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An experimental study is presented on the spatial structure of the internal wave field
emitted by a horizontally oscillating sphere in a uniformly stratified fluid. The limits
of linear theory and the nonlinear features of the waves are considered as functions
of oscillation amplitude. Fourier decomposition is applied to separate first harmonic
waves at the fundamental frequency and higher harmonic waves at multiples of this
frequency. For low oscillation amplitude, of 10 % of the sphere radius, only the first
harmonic is significant and the agreement between linear theory and experiment is
excellent. As the oscillation amplitude increases up to 30 % of the radius, the first
harmonic becomes slightly smaller than its linear theoretical prediction and the second
and third harmonics become detectable. Two distinct cases emerge depending on the
ratio £2 between the oscillation frequency and the buoyancy frequency. When £2 > 0.5,
the second harmonic is evanescent and localized near the sphere in the plane through
its centre perpendicular to the direction of oscillation, while the third harmonic is
negligible. When §2 < 0.5, the second harmonic is propagative and appears to have an
amplitude that exceeds the amplitude of the first harmonic, while the third harmonic
is evanescent and localized near the sphere on either side of the plane through its
centre perpendicular to the direction of oscillation. Moreover, the propagative first
and second harmonics have radically different horizontal radiation patterns and are
of dipole and quadrupole types, respectively.
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1. Introduction

The interaction of the barotropic tidal flow with seafloor topography is known
to provide a significant flux of energy into the internal tidal motion (see e.g.
Morozov 1995; Vlasenko, Stashchuk & Hutter 2005; Garrett & Kunze 2007). This has
motivated many investigations on internal tidal emission due to interaction with two-
dimensional topographies. Two basic types of topography have been considered: a
continental slope forming the transition between a shallow shelf and a deep basin (as
studied experimentally by Baines & Fang 1985, Gostiaux & Dauxois 2007 and Zhang,
King & Swinney 2008, and numerically by Lamb 1994, 2007, Gerkema, Staquet &
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Bouruet-Aubertot 2006a,b and Gayen & Sarkar 2010), and a ridge on an otherwise
even bottom (as studied experimentally by Matsuura & Hibiya 1990, Peacock,
Echeverri & Balmforth 2008 and Echeverri et al. 2009, and numerically by Matsuura &
Hibiya 1990, Chen & Beardsley 1995, Khatiwala 2003, Lamb 2004, 2007, Di Lorenzo,
Young & Llewellyn Smith 2006, Legg & Huijts 2006, Legg & Klymak 2008 and Ko-
robov & Lamb 2008). A common conclusion of these investigations is the importance
of the slope of the topography: the internal tide has rays with a fixed slope set by the
frequency, and its properties depend crucially on whether the slope of the topography
is everywhere smaller than the slope of the rays, a configuration called subcritical, or
locally larger, a configuration called supercritical. The internal tide is stronger in the
supercritical case, owing to the existence of critical rays tangent to the topography.
Available theories, however, consider topographies with slopes that are either infinitely
small, corresponding to flat topography, or infinitely large, corresponding to a step
or a knife-edge, as reviewed by Garrett & Kunze (2007). Significant effort is currently
devoted to building theories for finite slopes, for example by Pétrélis, Llewellyn Smith
& Young (2006), Balmforth & Peacock (2009) and Echeverri & Peacock (2010).

Now, at small excursion A of the barotropic tide compared with the horizontal
scale ¢ of the topography, the generation of the internal tide by the barotropic
oscillation over the topography is equivalent to the generation of internal waves
by the oscillation of the topography in a fluid at rest. For this latter problem, a
topography exists, which has a slope varying continuously from zero to infinity and
has been studied over the past five decades: the semi-circular or semi-elliptical cylinder
on a plane bottom, equivalent to a circular or elliptical cylinder in an unbounded
fluid, studied experimentally by Mowbray & Rarity (1967), Makarov, Neklyudov &
Chashechkin (1990), Sutherland et al. (1999), Sutherland & Linden (2002), Zhang,
King & Swinney (2007), Ermanyuk & Gavrilov (2008) and Thomas, Marino & Dalziel
(2009), to name but a few. The linear theory of Hurley (1997) and Hurley & Keady
(1997) has been seen to yield excellent quantitative agreement with the measurements.

