some ∅-invariant collection of partial types (thought of as small), giving rise to the notion of n-Σ-ample. This may for instance be applied to consider ampleness modulo types of finite SU-rank, or modulo supersimple types. Readers not interested in this additional generality are invited to simply replace Σ-closure by bounded closure. However, this will only marginally shorten the proofs. As an immediate Corollary of the more general version, we shall derive a weakened version of the Canonical Base Property CBP [START_REF] Pillay | Jet spaces of varieties over differential and difference fields[END_REF] shown by Chatzidakis [START_REF] Chatzidakis | A note on canonical bases and modular types in supersimple theories[END_REF], where analysability replaces internality in the definition. We also give a version appropriate for supersimple theories. Finally, we deduce that in a simple theory with enough regular types, a hyperdefinable group modulo its approximate centre is analysable in the family of non one-based regular types; the group modulo a normal nilpotent subgroup is almost internal in that family. This can be thought of as a general version of the properties of one-based groups mentioned above.

Our notation is standard and follows [START_REF] Frank | Simple Theories[END_REF]. Throughout the paper, the ambient theory will be simple, and we shall be working in M heq , where M is a sufficiently saturated model of the ambient theory. Thus tuples are tuples of hyperimaginaries, and dcl = dcl heq .

Internality and analysability

For the rest of the paper Σ will be an ∅-invariant family of partial types. Recall first the definitions of internality, analysability, foreignness and orthogonality. • Σ-analysable if for any realization a of π there are (a i : i < α) ∈ dcl(Aa) such that tp(a i /A, a j : j < i) is Σ-internal for all i < α, and a ∈ bdd(A, a i : i < α). So p is foreign to Σ if p is orthogonal to all completions of partial types in Σ, over all possible parameter sets.

The following lemmas and their corollaries are folklore, but we add some precision about non-orthogonality. for all ω ≤ i < α. Then ab i c i | ⌣B (b j : j = i) for all ω ≤ i < α. By indiscernability, if p b i were orthogonal to p b j for some i = j, then they would be orthogonal for all i = j. As c i | ⌣b i (b j : j = i), the sequence (b i c i : ω ≤ i < α) would be independent over B. However, a | ⌣B b i c i for all ω ≤ i < α, contradicting the boundedness of weight of tp(a/B). The proof for Σ-analysability is analogous. Definition 2.5. Two partial types π 1 and π 2 are perpendicular, denoted π 1 ⊥ π 2 , if for any set A containing their domains and any tuple āi |= π i for i = 1, 2 we have ā1 | ⌣A ā2 .

c 0 = bc. Then a ′ ∈ dcl(b i c i : i < ω); since b | ⌣ a we get (b i : i < ω) | ⌣ a, whence (b i : i < ω) | ⌣ a ′ . So a ′ is internal in {tp(c i /b i ) : i < ω}. Finally, tp(c i /b i ) is non-orthogonal to tp(c/b) for all i < ω by Lemma 2.2.
For instance, orthogonal types of rank 1 are perpendicular.

Corollary 2.6. Suppose a | ⌣ b, and a 0 ∈ bdd(ab) is (almost) Π-internal over b for some b-invariant family Π of partial types. Let Π ′ be the family of bdd(∅)-conjugates π ′ of partial types π ∈ Π with π ′ ⊥ π. Then there is (almost) Π ′ -internal a 1 ∈ bdd(a) with a 0 ∈ bdd(a 1 b). The same statement holds with analysable instead of internal.

Proof: If tp(a 0 /b) is Π-internal, there is c | ⌣b a 0 and ē realizing partial types in Π over bc such that a 0 ∈ dcl(bcē); we choose them with cē | ⌣ba 0 a. So c | ⌣b a, whence a | ⌣ bc. Furthermore, we may assume that e | ⌣bc a for all e ∈ ē, since otherwise ec | ⌣b a 0 and we may just include e in c, reducing the length of ē. Now a 0 ∈ bdd(abc) ∩ bdd(bcē), so by Lemmas 2.2 and 2.3 there is Π ′ -internal a 1 ∈ bdd(a) with a 0 ∈ bdd(bca 1 ). Since a | ⌣b c implies a 0 | ⌣a 1 b c, we get a 0 ∈ bdd(a 1 b). For the almost internal case, we replace definable by bounded closure; for the analysability statement we iterate, adding a 1 to the parameters.

To finish this section, a decomposition lemma for almost internality. Lemma 2.7. Let Σ = i<α Σ i , where (Σ i : i < α) is a collection of pairwise perpendicular ∅-invariant families of partial types. If tp(a/A) is almost Σ-internal, then there are (a i : i < α) interbounded over A with a such that tp(a i /A) is Σ i -internal for i < α.

Clearly, if a is a finite imaginary tuple, we only need finitely many a i . Proof: By assumption there is B | ⌣A a and some tuples (b i : i < α) such that b i realizes partial types in Σ i over B, with a ∈ bdd(B, b i : i < α). Let a i = Cb(Bb i /Aa). Then a i ∈ bdd(Aa) and tp(a i /A) is Σ i -internal by Corollary 2.4.

Put ā = (a

i : i < α). Then a | ⌣Aa i Bb i implies a | ⌣Bā b i ; since b i | ⌣Ba (b j : j = i) by perpendicularity we obtain b i | ⌣Bā (a, b j : j = i) for all i < α. Hence (a, b i : i < α) is independent over Bā, and in particular a | ⌣ Bā (b i : i < α).
Since a ∈ bdd(B, b i : i < α) we get a ∈ bdd(Bā); as a | ⌣A B implies a | ⌣Aā B we obtain a ∈ bdd(Aā).

3. Σ-closure, Σ 1 -closure and a theory of levels

In his proof of Vaught's conjecture for superstable theories of finite rank [START_REF] Buechler | Vaught's conjecture for superstable theories of finite rank[END_REF], Buechler defines the first level ℓ 1 (a) of an element a of finite Lascar rank as the set of all b ∈ acl eq (a) internal in the family of all types of Lascar rank one; higher levels are defined inductively by ℓ n+1 (a) = ℓ 1 (a/ℓ n (a)). The notion has been studied by Prerna Bihani Juhlin in her thesis [START_REF] Bihani | Fine stucture of dependence in superstable theories of finite rank[END_REF] in connection with a reformulation of the canonical base property. We shall generalise the notion to arbitrary simple theories. Definition 3.1. For an ordinal α the α-th Σ-level of a over A is defined inductively by ℓ Σ 0 (a/A) = bdd(A), and for α > 0

ℓ Σ α (a/A) = {b ∈ bdd(aA) : tp(b/ β<α ℓ β (a/A)) is almost Σ-internal}.
Finally, we shall write ℓ Σ ∞ (a/A) for the set of all hyperimaginaries b ∈ bdd(aA) such that tp(b/A) is Σ-analysable. Remark 3.2. Clearly, tp(a/A) is Σ-analysable if and only if ℓ Σ ∞ (a/A) = bdd(aA) if and only if ℓ Σ α (a/A) = bdd(aA) for some ordinal α, and the minimal such α is the minimal length of a Σ-analysis of a over A.

Lemma 3.3. If a | ⌣ b, then ℓ Σ α (ab) = bdd(ℓ Σ α (a), ℓ Σ α (b)) for any α. Proof: Let c = ℓ Σ α (ab). Clearly, ℓ Σ α (a)ℓ Σ α (b) ⊆ c.
Conversely, put a 0 = Cb(bc/a). Then tp(a 0 ) is internal in the family of bdd(∅)-conjugates of tp(c/b) by Corollary 2.4; since even tp(c) is Σ-analysable in α steps, so is tp(a 0 ). Thus

a 0 ⊆ ℓ Σ α (a). Now bc | ⌣a 0 a implies c | ⌣ ℓ Σ α (a)b a, whence c ⊆ bdd(ℓ Σ α (a), b). By symmetry, c ⊆ bdd(ℓ Σ α (b), a), that is, ℓ Σ α (ab) ⊆ bdd(ℓ Σ α (a), b) ∩ bdd(ℓ Σ α (b), a). On the other hand, a | ⌣ b yields a | ⌣ℓ Σ α (a)ℓ Σ α (b) b. Thus, bdd(ℓ Σ α (a), b) ∩ bdd(ℓ Σ α (b), a) = bdd(ℓ Σ α (a), ℓ Σ α (b)), whence the result. Corollary 3.4. If (a i : i ∈ I) is an ∅-independent sequence, then ℓ Σ α (a i : i ∈ I) = bdd(ℓ Σ α (a i ) : i ∈ I). Proof: Let c = ℓ Σ α (a i : i ∈ I) and set b J = Cb(c/a i : i ∈ J) for each finite J ⊆ I. Note for each finite J ⊆ I that tp(b J ) is Σ-analysable in α steps. Thus b J ⊆ ℓ Σ α (a i : i ∈ J). On the other hand, ℓ Σ α (a i : i ∈ J) = bdd(ℓ Σ α (a i ) : i ∈ J) by Lemma 3.3 and induction, since J ⊆ I is finite. Therefore c | ⌣ (ℓ Σ α (a i ):i∈I) (a i : i ∈ I)
by the finite character of forking, whence c ⊆ bdd(ℓ Σ α (a i ) : i ∈ I). We shall see that the first level governs domination-equivalence. (1) a and ℓ Σ 1 (a/A) are Σ-domination-equivalent over A. (2) If tp(a/A) is Σ-analysable, then a and ℓ Σ 1 (a/A) are dominationequivalent over A.

