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AMPLE THOUGHTS

FRANK O. WAGNER

Abstract. Non-n-ampleness as defined by Pillay [10] and Evans
[4] is preserved under analysability.

1. Introduction

Recall that a type p over a set A in a simple theory is one-based
if for any tuple ā of realizations of p and any B ⊇ A the canonical
base Cb(ā/B) is contained in bdd(āA). One-basedness implies that
the forking geometry is particularly well-behaved; for instance one-
based groups are bounded-by-abelian-by-bounded. The principal re-
sult in [13] is that one-basedness is preserved under analyses: a type
analysable in one-based types is itself one-based. This generalized ear-
lier results of Hrushovski [6] and Chatzidakis [3]. One-basedness is the
first level in a hierarchy of possible geometric behaviour of forking inde-
pendence first defined by Pillay [10] and slightly modified by Evans [4],
n-ampleness. Not 1-ample means one-based; not 2-ample is equivalent
to a notion previously introduced by Hrushovski [7], CM-triviality. In
[10] Pillay defines n-ampleness locally for a single type and shows that
a superstable theory of finite Lascar rank is n-ample if and only if all
its types of rank 1 are; his proof implies that in such a theory, a type
analysable in non-n-ample types is again non-n-ample.

We shall give a definition of n-ampleness for invariant families of
partial types, and generalize Pillay’s result to arbitrary simple theories.
Note that for n = 1 this gives an alternative proof of the main result
in [13]. Since for types of infinite rank the algebraic (bounded) closure
used in the definition is not necessarily appropriate (for a regular type
p one might, for instance, replace it by p-closure), we also generalize
the notion to Σ-closure for some ∅-invariant collection of partial types
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(thought of as small), giving rise to the notion of n-Σ-ample. This
may for instance be applied to consider ampleness modulo types of
finite SU -rank, or modulo superstable types. Readers not interested
in this additionnal generality are invited to simply replace Σ-closure
by bounded closure. However, this will only marginally shorten the
proofs.

Our notation is standard and follows [12]. Throughout the paper,
the ambient theory will be simple, and we shall be working in M

heq,
where M is a suffiviently saturated model of the ambient theory. Thus
tuples are tuples of hyperimaginaries, and dcl = dclheq.

2. Σ-closure

In this section we shall recall the definitions and properties of Σ-
closure from [11, Section 4.0] in the stable and [13, Section 3.5] in
the simle case (where it is called P -closure: Our Σ corresponds to the
collection of all P -analysable types which are co-foreign to P ). Buechler
and Hoover [1, Definition 1.2] redefine such a closure operator in the
context of superstable theories and reprove some of the properties [1,
Lemma 2.5].

Let Σ be an ∅-invariant family of partial types.

Definition 1. Let π be a partial type over A. Then π is

• (almost) Σ-internal if for every realization a of π there is B |⌣A
a

and b̄ realizing types in Σ based on B, such that a ∈ dcl(Bb̄)
(or a ∈ bdd(Bb̄), respectively).

• Σ-analysable if for any a |= π there are (ai : i < α) ∈ dcl(A, a)
such that tp(ai/A, aj : j < i) is Σ-internal for all i < α, and
a ∈ bdd(A, ai : i < α).

A type tp(a/A) is foreign to Σ if a |⌣AB
b̄ for all B |⌣A

a and b̄ realizing
types in Σ over B.

Definition 2. The Σ-closure Σcl(A) of a set A is the collection of all
hyperimaginaries a such that tp(a/A) is Σ-analysable.

Remark 3. We think of Σ as small. We always have bdd(A) ⊆ Σcl(A);
equality holds if Σ is the family of all bounded types. One could also
take Σ to be the family of all types of SU -rank < ωα for some ordinal
α, the family of all supersimple types in a properly simple theory, or
the family of p-simple types od p-weight 0 for some regular type p,
giving rise to Hrushovski’s p-closure [5].
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Fact 4. The following are equivalent:

(1) tp(a/A) is foreign to Σ.
(2) a |⌣A

Σcl(A).

(3) a |⌣A
dcl(aA) ∩ Σcl(A).

(4) dcl(aA) ∩ Σcl(A) ⊆ bdd(A).

Unless it equals bounded closure, Σ-closure has the size of the mon-
ster model and thus violates the usual conventions. The equivalence
(2) ⇔ (3) can be used to cut it down to some small part.