As the ratio A/f increases, sometimes called excursion parameter for internal
tides and Keulegan—Carpenter number for internal waves, nonlinear effects manifest
themselves in the form of higher harmonics nw of the fundamental oscillation
frequency w, with n=2,3, ..., subject to the requirement nw < N that the waves
can propagate, with N being the buoyancy frequency. Higher harmonics have been
observed by Mowbray & Rarity (1967), Makarov et al. (1990), Sutherland et al. (1999),
Sutherland & Linden (2002), Zhang et al. (2007), Ermanyuk & Gavrilov (2008) and
Thomas et al. (2009) for the cylinder, and Lamb (2004), Tabaei, Akylas & Lamb
(2005), Gerkema et al. (20064, b), Legg & Huijts (2006), Korobov & Lamb (2008) and
Gayen & Sarkar (2010) for various topographies.

Two mechanisms can produce higher harmonics, as discussed e.g. by Zhang et al.
(2007). For A/¢ > 1, the dominant mechanism is advection (by the barotropic flow
for a topography at rest, by the boundary forcing for an oscillating body); the theory
by Bell (1975a) and Khatiwala (2003) predicts amplitudes scaling linearly as A for
all the harmonics. In this parameter regime, Legg & Huijts (2006) have observed
four harmonics for a Gaussian ridge, with relative amplitudes consistent with the
theory. For A/¢ < 1, the dominant mechanism is the interaction between wave beams
(emanating from the topography and their reflections at the bottom, and in the case
of a body, between wave beams emanating from the body); the theory by Tabaei et al.
(2005) and Jiang & Marcus (2009) predicts an amplitude scaling as A" for the nth
harmonic. In this parameter regime, Sutherland et al. (1999), Sutherland & Linden
(2002) and Zhang et al. (2007) have observed a second harmonic for the cylinder,
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with an amplitude varying as A%, for A/¢ as low as 0.05, with £ =a the radius of the
cylinder.

Much less is known about three-dimensional geometries. Bell-shaped seamounts
have been investigated experimentally by Zhang & Boyer (1993) and numerically
by Holloway & Merrifield (1999) and Munroe & Lamb (2005); the sphere has
been investigated experimentally by Flynn, Onu & Sutherland (2003) and Peacock &
Weidman (2005) and both experimentally and numerically by King, Zhang & Swinney
(2009). Quantitative measurements, in particular, have been performed for the sphere
by Flynn et al. (2003) and King et al. (2009). However, the lack of an adequate
theory, even for the linear case A/¢ < 1, with ¢ =a the radius of the sphere, has
made the comparison with theory unsuccessful. For A/¢ > 1, Bell (1975b) provided
the three-dimensional generalization of the two-dimensional theory of Bell (1975a),
but for A/¢ < 1 no such generalization of the two-dimensional theory of Tabaei et al.
(2005) exists, whereas the measurements for the sphere have all been performed at
A/l <0.6. A second harmonic has indeed been observed by Peacock & Weidman
(2005) and King et al. (2009), but the observation was only qualitative for the former,
and for the latter was limited to the frequency range 0.5 <w/N < 1, in which the
second harmonic is evanescent.