(3) If tp(a/A) is Σ ∪ Σ ′ -analysable and foreign to Σ ′ , then a and ℓ Σ 1 (a/A) are domination-equivalent over A.

Proof: (1) Since ℓ Σ 1 (a/A) ∈ bdd(Aa), clearly a dominates (and Σdominates) ℓ Σ 1 (a/A) over A. For the converse, suppose tp(b/A) is Σ-analysable and b | ⌣A a. Consider a sequence (b i : i < α) in bdd(Ab) such that tp(b i /A, b j : j < i) is Σ-internal for all i < α and b ∈ bdd(A, b i : i < α). Since a | ⌣A b there is a minimal i < α such that a | ⌣A,(b j :j<i) b i . Put

a ′ = Cb(b j : j ≤ i/Aa) ∈ bdd(Aa).
Then tp(a ′ /A) is Σ-internal by Corollary 2.4, and

a ′ ⊆ ℓ Σ 1 (a/A). Clearly a ′ | ⌣A (b j : j ≤ i), whence a ′ | ⌣A b and finally ℓ Σ 1 (a/A) | ⌣A b. This shows (1). (2) follows from (3) setting Σ ′ = ∅. (3) Suppose b | ⌣A a. We may assume that b = Cb(a/Ab), so tp(b/A) is (Σ ∪ Σ ′ )-analysable. Thus b | ⌣ A ℓ Σ∪Σ ′ 1 (a/A) by (1). Now tp(ℓ Σ∪Σ ′ 1 (a/A)/A) is foreign to Σ ′ since tp(a/A) is; it is hence almost Σ-internal. Therefore ℓ Σ∪Σ ′ 1 (a/A) ⊆ ℓ Σ 1 (a/A) and so b | ⌣A ℓ Σ 1 (a/A). Remark 3.7. If tp(a/A) is Σ 0 -analysable and Σ 1 is a subfamily of Σ 0 such that tp(a/A) remains Σ 1 -analysable, then ℓ Σ 1 1 (a/A) ⊆ ℓ Σ 0 1 (a/A) ⊆ bdd(aA) and ℓ Σ 1
1 (a/A) and ℓ Σ 0 1 (a/A) are both domination-equivalent to a over A. In fact it would be sufficient to have Σ 1 such that tp(ℓ Σ 0 1 (a/A)/A) is Σ 1 -analysable. Question 3.8. When is there a minimal (boundedly closed) a 0 ∈ bdd(aA) domination-equivalent with a over A?

If T has finite SU-rank, one can take a 0 ∈ bdd(aA) \ bdd(A) with SU(a 0 /A) minimal possible. Definition 3.9.

• A type tp(a/A) is Σ-flat if ℓ Σ 1 (a/A) = ℓ Σ 2 (a/A). It is A-flat if it is Σ-flat for all A-invariant Σ. It is flat if for all B ⊇ A every nonforking extension to B is B-flat. A theory T is flat if all its types are. • A type p ∈ S(A) is A-ultraflat if it is almost internal in any A-invariant family of partial types it is non-foreign to. It is ultraflat if for any B ⊇ A every nonforking extension to B is B-ultraflat.
Flatness and ultraflatness are clearly preserved under non-forking extensions and non-forking restrictions, and under adding and forgetting parameters.

Remark 3.10. If tp(a/A) is Σ-flat, then ℓ Σ α (a/A) = ℓ Σ 1 (a/A
) for all α > 0. Clearly, ultraflat implies flat.

Example.

• Generic types of fields or definably simple groups interpretable in a simple theory are ultraflat.

• Types of Lascar rank 1 are ultraflat.

• If there is no boundedly closed set between bdd(A) and bdd(aA), then tp(a/A) is A-ultraflat. • In a small simple theory there are many A-ultraflat types over finite sets A, as the lattice of boundedly closed subsets of bdd(aA) is scattered for finitary aA.

Next we shall prove that any type internal in a family of Lascar rank one types is also flat.

Lemma 3.11. It tp(a/A) is flat (ultraflat), then so is tp(a 0 /A) for any a 0 ∈ bdd(Aa). Proof: Consider a set B extending A with B |
⌣A a 0 ; we may assume that B | ⌣Aa 0 a,whence B | ⌣A a. Firstly, the flat case is clear since ℓ Σ α (a 0 /B) = ℓ Σ α (a/B) ∩ bdd(Ba 0 ) for any α > 0 and for any B-invariant family Σ. Assume now tp(a/A) is ultraflat, a 0 ∈ bdd(Aa) and tp(a 0 /B) is not foreign to some Binvariant family Σ. Then tp(a/B) is not foreign to Σ, hence almost Σ-internal, as is tp(a 0 /B). We shall now recall the definitions and properties of Σ-closure from [24, Section 4.0] in the stable and [START_REF] Frank | Simple Theories[END_REF]Section 3.5] in the simple case (where it is called P -closure: our Σ corresponds to the collection of all P -analysable types which are co-foreign to P ). Buechler and Hoover [2, Definition 1.2] redefine such a closure operator in the context of superstable theories and reprove some of the properties [2, Lemma 2.5].

Definition 3.16. The Σ-closure Σcl(A) of a set A is the collection of all hyperimaginaries a such that tp(a/A) is Σ-analysable.

Remark 3.17. We think of partial types in Σ as small. We always have bdd(A) ⊆ Σcl(A); equality holds if Σ is the family of all bounded types. Other useful examples for Σ are the family of all types of SUrank < ω α for some ordinal α, the family of all supersimple types in a properly simple theory, or the family of p-simple types of p-weight 0 for some regular type p, giving rise to Hrushovski's p-closure [START_REF] Hrushovski | Locally modular regular types[END_REF].

Fact 3.18. The following are equivalent:

(1) tp(a/A) is foreign to Σ. (2) a | ⌣A Σcl(A). (3) a |
⌣A dcl(aA) ∩ Σcl(A). ( 4) dcl(aA) ∩ Σcl(A) ⊆ bdd(A).

Proof: The equivalence of (1), ( 2) and ( 3) is [25, Lemma 3.5.3]; the equivalence (3) ⇔ (4) is obvious.

Unless it equals bounded closure, Σ-closure has the size of the monster model and thus violates the usual conventions. The equivalence (2) ⇔ (3) can be used to cut it down to some small part. (2) This is similar to [START_REF] Bihani | Fine stucture of dependence in superstable theories of finite rank[END_REF]. By Fact 15 Proof: Consider e ∈ Σcl(A) ∩ Σcl(B) and put f = Cb(e/AB). Then e | ⌣f AB ; since tp(e/A) is Σ-analysable, so is tp(e/f ), and e ∈ Σcl(f ). If I is a Morley sequence in tp(e/AB), then f ∈ dcl(I). However, since e is Σ-analysable over A and over B, so is I, whence f . Hence

Σcl(BD) | ⌣ Σcl(B)∩dcl(AB) AB ; since AD | ⌣A AB we obtain Cb(bdd(AD) ∩ Σcl(BD)/AB) ⊆ bdd(A) ∩ Σcl(B) = bdd(C).
f ∈ bdd(AB) ∩ Σcl(A) ∩ Σcl(B) = C.
The result follows.

However, for considerations such as the canonical base property, one should like to work with the first level of the Σ-closure rather than with the full closure operator.