Fact 5. Suppose A |⌣B
C. Then Σcl(A) |⌣Σcl(B)

Σcl(C). More pre-

cisely, for any A0 ⊆ Σcl(A) we have A0 |⌣B0

Σcl(C), where B0 =

dcl(A0B) ∩ Σcl(B). In particular, Σcl(AB) ∩ Σcl(BC) = Σcl(B).

3. Σ-ampleness

Let Φ and Σ be ∅-invariant families of partial types.

Definition 6. Φ is n-Σ-ample if there are tuples a0, . . . , an, with an
a tuple of realizations of partial types in Φ over some parameters A,
such that

(1) an 6 |⌣Σcl(A)
a0;

(2) ai+1 |⌣Σcl(Aai)
a0 . . . ai−1 for 1 ≤ i < n;

(3) Σcl(Aa0 . . . ai−1ai) ∩ Σcl(Aa0 . . . ai−1ai+1) = Σcl(Aa0 . . . ai−1)
for all 0 ≤ i < n.

Remark 7. Pillay [10] actually requires an |⌣Aai
a0 . . . ai−1 for 1 ≤ i <

n in item (2). We follow Evans variant [4] which seems more natural
and which implies an . . . ai+1 |⌣Σcl(Aai)

a0 . . . ai−1.

Remark 8. [10, Remark 3.7] In definition 6 one may require a0, . . . , an−1

to lie in Φheq, replacing an−1 by a′n−1 = Cb(an/Σcl(an−1A)) and ai−1

by a′i−1 = Cb(a′i/Σcl(ai−1A)).

Remark 9. [10, Lemma 3.2 and Corollary 3.3] If a0, . . . , an witness
n-Σ-ampleness over A, then an 6 |⌣Σcl(Aa0...ai−1)

ai for all i < n. Hence

ai, . . . , an witness (n − i)-Σ-ampleness over Aa0 . . . ai−1. Thus n-Σ-
ample implies i-Σ-ample for all i ≤ n.

For n = 1 and n = 2 there are alternative definitions of non-n-Σ-
ampleness:
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Definition 10. (1) Φ is Σ-based if Cb(a/Σcl(B)) ⊆ Σcl(aA) for
any tuple a of realizations of partial types in Φ over some pa-
rameters A and any B ⊇ A.

(2) Φ is Σ-CM-trivial if Cb(a/Σcl(AB)) ⊆ Σcl(A,Cb(a/Σcl(AC))
for any tuple a of realizations of partial types in Φ over some
parameters A and any B ⊆ C such that Σcl(ABa)∩Σcl(AC) =
Σcl(AB).

Remark 11. It is clear from the latter definitions that even though
Φ might be a complete type p, if p is one-based (or CM-trivial, or
n-ample), so is any extension of p, not only the non-forking ones.

Fact 12. (1) Φ is Σ-based if and only if Φ is not 1-Σ-ample.
(2) Φ is Σ-CM-trivial if and only if Φ is not 2-Σ-ample.

Proof: This is standard. For (1), take a = a1 and B = Aa0 and
note that a1 |⌣Σcl(A)

a0 iff a1 |⌣Σcl(A)
Σcl(Aa0) by Fact 5. For (2), take

a = a2, B = a0 and C = a0a1 and note that

a2 |⌣
Σcl(A)

a0 ⇔ a2 |⌣
Σcl(A)

Σcl(Aa0), and

a2 |⌣
Σcl(Aa1)

a0 ⇔ a2 |⌣
Σcl(Aa1)

Σcl(Aa0a1).

For the converse, a0 = Cb(a/Σcl(AB)) and a1 = Cb(a/Σcl(AC)). �

Lemma 13. If Φ is not n-Σ-ample, neither is tp(a/A) for any a ∈
Σcl(āA), where ā is a tuple of realizations of partial types in Φ over A.

Proof: Suppose tp(a/A) is n-Σ-ample, as witnessed by a0, . . . , an over
some parameters B ⊇ A. There is a tuple ā of realizations of partial
types in Φ over A such that an ∈ Σcl(āA); we may choose it such that

ā |⌣
anA

a0 . . . an−1B.

Then

ā |⌣
an−1anB

a0 . . . an−2,

and hence

ā |⌣
Σcl(an−1anB)

a0 . . . an−2.

As an |⌣Σcl(an−1B)
a0 . . . an−2 implies

Σcl(an−1anB) |⌣
Σcl(an−1B)

a0 . . . an−2
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by Fact 5, we get

ā |⌣
Σcl(an−1B)

a0 . . . an−2.