The present paper continues the investigations initiated by Voisin, Ermanyuk &
Flor (2011) of the internal wave field emitted by a horizontally oscillating sphere.
Voisin et al. (2011) introduced an original linear theory for the calculation of three-
dimensional internal wave fields, based on Voisin (2003) and taking into account
viscous effects and the unsteady effects arising from the finite time elapsed since
the start-up of the motion. In addition, an original method for the measurement
of internal wave motions from fluorescent dye planes (see Hopfinger et al. 1991;
Flor, Ungarish & Bush 2002) was exploited to give accurate quantitative results.
The analysis focused on the linear regime and the measurements were performed in
the vertical plane through the centre of the sphere along the direction of oscillation.
The agreement between experiment and theory was excellent. Here the analysis focuses
on the onset of nonlinearity at moderate amplitude of oscillation, applying Fourier
decomposition to the experimental time series in order to separate the first to third
harmonics, and on the spatial structure of these harmonics. No nonlinear theory is
presented; instead, our aim is to use linear theory to identify nonlinear effects in the
measurements, then to characterize these effects as fully as possible so as to set the
basis for future investigators to develop a nonlinear theory.

A brief theoretical summary of the linear theory of internal wave emission by a
sphere is presented in §2. The essentials of the measurement technique as well as the
decomposition into harmonics are briefly considered in § 3. The results are discussed
in §4, separating three cases: the linear case, the nonlinear case with evanescent
second harmonic and the nonlinear case with propagating second harmonic.

2. Theory

In an unbounded Boussinesq fluid of kinematic viscosity v, uniformly stratified with
buoyancy frequency N, a sphere of radius a starts at time ¢ =0 to oscillate horizontally
at the frequency w < N with amplitude A < a, namely at the reduced frequency or
frequency ratio 2 =w/N < 1, with Keulegan—Carpenter number or amplitude ratio
Ke=A/ak 1.

Internal waves are generated, which we assume of small enough amplitude for linear
theory to apply. The hydrostatic assumption, which would restrict the frequency range
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FIGURE 1. Geometry of linear internal waves from a sphere oscillating horizontally at the
reduced frequency §2. The waves propagate inside a conical shell delimited by the two double
cones of the vertical axis and the semi-angle 6 = arccos £2 tangent to the sphere above and
below.

to £2 < 1, is not made. Close to the sphere, the waves are steady inviscid and propagate
up and down at the angle 6 = arccos §2 to the vertical, forming beams inside a conical
shell delimited by the two double cones of vertical axis and semi-angle 6 tangent to the
sphere above and below. This geometry is illustrated in figure 1 in a Cartesian system
of coordinates (x, y, z), with origin at the centre of the sphere, vertical z-axis, and
x-axis along the direction of oscillation. Away from the sphere, the beams widen and
the wave profiles flatten under the joint influences of unsteadiness and viscosity. In the
following, both influences are assumed small, which in terms of the product wt and
the Reynolds-Stokes number Re =2wa’/v means wt > 1 and Re > 1, respectively.

On these assumptions, the waves have been calculated by Voisin et al. (2011) based
on earlier work by Voisin (2003). In complex notation and cylindrical coordinates
(rn, ¢, z), the vertical velocity is obtained as

3

2/(«|Z))
w=_—""__ —i 2] ion Z —BK3|Z|/2
1+B(Q)6Xp[ i(wt + @)] cos ¢ sign /0 exp(—BK~|Z|/$2)

x Kj(K)J1(KR,2)exp[—iK|Z|(1 — £2%)/?] dK, (2.1)

with (A, 0, 0)sin(wt + ®) being the position of the centre of the sphere, Ji(x) being
a cylindrical Bessel function and jj(x)=(sinx)/x?> — (cosx)/x being a spherical
Bessel function. The coordinates (x,y,z) and r, have been non-dimensionalized
as (X,Y,Z)=(x,y,z)/a and R,=r,/a, and the velocity components (u, v, w) as
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FiGure 2. Horizontal structure of dipolar internal waves. The annular propagation of the
waves, inherited from the conical geometry of figure 1, and the dipolar radiation pattern as
cos(g) are represented by light grey and their combination by dark grey.