Definition 3.22. The Σ 1 -closure of A is given by Σ 1 cl(A) = ℓ Σ 1 (Σcl(A)/A) = {b : tp(b/A) is almost Σ-internal}. Unfortunately, unless tp(Σcl(A)/A) is Σ-flat, Σ 1 -closure is not a clo- sure operator, as Σ 1 cl(Σ 1 cl(A)) ⊃ Σ 1 cl(A). Lemma 3.23. Suppose A | ⌣B C with B ⊆ A ∩ C. Then Σ 1 cl(A) | ⌣ Σ 1 cl(B)
C. 

More precisely

Question 3.24. If A | ⌣B C, is Σ 1 cl(A) | ⌣Σ 1 cl(B) Σ 1 cl(C) ?
4. Σ-ampleness and weak Σ-ampleness Let Φ and Σ be ∅-invariant families of partial types.

Definition 4.1. Φ is n-Σ-ample if there are tuples a 0 , . . . , a n , with a n a tuple of realizations of partial types in Φ over some parameters A, such that

(1)

a n | ⌣Σcl(A) a 0 ; (2) a i+1 | ⌣Σcl(Aa i ) a 0 . . . a i-1 for 1 ≤ i < n; (3) Σcl(Aa 0 . . . a i-1 a i ) ∩ Σcl(Aa 0 . . . a i-1 a i+1 ) = Σcl(Aa 0 . . . a i-1 )
for 0 ≤ i < n.

Remark 4.2. Pillay [START_REF] Pillay | A note on CM-triviality and the geometry of forking[END_REF] requires a n | ⌣Aa i a 0 . . . a i-1 for 1 ≤ i < n in item [START_REF] Buechler | The classification of small types of rank ω I[END_REF]. We follow the variant proposed by Evans and Nübling [START_REF] Evans | Ample dividing[END_REF] which seems more natural and which implies

a n . . . a i+1 | ⌣ Σcl(Aa i ) a 0 . . . a i-1 .
Lemma 4.3. If Σ ′ is a Σ-analysable family of partial types, then n-Σample implies n-Σ ′ -ample, and in particular n-ample.

Proof: As in [20, Remark 3.7] we replace a i by

a ′ i = Cb(a ′ n . . . a ′ i+1 /Σcl(Aa i )) for i < n, where a ′ n = a n . Then a ′ n . . . a ′ i+1 | ⌣ a ′ i Σcl(Aa i ) and a ′ n . . . a ′ i+1 | ⌣ Σcl(Aa i )
Σcl(Aa 0 . . . a i ) by Fact 3.18, whence

a ′ n . . . a ′ i+1 | ⌣ a ′ i Σcl(Aa 0 . . . a i ). Put A ′ = Σcl(A)∩bdd(Aa ′ 0 ). Then A ⊆ A ′ ⊆ Σcl(A), whence Σcl(A) = Σcl(A ′ ), and a ′ 0 | ⌣A ′ Σcl(A). Now a n | ⌣Σcl(A ′ ) a 0 implies a ′ n | ⌣Σcl(A) a ′ 0 , whence a ′ n | ⌣Σ ′ cl(A) a ′ 0 . Clearly a ′ i+1 | ⌣a ′ i Σcl(Aa 0 . . . a i ) implies a ′ i+1 | ⌣ Σ ′ cl(A ′ a ′ i ) a ′ 0 . . . a ′ i-1
for 1 ≤ i < n. Finally,

A ′ a ′ 0 . . . a ′ i a ′ i+1 | ⌣ Σ ′ cl(A ′ a ′ 0 ...a ′ i-1 )
Σcl(Aa 0 . . . a i-1 ) yields

Σ ′ cl(A ′ a ′ 0 . . . a ′ i-1 a ′ i+1 ), Σ ′ cl(A ′ a ′ 0 . . . a ′ i ) | ⌣ Σ ′ cl(A ′ a ′ 0 ...a ′ i-1 )
Σcl(Aa 0 . . . a i-1 ), so

Σ ′ cl(A ′ a ′ 0 . . . a ′ i-1 a ′ i+1 ) ∩ Σ ′ cl(A ′ a ′ 0 . . . a ′ i ) ⊆ Σcl(Aa 0 . . . a i-1 ) implies Σ ′ cl(A ′ a ′ 0 . . . a ′ i-1 a ′ i+1 ) ∩ Σ ′ cl(A ′ a ′ 0 . . . a ′ i ) ⊆ Σ ′ cl(A ′ a ′ 0 . . . a ′ i-1 ).
This also shows that in Definition 4.1 one may require a 0 , . . . , a n-1 to lie in Φ heq , and a i+1 | ⌣a i Σcl(Aa 0 . . . a i ). a i for all i < n. Hence a i , . . . , a n witness (ni)-Σ-ampleness over Aa 0 . . . a i-1 . Thus n-Σample implies i-Σ-ample for all i ≤ n.

Remark 4.5. It is clear from the definition that even though Φ might be a complete type p, if p is not n-Σ-ample, neither is any extension of p, not only the non-forking ones.

For n = 1 and n = 2 there are alternative definitions of non-n-Σampleness: Definition 4.6.

(1) Φ is Σ-based if Cb(a/Σcl(B)) ⊆ Σcl(aA) for any tuple a of realizations of partial types in Φ over some parameters A and any

B ⊇ A. (2) Φ is Σ-CM-trivial if Cb(a/Σcl(AB)) ⊆ Σcl(A, Cb(a/Σcl(AC))
for any tuple a of realizations of partial types in Φ over some parameters A and any B ⊆ C such that Σcl(ABa) ∩Σcl(AC) = Σcl(AB).

Lemma 4.7.

(1) Φ is Σ-based if and only if Φ is not 1-Σ-ample.

(2) Φ is Σ-CM-trivial if and only if Φ is not 2-Σ-ample.

Proof: (1) Suppose Φ is Σ-based and consider a 0 , a 1 , A with Σcl(Aa 0 ) ∩ Σcl(Aa 1 ) = Σcl(A). Put a = a 1 and B = Aa 0 . By Σ-basedness Cb(a/Σcl(B)) ⊆ Σcl(Aa) ∩ Σcl(B) = Σcl(A).

Hence a | ⌣Σcl(A) Σcl(B), whence a 1 | ⌣Σcl(A) a 0 , so Φ is not 1-Σ-ample. Conversely, if Φ is not Σ-based, let a, A, B be a counterexample. Put a 0 = Cb(a 1 /Σcl(B)) and a 1 = a. Then a 0 / ∈ Σcl(Aa 1 ). Now take

A ′ = bdd(Aa 0 a 1 ) ∩ Σcl(Aa 0 ) ∩ Σcl(Aa 1 ). Then Σcl(A ′ a 0 ) ∩ Σcl(A ′ a 1 ) = Σcl(A ′ ) by Lemma 3.21.
Suppose

a 1 | ⌣Σcl(A ′ ) a 0 . Since Σcl(A ′ ) ⊆ Σcl(Aa 0 ) ⊆ Σcl(B) we have a 1 | ⌣a 0 Σcl(A ′ ). As a 0 = Cb(a 1 /Σcl(B)), this implies a 0 ⊆ Σcl(A ′ ) ⊆ Σcl(Aa 1 ),
a contradiction. Hence a 0 , a 1 , A ′ witness 1-Σ-ampleness of Φ.

(2) Suppose Φ is Σ-CM-trivial and consider a 0 , a 1 , a 2 , A with

Σcl(Aa 0 ) ∩ Σcl(Aa 1 ) = Σcl(A),
Σcl(Aa 0 a 1 ) ∩ Σcl(Aa 0 a 2 ) = Σcl(Aa 0 ), and

a 2 | ⌣ Σcl(Aa 1 ) a 0 .
Put a = a 2 , B = a 0 and C = a 0 a 1 . Then

a 2 | ⌣ Σcl(Aa 1 )
Σcl(Aa 0 a 1 ), so Cb(a/Σcl(AC)) ⊆ Σcl(Aa 1 ). Moreover Σcl(ABa) ∩ Σcl(AC) = Σcl(AB), whence by Σ-CM-triviality

Cb(a/Σcl(AB)) ⊆ Σcl(A, Cb(a/AC)) ∩ Σcl(AB) ⊆ Σcl(Aa 1 ) ∩ Σcl(Aa 0 ) = Σcl(A).
Hence a 2 | ⌣Σcl(A) a 0 , so Φ is not 2-Σ-ample. Conversely, if Φ is not Σ-CM-trivial, let a, A, B, C be a counterexample. Put

a 0 = Cb(a/Σcl(AB)), a 1 = Cb(a/Σcl(AC)), a 2 = a, A ′ = bdd(Aa 0 a 1 ) ∩ Σcl(Aa 0 ) ∩ Σcl(Aa 1 ) ⊆ Σcl(AB).
Then a 2 | ⌣Σcl(A ′ a 1 ) a 0 and a 0 / ∈ Σcl(Aa 1 ); by Lemma 3.21