We also have ā |⌣a0...an−2anB
an−1, whence

Σcl(a0 . . . an−2āB) |⌣
Σcl(a0...an−2anB)

Σcl(a0 . . . an−2an−1B);

since Σcl is boundedly closed,

Σcl(a0 . . . an−2āB) ∩ Σcl(a0 . . . an−2an−1B)

⊆ Σcl(a0 . . . an−2anB) ∩ Σcl(a0 . . . an−2an−1B)

= Σcl(a0 . . . an−2B).

Finally, ā |⌣Σcl(B)
a0 would imply Σcl(āA) |⌣Σcl(B)

a0 by Fact 5, and

hence an |⌣Σcl(B)
a0, a contradiction. Thus ā 6 |⌣Σcl(B)

a0, contradicting

non-n-Σ-ampleness of Φ. �

Lemma 14. If Σcl(C) = Σcl(A)∩Σcl(B) andD |⌣C
AB, then Σcl(AD)∩

Σcl(BD) = Σcl(CD).

Proof: This is just an adaptation of [8, Fact 2.4]. By Fact 5

Σcl(AD) |⌣
Σcl(A)

Σcl(AB) and Σcl(BD) |⌣
Σcl(B)

Σcl(AB),

so

Cb(Σcl(AD) ∩ Σcl(BD)/Σcl(AB)) ⊆ Σcl(A) ∩ Σcl(B) = Σcl(C).

Hence

Σcl(AD) ∩ Σcl(BD) |⌣
Σcl(CD)

Σcl(AB)

and again by Lemma 5

Σcl(AD) ∩ Σcl(BD) |⌣
Σcl(CD)

Σcl(ABD).

This yields the result. �

Lemma 15. If a0, . . . , an witness n-Σ-ampleness over A and

B |⌣
A

a0 . . . an,

then a0, . . . , an witness n-Σ-ampleness over B.
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Proof: Clearly B |⌣a0...ai−1A
a0 . . . ai+1A, so

Σcl(Aa0 . . . ai−1ai) ∩ Σcl(Aa0 . . . ai−1ai+1) = Σcl(Aa0 . . . ai−1)

implies by Lemma 14

Σcl(Ba0 . . . ai−1ai) ∩ Σcl(Ba0 . . . ai−1ai+1) = Σcl(Ba0 . . . ai−1).

Moreover, an |⌣Σcl(A)
Σcl(B) by Lemma 5, so an |⌣Σcl(B)

a0 would imply

an |⌣Σcl(A)
a0, a contradiction. Hence an 6 |⌣Σcl(B)

a0.

Finally, ai+1 |⌣Aa0...ai
B, whence ai+1 |⌣Σcl(Aa0...ai)

Σcl(Bai) by Lemma

5 ; as ai+1 |⌣Σcl(Aai)
a0 . . . ai−1 implies ai+1 |⌣Σcl(Aai)

Σcl(Aa0 . . . ai) this

yields

ai+1 |⌣
Σcl(Bai)

a0 . . . ai−1

for 1 ≤ i < n. �

Lemma 16. Let Ψ be an ∅-invariant family of types. If Φ and Ψ are
not n-Σ-ample, neither is Φ ∪Ψ.

Proof: Suppose Φ∪Ψ is n-Σ-ample, as witnessed by a0, . . . , an = bc over
some parameters A, where b and c are tuples of realizations of partial
types in Φ and Ψ, respectively. As Ψ is not n-Σ-ample, we must have
c |⌣Σcl(A)

a0. Put a′0 = Cb(bc/a0Σcl(A)). Then a′0 is definable in a

Morley sequence (bici : i < ω) of tp(bc/a0Σcl(A)); since c |⌣Σcl(A)
a0 we

get (ci : i < ω) |⌣Σcl(A)
a′0, so a′0 is internal in tp(b/A). Put

a′n = Cb(a′0/anΣcl(A)).

Then tp(a′n/Σcl(A)) is tp(a′0/Σcl(A))-internal and hence tp(b/A)-in-
ternal. Note that an 6 |⌣Σcl(A)

a0 implies an 6 |⌣Σcl(A)
a′0, whence

a′n 6 |⌣
Σcl(A)

a′0 and a′n 6 |⌣
Σcl(A)

a0.

Moreover a′n ∈ Σcl(Aan), so a0, . . . , an−1, a
′

n witness n-Σ-ampleness
over A.