(U,V,W)=(u, v, w)/(wA). The term
B(2)= 92{1 — (1 — £2%)"2[ arccosh(1/£2) +iln] } 22)

represents the effect of the stratification on the added mass of the sphere, and the
two parameters

1 1
o= - ne W P raar e

both small, represent the respective effects of unsteadiness and viscosity. The azimuthal
variation as cos¢ follows from the dipolar nature of forcing by the oscillation of
a rigid body; it implies, in the horizontal plane, radiation along the direction of
oscillation and attenuation in the perpendicular direction. When this dipolar pattern
is combined with the conical propagation of internal waves, a two bean-like amplitude
distribution follows in the horizontal plane, illustrated in dark grey in figure 2.

(2.3)

3. Experimental set-up and data processing

The experimental set-up, sketched in figure 3, is based on the set-up used by Voisin
et al. (2011) for measuring the waves in a vertical plane, modified in order to allow
the spatial reconstitution of the wave field.

Experiments were conducted in a Plexiglas tank of dimensions (height x width x
length) 50 x 97 x 97 cm? filled to a height of 47 cm with a linearly salt-stratified fluid
of buoyancy frequency N =1.19 rads™! and kinematic viscosity v=1.2 mm’>s~'. A
sphere, attached to a pendulum of length / =1.3 m, was brought into oscillation at
the frequency w by a wheel rotating around an eccentric axis. The pendulum was kept
against the wheel by a counterweight. The oscillation amplitude, A, was kept small
compared to the length of the pendulum (A/! < 0.016), and the motion was, to a good
approximation, horizontal and sinusoidal. The amplitude was varied with the vertical
position of the wheel. Two spheres were used, a large one of radius ¢ =3.125 cm and
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Series Sphere 2 Re Ke |Z|
A Large 0.76 1500 0.10 1.67, 2.23, 2.89
B Small 0.76 760 0.13, 0.16, 0.20, 0.27 1.54,2.47, 3.32, 4.22
C Small 0.42 420 0.13, 0.16, 0.20, 0.27 1.54,2.47, 3.32, 4.22

TaBLE 1. Non-dimensional parameters for the experimental series, namely reduced frequency £2,
Reynolds—Stokes number Re and Keulegan—Carpenter number Ke, together with positions | Z|
of the dye planes at which the measurements are performed.

(Cl) Pendulum (b)

Counterweight

Motor

©

z z

be Wave L» Y

absorbers Laser plane

- i
s !
~= : / ;
Fluorescent dye planes 5
| | Mirror / Mirror
« >
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FIGURE 3. Sketch of the experimental set-up in (a) front view and (b) side view, with the
dark grey lines denoting the fluorescein dye planes and the light grey line the laser plane. The
mobility of the laser plane in the y-direction allows the measurement of successive planes,
and the reconstitution of the horizontal wave field at levels z/a. These levels differ from one
experiment to another.

a small one of radius a =2.25 cm. Three series of experiments, called A, B and C,
were performed, of which the parameters are indicated in table 1.

The waves were visualized with the fluorescein-dye-line method employed by
Hopfinger et al. (1991) and Flor et al. (2002), and the results processed according to the
method described in detail by Voisin et al. (2011). A set of equidistant horizontal dye
planes (at mutual distances of 2 cm) was created in the fluid prior to the experiment
and illuminated by a vertical laser sheet parallel to the direction of oscillation, so as
to create an image of dye lines materializing the deformation of isopycnal lines within
the fluid. The vertical displacement of the lines was determined with an accuracy of
approximately 0.05 pixel, for the pictures taken in these experiments corresponding
to 20 pm.