Σcl(A ′ a 0 ) ∩ Σcl(A ′ a 1 ) = Σcl(A ′ ). Moreover, a 2 | ⌣a 0 Σcl(AB) implies Σcl(A ′ a 0 a 2 ) | ⌣ Σcl(A ′ a 0 ) Σcl(AB). Thus Σcl(A ′ a 0 a 2 ) ∩ Σcl(A ′ a 0 a 1 ) ⊆ Σcl(ABa) ∩ Σcl(AC) = Σcl(AB) ∩ Σcl(A ′ a 0 a 2 ) = Σcl(A ′ a 0 ). Suppose a 2 | ⌣Σcl(A ′ ) a 0 . Since a 2 | ⌣a 0 Σcl(A ′ ) we obtain a 0 = Cb(a/Σcl(AB)) = Cb(a/a 0 Σcl(A ′ )) ⊆ Σcl(A ′ ) ⊆ Σcl(Aa 1 ),
a contradiction. Hence a 0 , a 1 , a 2 , A ′ witness 2-Σ-ampleness of Φ.

In our definition of Σ-ampleness, we only consider the type of a n over a Σ-closed set, namely Σcl(A). This seems natural since the idea of Σ-closure is to work modulo Σ. However, sometimes one needs a stronger notion which takes care of all types. Let us first look at n = 1 and n = 2. Definition 4.8.

• Φ is strongly Σ-based if Cb(a/B) ⊆ Σcl(aA) for any tuple a of realizations of partial types in Φ over some A and any B ⊇ A.

• Φ is strongly Σ-CM-trivial if Cb(a/AB) ⊆ Σcl(A, Cb(a/AC) for any tuple a of realizations of partial types in Φ over some A and any B ⊆ C with Σcl(ABa) ∩ bdd(AC) = bdd(AB). Σcl(B).

The result follows.

Conjecture. Cb(a/B) ⊆ Σcl(Cb(a/Σcl(B))).

If this conjecture were true, strong and ordinary Σ-basedness and Σ-CM-triviality would obviously coincide. Since we have not been able to show this, we weaken our definition of ampleness. Definition 4.10. Φ is weakly n-Σ-ample if there are tuples a 0 , . . . , a n , where a n is a tuple of realizations of partial types in Φ over A, with

(1) a n | ⌣A a 0 . (2) a i+1 | ⌣Aa i a 0 . . . a i-1 for 1 ≤ i < n. (3) bdd(Aa 0 . . . a i-1 a i ) ∩ Σcl(Aa 0 . . . a i-1 a i+1 ) = bdd(Aa 0 . . . a i-1 )
for i < n.

Note that (3) implies that tp(a i /Aa 0 . . . a i-1 ) is foreign to Σ by Fact 3.18 for all i < n, and so is tp(a i /Aa i-1 ) by ( 2). If Σ is the family of bounded partial types, then weak and ordinary n-Σ-ampleness just equal n-ampleness. Lemma 4.11. An n-Σ-ample family of types is weakly n-Σ-ample. If Σ ′ is Σ-analysable, then a weakly n-Σ-ample family is weakly n-Σ ′ample, and in particular n-ample.

Proof: If a 0 , . . . , a n witness n-Σ-ampleness over A, we put a ′ n = a n ,

a ′ i = Cb(a ′ n . . . a ′ i+1 /Σcl(Aa i )) ⊆ Σcl(Aa i ) for n > i and A ′ = bdd(Aa ′ 0 ) ∩ Σcl(Aa ′ 1 ) ⊆ Σcl(Aa 0 ) ∩ Σcl(Aa 1 ) = Σcl(A). As in Lemma 4.3 we have for i < n a ′ n . . . a ′ i+1 | ⌣ a ′ i Σcl(Aa 0 . . . a i ). For 0 < i < n we obtain a ′ i+1 | ⌣A ′ a ′ i a ′ 0 . . . a ′ i-1 ; moreover bdd(A ′ a ′ 0 . . . a ′ i-1 a ′ i ) ∩ Σcl(A ′ a ′ 0 . . . a ′ i-1 a ′ i+1 ) ⊆ Σcl(A ′ a ′ 0 . . . a ′ i-1 a ′ i ) ∩ Σcl(A ′ a ′ 0 . . . a ′ i-1 a ′ i+1 ) ⊆ Σcl(Aa 0 . . . a i-1 a i ) ∩ Σcl(Aa 0 . . . a i-1 a i+1 ) = Σcl(Aa 0 . . . a i-1 ). But then a ′ i | ⌣A ′ a ′ 0 ...a ′ i-1 Σcl(Aa 0 . . . a i-1 ) yields bdd(A ′ a ′ 0 . . . a ′ i-1 a ′ i ) ∩ Σcl(A ′ a ′ 0 . . . a ′ i-1 a ′ i+1 ) = bdd(A ′ a ′ 0 . . . a ′ i-1 ), while bdd(A ′ a ′ 0 ) ∩ Σcl(A ′ a ′ 1 ) = bdd(A ′ ) follows from the definition of A ′ . Finally a n | ⌣Σcl(A) a 0 implies a ′ n | ⌣Σcl(A) a ′ 0 , whence a ′ n | ⌣A ′ a ′ 0 as tp(a ′ 0 /A ′
) is foreign to Σ and Σcl(A) = Σcl(A ′ ). The second assertion is clear, since Σ ′ cl(A) ⊆ Σcl(A) for any set A.

This also shows that in Definition 4.10 one may require a 0 , . . . , a n-1 to lie in Φ heq . Lemma 4.12.

(1) Φ is strongly Σ-based iff Φ is not weakly 1-Σample.

(2) Φ is strongly Σ-CM-trivial iff Φ is not weakly 2-Σ-ample.

Proof: This is similar to the proof of Lemma 4.7, so we shall be concise.

(1) Suppose Φ is strongly Σ-based and consider a 0 , a 1 , A with bdd(Aa 0 ) ∩ Σcl(Aa 1 ) = bdd(A). ⌣A a 0 , so Φ is not weakly 1-Σ-ample. Conversely, if Φ is not strongly Σ-based, let a, A, B be a counterexample. Put a 0 = Cb(a 1 /B) and a 1 = a. Then a 0 / ∈ Σcl(Aa 1 ). Now take

A ′ = bdd(Aa 0 ) ∩ Σcl(Aa 1 ). Clearly A ′ = bdd(A ′ a 0 ) ∩ Σcl(A ′ a 1 ). Suppose a 1 | ⌣A ′ a 0 . Since a 0 = Cb(a 1 /B) implies a 1 | ⌣a 0 A ′ , we obtain a 0 ⊆ bdd(A ′ ) ⊆ Σcl(Aa 1 ),
a contradiction. Hence a 0 , a 1 , A ′ witness weak 1-Σ-ampleness of Φ.

(2) Suppose Φ is strongly Σ-CM-trivial and consider a 0 , a 1 , a 2 , A with bdd(Aa 0 ) ∩ Σcl(Aa 1 ) = bdd(A), bdd(Aa 0 a 1 ) ∩ Σcl(Aa 0 a 2 ) = bdd(Aa 0 ), and

a 2 | ⌣ Aa 1 a 0 .
Put a = a 2 , B = a 0 and C = a 0 a 1 . Then Cb(a/AC) ⊆ bdd(Aa 1 ). Moreover Σcl(ABa) ∩ bdd(AC) = bdd(AB), whence by strong Σ-CM-triviality Cb(a/AB) ⊆ Σcl(A, Cb(a/AC)) ∩ bdd(AB) ⊆ Σcl(Aa 1 ) ∩ bdd(Aa 0 ) = bdd(A).