As tp(a′n/Σcl(A)) is tp(b/A)-internal, there is B |⌣Σcl(A)
a′n and a

tuple b̄ of realizations of tp(b/A) with a′n ∈ dcl(Bb̄). We may as-
sume B |⌣a′n

Σcl(Aa0 . . . an−1), whence B |⌣Σcl(A)
Σcl(Aa0 . . . an−1a

′

n).

So a0, . . . , an−1, a
′

n witness n-Σ-ampleness over B by Lemma 15. As
a′n ∈ dcl(Bb̄), this contradicts non-n-Σ-ampleness of Φ by Lemma
13. �
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Corollary 17. For i < α let Φi be an ∅-infariant family of partial
types. If Φi is not n-Σ-ample for all i < α, neither is

⋃
i<αΦi.

Proof: This just follows from the local character of forking and Lemma
16. �

Lemma 18. If tp(a/A) is not n-Σ-ample and a |⌣A, then tp(a) is not
n-Σ-ample.

Proof: Suppose tp(a) is n-Σ-ample, as witnessed by a0, . . . , an over
some parameters B, where an = (bi : i < k) is a tuple of realizations
of tp(a). For each i < k choose Bi |⌣bi

(B, a0 . . . an, Bj : j < i) with

Bibi ≡ Aa. Then Bi |⌣ bi, whence (Bi : i < k) |⌣Ba0 . . . an. Now
tp(bi/Bi) is not n-Σ-ample, and neither is {tp(bi/Bi) : i < k)} by
Lemma 16. But a0, . . . , an witness n-Σ-ampleness over (B,Bi : i < k)
by Lemma 15, a contradiction. �

Corollary 19. Let Ψ be an ∅-invariant family of types. If Ψ is Φ-
internal and Φ is not n-Σ-ample, neither is Ψ.

Proof: Immediate. �

The following theorem is of independent interest, and has been shown
by Buechler [2, Proposition 3.1] for superstable theories of finite Lascar
rank and Φ the family of types of Lascar rank 1 (his first level ℓ1(a)
corresponds to our a0 below).

Theorem 20. Suppose tp(a/A) is Φ-analysable, and a0 ⊆ bdd(Aa) is
maximal such that tp(a0/A) is Φ-internal. Then a and a0 are domi-
nation-equivalent over A.

Proof: Since a0 ∈ bdd(Aa), clearly a dominates a0 over A. For the
converse, suppose b 6 |⌣A

a; we have to show b 6 |⌣A
a0.

Let b′ = Cb(a/Ab). Then tp(b′/A) is tp(a/A)-internal, and hence
Φ-analysable. So there is a sequence (bi : i ≤ α) in bdd(Ab′) such that
tp(bi/A, bj : j < i) is Φ-internal for all i ≤ α and b′ ∈ bdd(A, bi : i ≤ α).
Since a 6 |⌣A

b′ there is minimal i ≤ α such that a 6 |⌣A,bj :j<i
bi. Put

a′ = Cb(bj : j ≤ i/Aa), and let (bℓj : j ≤ i, ℓ < ω) be a Morley

sequence in tp(bj : j ≤ i/Aa). Then a′ ∈ dcl(bℓj : j ≤ i, ℓ < ω); as

a′ |⌣A
(bj : j < i) by minimality of i we have a′ |⌣A

(bℓj : j < i, ℓ < ω).

Now tp(bℓi/A, b
ℓ
j : j < i) is Φ-internal by ∅-invariance of Φ, so tp(a′/A)

is Φ-internal, and a′ ⊆ a0. Clearly a′ 6 |⌣A
(bj : j ≤ i), whence a′ 6 |⌣A

b

and finally a0 6 |⌣A
b. �
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Theorem 21. Let Ψ be an ∅-invariant family of types. If Ψ is Φ-
analysable and Φ is not n-Σ-ample, neither is Ψ.

Proof: Suppose Ψ is n-Σ-ample, as witnessed by a0, . . . , an over some
parameters A, where an is a tuple of realizations of Ψ. Let a′n ⊆
bdd(Aan) be maximal such that tp(a′n/Σcl(A)∩bdd(Aan)) is Φ-internal.
Then an and a′n are domination-equivalent over Σcl(A) ∩ bdd(Aan) by
Theorem 20; moreover an and hence a′n are independent of Σcl(A) over
Σcl(A)∩bdd(Aan) by Fact 13, so an and a′n are domination-equivalent
over Σcl(A). Thus a0, . . . , a

′

n witnesses non-Σ-ampleness over A, con-
tradicting Corollary 19. �
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