Hence a 2 | ⌣A a 0 , so Φ is not 2-Σ-ample. Conversely, if Φ is not strongly Σ-CM-trivial, let a, A, B, C be a counterexample. Put

a 0 = AB, a 1 = Cb(a/AC), a 2 = a, A ′ = bdd(Aa 0 ) ∩ Σcl(Aa 1 ). Then a 2 | ⌣A ′ a 1 a 0 and Cb(a 2 /AB) / ∈ Σcl(Aa 1 ) = Σcl(A ′ a 1 ); moreover bdd(A ′ a 0 ) ∩ Σcl(A ′ a 1 ) = bdd(A ′ ). Clearly Σcl(A ′ a 0 a 2 ) ∩ bdd(A ′ a 0 a 1 ) ⊆ Σcl(ABa) ∩ bdd(AC) = bdd(AB) = bdd(A ′ a 0 ).
Suppose a 2 | ⌣A ′ a 0 . Then Cb(a 2 /AB) ∈ bdd(A ′ ) ⊆ Σcl(Aa 1 ), a contradiction. Hence a 0 , a 1 , a 2 , A ′ witness weak 2-Σ-ampleness of Φ. Lemma 4.13. If Φ is not (weakly) n-Σ-ample, neither is the family of ∅-conjugates of tp(a/A) for any a ∈ Σcl(āA), where ā is a tuple of realizations of partial types in Φ over A.

Proof: Suppose the family of ∅-conjugates of tp(a/A) is n-Σ-ample, as witnessed by a 0 , . . . , a n over some parameters B. There is a tuple ā of realizations of partial types in Φ over some ∅-conjugates of A inside B such that a n ∈ Σcl(āB); we may choose it such that Proof: Suppose Φ∪Ψ is weakly n-Σ-ample, as witnessed by a 0 , . . . , a n = bc over some parameters A, where b and c are tuples of realizations of partial types in Φ and Ψ, respectively. As Ψ is not n-Σ-ample, we

must have c | ⌣A a 0 . Put a ′ 0 = Cb(bc/a 0 A). Then tp(a ′ 0 /A) is internal in tp(b/A) by Corollary 2.4. Put a ′ n = Cb(a ′ 0 /a n A). Then tp(a ′ n /A) is tp(a ′ 0 /A)-internal and hence tp(b/A)-internal. Note that a n | ⌣A a 0 implies a n | ⌣A a ′ 0 , whence a ′ n | ⌣ A a ′ 0 and a ′ n | ⌣ A a 0 .
Moreover a ′ n ∈ bdd(Aa n ), so a 0 , . . . , a n-1 , a ′ n witness weak n-Σ-ampleness over A. The proof in the ordinary case is analogous, replacing A by Σcl(A).

As tp(a

′ n /A) is tp(b/A)-internal, there is B | ⌣A a ′ n
Corollary 4.16. For i < α let Φ i be an ∅-invariant family of partial types. If Φ i is not (weakly) n-Σ-ample for all i < α, neither is i<α Φ i .

Proof: This just follows from the local character of forking and Lemma 4.15.

Lemma 4.17. If the family of ∅-conjugates of tp(a/A) is not (weakly) n-Σ-ample and a | ⌣ A, then tp(a) is not (weakly) n-Σ-ample.

Proof: Suppose tp(a) is (weakly) n-Σ-ample, as witnessed by a 0 , . . . , a n over some parameters B, where

a n = (b i : i < k) is a tuple of realiza- tions of tp(a). For each i < k choose B i | ⌣b i (B, a 0 . . . a n , B j : j < i) with B i b i ≡ Aa. Then B i | ⌣ b i , whence (B i : i < k) | ⌣ Ba 0 . . . a n .
Then a 0 , . . . , a n witness (weak) n-Σ-ampleness over (B, B i : i < k) by Lemma 4.14, a contradiction, since tp(b i /B i ) is an ∅-conjugate of tp(a/A) for all i < k. Remark 4.18. In fact, in the above Lemma it suffices to merely assume that the single type tp(a/A) is not (weakly) n-Σ-ample in the theory T (A), using Corollary 4.16. It follows that ampleness is preserved under adding and forgetting parameters.

Corollary 4.19. Let Ψ be an ∅-invariant family of types. If Ψ is Φinternal and Φ is not (weakly) n-Σ-ample, neither is Ψ.

Proof: Immediate from Lemmas 4.13 and 4.17.

Theorem 4.20. Let Ψ be an ∅-invariant family of types. If Ψ is Φanalysable and Φ is not (weakly) n-Σ-ample, neither is Ψ.

Proof: Suppose Ψ is n-Σ-ample, as witnessed by a 0 , . . . , a n over some parameters A, where a n is a tuple of realizations of Ψ. Put

a ′ n = ℓ Φ 1 (a n /Σcl(A) ∩ bdd(Aa n )).
Then a n and a ′ n are domination-equivalent over Σcl(A) ∩ bdd(Aa n ) by Theorem 3.6; moreover a n and hence a ′ n are independent of Σcl(A) over Σcl(A) ∩ bdd(Aa n ) by Fact 3.18, so a n and a ′ n are domination-equivalent over Σcl(A). Thus a 0 , . . . , a ′ n witness non-Σ-ampleness over A, contradicting Corollary 4.19.

For the weak case we put a ′ n = ℓ Φ 1 (a n /A). So a n and a ′ n are dominationequivalent over A, whence a ′ n | ⌣A a 0 . Thus a 0 , . . . , a ′ n witness weak non-Σ-ampleness over A, contradicting again Corollary 4.19.

Analysability of canonical bases

As an immediate Corollary to Theorem 4.20, we obtain the following: Theorem 5.1. Suppose every type in T is non-orthogonal to a regular type, and let Σ be the family of all n-ample regular types. Then T is not weakly n-Σ-ample.

Proof: A non n-ample type is not weakly Σ-ample by Lemma 4.11. So all regular types are not weakly n-Σ-ample. But every type is analysable in regular types by the non-orthogonality hypothesis.

Corollary 5.2. Suppose every type in T is non-orthogonal to a regular type. Then tp(Cb(a/b)/a) is analysable in the family of all non onebased regular types, for all a, b.

Proof: This is just Theorem 5.1 for n = 1.

Note that a forking extension of a non one-based regular type of infinite rank may be one-based.

Remark 5.3. In fact, the proof shows more. For every type p let Σ(p) be the collection of types in Σ not foreign to p. Then tp(Cb(a/b)/a) is analysable in Σ(tp(Cb(a/b))). In particular, if tp(a) or tp(b) has rank less than ω α , so does tp(Cb(a/b)). Hence tp(Cb(a/b)/a) is analysable in the family of all non one-based regular types of rank less than ω α . Corollary 5.2 is due to Zoé Chatzidakis for types of finite SU-rank in simple theories [START_REF] Chatzidakis | A note on canonical bases and modular types in supersimple theories[END_REF]Proposition 1.10]. In fact, she even obtains tp(Cb(a/b)/bdd(a) ∩ bdd(b)) to be analysable in the family of non one-based types of rank 1, and to decompose in components, each of which is analysable in a non-orthogonality class of regular types. In infinite rank, one has to work modulo types of smaller rank. So let Σ α be the collection of all partial types of SU-rank < ω α , and P α be the family of non Σ α -based types of SU-rank ω α . Note that the Σ α -based types of SU-rank ω α are precisely the locally modular types of SU-rank ω α . 

< m)) = α SU(b/Σ α cl(b j : j < m)) ≥ α SU( b/Σ α cl(b j : j < m)) = α SU( b/Σ α cl( bj : j < m)) > α SU( b/â, Σ α cl( bj : j < m)) = α SU( b/Σ α cl(â)) = α SU( b/Σ α cl(a)) = α SU(b/Σ α cl(a)),
contradicting the maximality of SU(b/Σ α cl(a)) modulo ω α . This finishes the proof.

As a corollary we obtain Chatzidakis' Theorem for the finite SU-rank case, apart from the decomposition in orthogonal components: 

Applications and the Canonical Base Property

In this section and the next, Σ nob will be the family of non onebased regular types (seen as partial types). For the applications one would like (and often has) more than mere strongly Σ nob -basedness of canonical bases: 

Example. The CBP holds for types of finite rank in

• Differentially closed fields in characteristic 0 [START_REF] Pillay | Jet spaces of varieties over differential and difference fields[END_REF].

• Generic difference fields [START_REF] Pillay | Jet spaces of varieties over differential and difference fields[END_REF][START_REF] Chatzidakis | A note on canonical bases and modular types in supersimple theories[END_REF].

• Compact complex spaces [START_REF] Campana | Algébricité et compacité dans l'espace des cycles d'un espace analytique complexe[END_REF][START_REF] Fujiki | On the Douady space of a compact complex space in the category A[END_REF][START_REF] Pillay | Model-theoretic consequences of a theorem of Campana and Fujiki[END_REF].

Moreover, in those cases we have a good knowledge of the non onebased types.

Kowalski and Pillay [START_REF] Kowalski | Quantifier elimination for algebraic Dgroups[END_REF]Section 4] have given some consequences of strongly Σ-basedness in the context of groups. In fact, they work in a theory with the CBP, but they remark that their results hold, with Σanalysable instead of almost Σ-internal, in all stable strongly Σ-based theories. Fact 6.4. Let G be an ∅-hyperdefinable strongly Σ-based group in a stable theory.

(

1) If H ≤ G is connected with canonical parameter c, then tp(c) is Σ-analysable. (2) G/Z(G) is Σ-analysable.
An inspection of their proof shows that mere simplicity of the ambient theory is sufficient, replacing centers by approximate centers and connectivity by local connectivity. Recall that the approximate center of a group G is Z and let H lc g be the locally connected component of H g . Then g Z(G) is interbounded with the canonical parameter of H lc g , so tp(g Z(G)) is Σ-analysable, as is G/ Z(G). Theorem 6.6. Let G be an ∅-hyperdefinable strongly Σ-based group in a simple theory. If G is supersimple or type-definable, there is a normal nilpotent ∅-hyperdefinable subgroup N such that G/N is almost Σ-internal. In particular, a supersimple or type-definable group G in a simple theory has a normal nilpotent hyperdefinable subgroup N such that G/N is almost Σ nob -internal.

(G) = {g ∈ G : [G : C G (g)] < ∞}. A subgroup H ≤ G
Proof: G/ Z(G) is Σ-analysable by Proposition 6.5. Hence there is a continuous sequence

G = G 0 ⊲ G 1 ⊲ G 2 ⊲ • • • ⊲ G α ⊲ Z(G)
of normal ∅-hyperdefinable subgroups such that successive quotients Q i = G i /G i+1 are Σ-internal for all i < α, and G α / Z(G) is bounded. Now G acts on every quotient Q i . Let

N i = {g ∈ G : [Q i : C Q i (g)] < ∞}
be the approximate stabilizer of Q i in G, again an ∅-hyperdefinable subgroup. If (q j : j < κ) is a long independent generic sequence in Q i and g, g ′ are two elements of G which have the same action on all q j for j < κ, there is some j 0 < κ with q j 0 | ⌣ g, g ′ . Since g -1 g ′ stabilizes q j 0 it lies in N i , and gN i is determined by the sequence (q j , q g j : j < κ). Thus G/N i is Q i -internal, whence Σ-internal.

Put N = i<α N i . Since i<α G/N i projects definably onto G/N, the latter quotient is also Σ-internal. In order to finish it now suffices to show that N is virtually nilpotent. In particular, we may assume that N is ∅-connected.

Consider the approximate ascending central series Zi (N). Note that N centralizes G α / Z(G) by ∅-connectivity. Moreover, N approximatively stabilizes all quotients (G i ∩N)/(G i+1 ∩N). Hence, if G i+1 ∩N ≤ Zj (N), then G i ∩ N ≤ Zj+1 (N). If G is supersimple, we may assume that all the Q i are unbounded, so α is finite and N = Zα+2 (N). In the type-definable case, note that Zi (N) is relatively ∅-definable by [START_REF] Frank | Simple Theories[END_REF]Lemma 4.2.6]. So by compactness the least ordinal α i with G α i ∩ N ≤ Zi (N) must be a successor ordinal, and α i+1 ≤ α i -1 < α i . Hence the sequence must stop and there is k < ω with N = Zk (N). But then N is nilpotent by [START_REF] Frank | Simple Theories[END_REF]Proposition 4.4.10.3]. Remark 6.7. In a similar way one can show that if G acts definably and faithfully on a Σ-analysable group H and H is supersimple or typedefinable, then there is a hyperdefinable normal nilpotent subgroup N ⊳ G such that G/N is almost Σ-internal.

Final Remarks

We have seen that for (weak) Σ-ampleness only the first level of an element is important. However, the difference between strong Σ nobbasedness and the CBP is precisely the possible existence of a second (or higher) Σ nob -level of Cb(a/b) over a, i.e. its non Σ nob -flatness.

One might be tempted to try to prove the CBP replacing Σ nob -closure by Σ nob 1 -closure. In fact it is possible to define a corresponding notion of Σ 1 -ampleness, and to prove an analogue of Theorem 4.20. However, since Σ 1 -closure is not a closure operator, the equivalence between Σ nob 1basedness (i.e. the CBP) and non 1-Σ nob 1 -ampleness breaks down. So far we have not found a way around this.

A possible approach to circumvent the failure of the CBP in general could be to use Theorem 6.6 in the applications, rather than establish the CBP for particular theories and use Fact 6.4 (or Proposition 6.5), but we have not looked into this.

Finally, it might be interesting to look for a variant of ampleness which does take all levels into account, as one might hope to obtain stronger structural consequences.

Definition 2 . 1 .

 21 Let π be a partial type over A. Then π is • (almost) Σ-internal if for every realization a of π there is B | ⌣A a and a tuple b of realizations of types in Σ based on B, such that a ∈ dcl(B b) (or a ∈ bdd(B b), respectively).

A

  type tp(a/A) is foreign to Σ if a | ⌣AB b for all B | ⌣A a and b realizing types in Σ over B. Finally, p ∈ S(A) is orthogonal to q ∈ S(B) if for all C ⊇ AB, a |= p, and b |= q with a | ⌣A C and b | ⌣B C we have a | ⌣C b.

Lemma 2 . 2 .

 22 Suppose a | ⌣ b and a | ⌣b c. Let (b i : i < ω) be an indiscernible sequence in tp(b) and put p b = tp(c/b). Then p b i is nonorthogonal to p b j for all i, j < ω. Proof: We prolong the sequence to have length α. As a | ⌣ b and (b i : i < α) is indiscernible, by [25, Theorem 2.5.4] we may assume ab ≡ ab i for all i < α and a | ⌣ (b i : i < α). Let B = (b i : i < ω), so (b i : ω ≤ i < α) is independent over B and a | ⌣ B. Choose c i with b i c i ≡ a bc and c i | ⌣ ab i (b j : j < α)

Lemma 2 . 3 .

 23 Suppose a | ⌣ b and a ′ = Cb(bc/a). Let P be the family of bdd(∅)-conjugates of tp(c/b) non-orthogonal to tp(c/b). Then a ′ ∈ bdd(a) is P-internal and bdd(ab) ∩ bdd(bc) ⊆ bdd(a ′ b). Proof: If a | ⌣ bc then a ′ ∈ bdd(∅) and bdd(ab) ∩ bdd(bc) = bdd(b), so there is nothing to show. Assume a | ⌣b c. Clearly a ′ ∈ bdd(a); as bc | ⌣a ′ a we get c | ⌣a ′ b a and hence bdd(ab) ∩ bdd(bc) ⊆ bdd(a ′ b). Let (b i c i : i < ω) be a Morley sequence in Lstp(bc/a) with b 0

Corollary 2 . 4 .

 24 If a | ⌣ b and tp(c/b) is (almost) Σ-internal, then Cb(bc/a) is (almost) Σ-internal. The same statement holds with analysable instead of internal. Proof: Let d | ⌣b c and ē realize partial types in Σ over bd such that c ∈ dcl(bdē) (or c ∈ bdd(bdē), respectively). We may take dē | ⌣bc a. Then d | ⌣b ac, whence a | ⌣ bd. So Cb(bdē/a) is Σ-internal by Lemma 2.3. But a | ⌣bc dē and c ∈ dcl(bdē) implies Cb(bc/a) ∈ dcl(Cb(bdē/a)); similarly c ∈ bdd(bdē) implies Cb(bc/a) ∈ bdd(Cb(bdē/a)).

Definition 3 . 5 .

 35 An element a Σ-dominates an element b over A, denoted a ¤ Σ A b, if for all c such that tp(c/A) is Σ-analysable, a | ⌣A c implies b | ⌣A c. Two elements a and b are Σ-domination-equivalent over A, denoted a Σ A b, if a ¤ Σ A b and b ¤ Σ A a. If Σ is the set of all types, it is omitted. The following generalizes a theorem by Buechler [3, Proposition 3.1] for finite Lascar rank. Theorem 3.6. Let Σ ′ be an ∅-invariant family of partial types.

Corollary 3 . 12 .

 312 If tp(a/A) is almost internal in a family of types of Lascar rank one, then it is flat. Proof: Assume there is some B | ⌣A a and some tuple b of realizations of types of Lascar rank one over B such that a ⊆ bdd(B b). We may assume b is an independent sequence over B since all its elements have SU-rank one. Hence b is an independent sequence over any C ⊇ B with C | ⌣B b, so tp( b/B) is flat by Corollary 3.4. Thus, tp(a/B) is flat by Lemma 3.11, and so is tp(a/A). Question 3.13. Is every (finitary) type in a small simple theory nonorthogonal to a flat type? Question 3.14. Is every type in a supersimple theory non-orthogonal to a flat type? Problem 3.15. Construct a flat type which is not ultraflat.

Fact 3 . 19 .( 1 )( 2 )

 31912 Suppose A | ⌣B C. Then Σcl(A) | ⌣Σcl(B) Σcl(C). More precisely, for any A 0 ⊆ Σcl(A) we have A 0 | ⌣B 0 Σcl(C), where B 0 = dcl(A 0 B) ∩ Σcl(B). In particular, Σcl(AB) ∩ Σcl(BC) = Σcl(B). Proof: This is [25, Lemma 3.5.5]; the second clause follows from Fact 3.18. Lemma 3.20. Suppose C ⊆ A ∩ B ∩ D and AB | ⌣C D. If Σcl(A) ∩ Σcl(B) = Σcl(C), then Σcl(AD) ∩ Σcl(BD) = Σcl(D). If bdd(A) ∩ Σcl(B) = bdd(C), then bdd(AD) ∩ Σcl(BD) = bdd(D). Proof: (1) This is [25, Lemma 3.5.6], which in turn adapts [18, Fact 2.4].

  Hence bdd(AD) ∩ Σcl(BD) | ⌣ C AB and by transitivity bdd(AD) ∩ Σcl(BD) | ⌣ D ABD, whence the result. The following lemma tells us that we can actually find a set C with Σcl(A) ∩ Σcl(B) = Σcl(C) as in Lemma 3.20(1), even though the Σclosures have the size of the monster model. Lemma 3.21. Let C = bdd(AB) ∩ Σcl(A) ∩ Σcl(B). Then Σcl(A) ∩ Σcl(B) = Σcl(C).

  , Σ 1 cl(A) | ⌣Σ 1 cl(B)∩bdd(C) C. Proof: Consider a ∈ Σ 1 cl(A) and put c = Cb(Aa/C). Then tp(c/B) is almost Σ-internal by Corollary 2.4, and c ∈ bdd(C) ∩ Σ 1 cl(B).

Remark 4 . 4 .

 44 [20, Lemma 3.2 and Corollary 3.3] If a 0 , . . . , a n witness n-Σ-ampleness over A, then a n | ⌣Σcl(Aa 0 ...a i-1 )

Remark 4 . 9 .

 49 Cb(a/Σcl(B)) ⊆ bdd(Cb(a/B), a) ∩ Σcl(Cb(a/B)). Proof: By Fact 3.19 the independence a | ⌣Cb(a/B) B implies a | ⌣ dcl(a,Cb(a/b))∩Σcl(Cb(a/B))

Put a = a 1

 1 and B = Aa 0 . By strong Σ-basedness Cb(a/B) ⊆ Σcl(Aa) ∩ bdd(B) = bdd(A), whence a 1 |

2 .

 2 ā | ⌣ anB a 0 . . . a n-1 . Then ā | ⌣a n-1 anB a 0 . . . a n-2 , and hence ā | ⌣ Σcl(a n-1 anB) a 0 . . . a n-As a n | ⌣Σcl(a n-1 B) a 0 . . . a n-2 implies Σcl(a n-1 a n B) | ⌣ Σcl(a n-1 B) a 0 . . . a n-2 by Fact 3.19, we get ā | ⌣ Σcl(a n-1 B) a 0 . . . a n-2 . We also have ā | ⌣a 0 ...a n-2 anB a n-1 , whence (1) Σcl(a 0 . . . a n-2 āB) | ⌣ Σcl(a 0 ...a n-2 anB) Σcl(a 0 . . . a n-2 a n-1 B); since Σ-closure is boundedly closed, Σcl(a 0 . . . a n-2 āB) ∩ Σcl(a 0 . . . a n-2 a n-1 B) ⊆ Σcl(a 0 . . . a n-2 a n B) ∩ Σcl(a 0 . . . a n-2 a n-1 B) = Σcl(a 0 . . . a n-2 B).Finally, ā | ⌣Σcl(B) a 0 would imply Σcl(āB) | ⌣Σcl(B) a 0 by Fact 3.19, and hence a n | ⌣Σcl(B) a 0 , a contradiction. Thus ā | ⌣Σcl(B) a 0 , and a 0 , . . . , a n-1 , ā witness n-Σ-ampleness of Φ over B, a contradiction. Now suppose a 0 , . . . , a n witness weak n-Σ-ampleness over B, and choose ā as before. Then easily āa n | ⌣Ba n-1 a 0 . . . a n-2 , yielding (2) from the definition. Moreover, equation (1) implies Σcl(a 0 . . . a n-2 āB) ∩ bdd(a 0 . . . a n-2 a n-1 B) ⊆ Σcl(a 0 . . . a n-2 a n B) ∩ bdd(a 0 . . . a n-2 a n-1 B) = bdd(a 0 . . . a n-2 B). Finally suppose ā | ⌣B a 0 . Since tp(a 0 /B) is foreign to Σ, so is tp(a 0 /Bā). Then a 0 | ⌣Bā Σcl(Bā) by Fact 3.18, whence a 0 | ⌣B a n , a contradiction. Thus ā | ⌣B a 0 , and a 0 , . . . , a n-1 , ā witness weak n-Σ-ampleness of Φ over B, again a contradiction. Lemma 4.14. Suppose B | ⌣A a 0 . . . a n . If a 0 , . . . , a n witness (weak) n-Σ-ampleness over A, they witness (weak) n-Σ-ampleness over B. Proof: Clearly B | ⌣a 0 ...a i-1 A a 0 . . . a i+1 A, so Lemma 3.20 yields Σcl(Ba 0 . . . a i-1 a i ) ∩ Σcl(Ba 0 . . . a i-1 a i+1 ) = Σcl(Ba 0 . . . a i-1 ) in the ordinary case, and bdd(Ba 0. . . a i-1 a i ) ∩ Σcl(Ba 0 . . . a i-1 a i+1 ) = bdd(Ba 0 . . . a i-1 )in the weak case, for all i < n. Next, a i+1 | ⌣Aa 0 ...a i B, whence a i+1 | ⌣Σcl(Aa 0 ...a i ) Σcl(Ba i ) by Lemma 3.19. Now a i+1 | ⌣Σcl(Aa i ) a 0 . . . a i-1 implies a i+1 | ⌣Σcl(Aa i ) Σcl(Aa 0 . . . a i ), whence a i+1 | ⌣ Σcl(Ba i ) a 0 . . . a i-1 for 1 ≤ i < n by transitivity. In the weak case, a i+1 | ⌣Aa i a 0 . . . a i-1 implies a i+1 | ⌣Aa i Ba 0 . . . a i-1 by transitivity, whence a i+1 | ⌣Ba i a 0 . . . a i-1 . Finally, a n | ⌣Σcl(A) Σcl(B) by Fact 3.19, so a n | ⌣Σcl(B) a 0 would imply a n | ⌣Σcl(A) a 0 , a contradiction. Hence a n | ⌣Σcl(B) a 0 . In the weak case, a n | ⌣A B and a n | ⌣A a 0 yield directly a n | ⌣B a 0 . Lemma 4.15. Let Ψ be an ∅-invariant family of types. If Φ and Ψ are not (weakly) n-Σ-ample, neither is Φ ∪ Ψ.

  and a tuple b of realizations of tp(b/A) with a ′ n ∈ dcl(B b). We may assume B | ⌣ Aa ′ n a 0 . . . a n-1 , whence B | ⌣A a 0 . . . a n-1 a ′ n . Hence a 0 , . . . , a n-1 , a ′ n witness weak n-Σampleness over B by Lemma 4.14. As a ′ n ∈ dcl(B b), this contradicts non weak n-Σ-ampleness of Φ by Lemma 4.13.

Theorem 5 . 4 . 19 .

 5419 Let b = Cb(a/Σ α cl(b)) be such that SU(b) < ω α+1 for some ordinal α and let A = Σ α cl(b) ∩ Σ α cl(a). Then tp(b/A) is (Σ α ∪ P α )-analysable. Proof: Firstly, if a ∈ Σ α cl(b) then a = b ∈ A. Similarly, if b ∈ Σ α cl(a) then b ∈ A; in both cases tp(b/A) is trivially (Σ α ∪ P α )-analysable. Hence we may assume a ∈ Σ α cl(b) and b ∈ Σ α cl(a). Suppose towards a contradiction that the result is false and consider a counterexample a, b with SU(b) minimal modulo ω α and then SU(b/Σ α cl(a)) being maximal modulo ω α . Note that this implies ω α ≤ SU(b/a) ≤ SU(b/A) ≤ SU(b) < ω α+1 . Clearly (after adding parameters) we may assume A = Σ α cl(∅). Then for any c the type tp(c) is (Σ α ∪ P α )-analysable iff tp(c/A) is. Claim. We may assume a = Cb(b/Σ α cl(a)). Proof of Claim: Put ã = Cb(b/Σ α cl(a)) and b = Cb(ã/Σ α cl(b)). Then ã ∈ Σ α cl(a) and a | ⌣ã b. Hence Σ α cl(b) = Σ α cl( b) by [25, Lemma 3.5.8], and tp( b) is not (Σ α ∪ P α )-analysable either. Thus the pair ã, b also forms a counterexample. Moreover, SU(b) equals SU( b) modulo ω α and SU(b/Σ α cl(a)) = SU(b/Σ α cl(ã)) equals SU( b/Σ α cl(ã)) modulo ω α . Since a is definable over a finite part of a Morley sequence in Lstp(b/a) by supersimplicity of tp(b), we see that SU(a) < ω α+1 . On the other hand, a / ∈ Σ α cl(b) implies SU(a/b) ≥ ω α . Let â ⊆ bdd(a) and b ⊆ bdd(b) be maximal (Σ α ∪ P α )-analysable. Then a / ∈ Σ α cl(â) and b ∈ Σ α cl( b), and tp(a/â) and tp(b/ b) are foreign to Σ α ∪ P α . Since Cb(â/b) and Cb( b/a) are (Σ α ∪ P α )-analysable, we obtain a | ⌣ â b and b | ⌣ b â. Claim. tp(b/ b) and tp(a/â) are both Σ α -based. Proof of Claim: Let Φ be the family of Σ α -based types of SU-rank ω α . Then tp(a/â) is (Σ α ∪ P α ∪ Φ)-analysable, but foreign to Σ α ∪ P α . Put a 0 = ℓ Φ 1 (a/â) and b 0 = ℓ Φ 1 (b/ b). Then a â a 0 and b b b 0 by Lemma 3.6(3); as a | ⌣â b and b | ⌣ b â we even have a âb a 0 and b âb b 0 . Since a | ⌣â b b we obtain a 0 | ⌣â b b 0 . Moreover, tp(a 0 /â) and tp(b 0 / b) are Σ α -based by Theorem 4.20 (or [26, Theorem 11]). On the other hand, as a 0 | ⌣ b b 0 , we see that b ′ = Cb(a 0 /Σ α cl(b 0 )) is not contained in b and hence is not (Σ α ∪ P α )-analysable. So a 0 , b ′ is another counterexample; by minimality of SU-rank b and b ′ have the same SU-rank modulo ω α , whence b ∈ Σ α cl(b 0 ). Hence tp(b/ b) is Σ α -based, as is tp(a/â) since a = Cb(b/a) and a | ⌣â b. Claim. Σ α cl(a, b) = Σ α cl(b, â) = Σ α cl(a, b). Proof of Claim: As tp(a/â) is Σ α -based, we have Thus a = Cb(b/Σ α cl(a)) ∈ Σ α cl(âb). Similarly b ∈ Σ α cl( ba). Let now (b) ⌢ (b j : j < ω) be a Morley sequence in tp(b/a) and let bj represent the part of b j corresponding to b. Then ( bj : j < ω) is a Morley sequence in tp( b/â) since a | ⌣â b. As SU( b) < ∞ there is some minimalm < ω such that â = Cb( b/â) ∈ Σ α cl( b, bj : j < m). Then m > 0, as otherwise Σ α cl(b) = Σ α cl(â, b) ∋ a, which is impossible. Moreover, a ∈ Σ α cl(â, b j ) for all j < m by invariance and hence, a ∈ Σ α cl( b, b j : j < m). Put b ′ = Cb(b j : j < m/Σ α cl(b)). Then (b j : j < m) | ⌣b ′b Σ α cl(b), so by Fact 3.19 Σ α cl( b, b j : j < m) | ⌣ Σαcl(b ′ , b) Σ α cl(b). Then a | ⌣Σ αcl(b ′ , b) Σ α cl(b), so b = Cb(a/Σ α cl(b)) ∈ Σ α cl(b ′ , b). As b ∈ Σ α cl( b) we obtain b ′ ∈ Σ α cl( b). Claim. tp(b ′ /Σ α cl(b ′ ) ∩ Σ α cl(b j : j < m)) is not (Σ α ∪ P α )-analysable.Proof of Claim: Note first that (b j : j < m) | ⌣a b implies Σ α cl(b j : j < m) | ⌣ Σαcl(a) Σ α cl(b) by Fact 3.19, whence Σ α cl(b ′ ) ∩ Σ α cl(b j : j < m) ⊆ Σ α cl(b) ∩ Σ α cl(a) = Σ α cl(∅). As b ∈ Σ α cl(b ′ , b) and tp(b/ b) is not (Σ α ∪ P α )-analysable, neither is tp(b ′ / b), nor a fortiori tp(b ′ /Σ α cl(∅)). As b ′ = Cb(b j : j < m/Σ α cl(b ′ )), the pair (b j : j < m), b ′ forms another counterexample. By minimality SU(b) equals SU(b ′ ) modulo ω α , which implies Σ α cl(b) = Σ α cl(b ′ ). As tp(b j / bj ) is foreign to Σ α ∪ P α and b is (Σ α ∪ P α )-analysable, we obtain b | ⌣( bj :j<m) (b j : j < m) and hence by Fact 3.19 b | ⌣ Σαcl( bj :j<m) Σ α cl(b j : j < m). On the other hand, as â ∈ Σ α cl( b, bj : j < m) but â ∈ Σ α cl( bj : j < m) by minimality of m, we get SU( b/Σ α cl( bj : j < m) > α SU( b/â, Σ α cl( bj : j < m)), where the index α indicates modulo ω α . Moreover, as b | ⌣â a we get b | ⌣Σ αcl(â) Σ α cl(a), i.e. SU( b/Σ α cl(â)) = SU( b/Σ α cl(a)). Since Σ α cl(b) = Σ α cl(b ′ ) and b ∈ Σ α cl(a b) we obtain SU(b ′ /Σ α cl(b j : j

Corollary 5 . 5 .

 55 Let b = bdd(Cb(a/b)) be such that SU(b) < ω. Then tp(b/bdd(b) ∩ bdd(a)) is analysable in the family of all non one-based types of SU-rank 1.

Definition 6 . 1 .Remark 6 . 3 .

 6163 A supersimple theory T has the Canonical Base Property CBP if tp(Cb(a/b)/a) is almost Σ nob -internal for all a, b. Remark 6.2. In other words, in view of Corollary 5.2 a theory has the CBP if for all a, b the type tp(Cb(a/b)/a) is Σ nob -flat. It had been conjectured that all supersimple theories of finite rank have the CBP, but Hrushovski has constructed a counter-example [14]. Chatzidakis has shown for types of finite SU-rank that the CBP implies that even tp(Cb(a/b)/bdd(a)∩bdd(b)) is almost Σ nobinternal [5, Theorem 1.15].

Proof: ( 1 )

 1 Take h ∈ H generic over c and g ∈ G generic over c, h. Let d be the canonical parameter of gH. Then tp(gh/g, c) is the generic type of gH, so d is interbounded with Cb(gh/g, c). By strongly Σ-basedness, tp(d/gh) is Σ-analysable. But c ∈ dcl(d), so tp(c/gh) is Σ-analysable, as is tp(c) since c | ⌣ gh. (2) For generic g ∈ G put H g = {(x, x g ) ∈ G × G : x ∈ G},

  is locally connected if for all group-theoretic or model-theoretic conjugates H σ of H, if H and H σ are commensurate, then H = H σ . Locally connected subgroups and their cosets have canonical parameters; every subgroup is commensurable with a unique minimal locally connected subgroup, its locally connected component. For more details about the approximate notions, the reader is invited to consult [25, Definition 4.4.9 and Proposition 4.4.10]. If H ≤ G is locally connected with canonical parameter c, then tp(c) is Σ-analysable. (2) G/ Z(G) is Σ-analysable.

	Proposition 6.5. Let G be an ∅-hyperdefinable strongly Σ-based group
	in a simple theory.
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