Successive images were taken with time increment Ar=0.40s for series A and
0.48 s for series B and C. This increment was sufficiently small compared with
the period of oscillation T =27n/w so that the number of images per period was
large, between 14 and 26. Accordingly, the vertical velocity could be estimated from
the dye-line displacement AZ(r) =¢(t + At) — ¢(¢) between two successive images, as
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w(t) = AZ(t)/At. Furthermore, the velocity amplitude |w| was calculated as the period-
averaged r.m.s. value of the time series multiplied by 2!/2, similar to the procedure
introduced by Sutherland & Linden (2002) and Flynn et al. (2003). To discriminate
the effects of fundamental and multiple frequencies, Fourier filtering of the harmonics
was performed, as did Zhang et al. (2007), King et al. (2009) and Thomas et al. (2009).
The amplitude |w,| of each harmonic, with n=1, 2, ..., was determined in the same
way. The contribution of harmonics higher than the third was found to be negligible
(of the order of the noise level), so that |w| = (|lw;|> + |ws|* + |w3|*)/2.

The accuracy of this procedure was evaluated by generating numerically ‘clean’
signals with amplitudes equivalent to those observed experimentally for each
harmonic. Adding random noise uniformly distributed between +0.1 pixel and
applying the procedure to the ‘clean’ and ‘noisy’ signals separately, the error was
identified as the difference between the results for the two, with the worst combination
of parameters yielding the maximum error. In this way, a ‘safe’ error estimate
was obtained. In practice, for each series of experiments the worst combination
of parameters corresponded to the lowest oscillation amplitude, i.e. the lowest Ke.

Attention was focused on the steady state, which under typical experimental
conditions is after 10 oscillation periods, as evaluated experimentally by Ermanyuk
& Gavrilov (2005, 2008) and theoretically by Voisin et al. (2011). Measurements were
taken after 20 oscillations, so that period-to-period variations of the wave amplitudes
could be neglected and « could be set safely at zero in (2.1).

To reconstruct the three-dimensional wave field, measurements were performed in
several parallel planes shifted in the transverse direction by Ay =1.6cm, and the
results were spline-interpolated for intermediate values of y. The parallel plane views
were obtained by shifting the mirror used to reflect the laser sheet below the tank
with the help of a traverse mechanism driven by a computer-controlled step motor
(see figure 3). At each position, starting with y =0, the mirror remained fixed during
one period of oscillation, allowing measurement of the time series for subsequent
calculation of period-averaged r.m.s. velocity and Fourier analysis.

4. Experimental results and discussion

The experimental parameters are presented in table 1. The results will be given
in terms of the non-dimensional quantities W =w/(wA) for the vertical velocity and
(X,Y,Z)=(x,y,z)/a for the system of coordinates, with origin at the centre of
the sphere, X-axis along its direction of oscillation and upward vertical Z-axis. We
distinguish three cases, with A the linear wave regime, B the nonlinear regime with
evanescent second harmonic and C the nonlinear regime with propagating second
harmonic. The linear regime is used as a reference case for the comparison with the
theory of Voisin et al. (2011), recalled in § 2, which showed excellent agreement with
experiment in the vertical plane ¥ =0.

4.1. Case A: linear waves

Case A involves the large sphere oscillating at the small amplitude Ke =0.1. Figure 4
shows three profiles of vertical velocity amplitude along the X-axis in the planes
Z=—1.67, —2.23 and —2.89 below the sphere. The contribution of all harmonics but
the first is negligible, and as in Voisin et al. (2011) the agreement between experiment
and theory is good. The same is true for the two-dimensional amplitude distributions
in the planes, shown in figure 5. The distributions exhibit the typical two bean-like



Spatial structure of first and higher harmonic internal waves 371

1.0 7

1w

FiGURE 4. Horizontal profiles of the vertical velocity amplitude in the plane ¥ =0 for case A.
The experimental profiles (dots) and the theoretical profiles (solid lines) are plotted at
Z =—1.67 in black, —2.23 in dark grey and —2.89 in light grey.
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FIGURE 5. Horizontal cross-sections of the vertical velocity amplitude in case A at
(a) Z=—1.67, (b) Z=—-2.23 and (c¢) Z=—2.89. Here the right side of the symmetry plane of
figure 2 is represented, with the experimental and theoretical values, respectively, in the upper
and lower halves of the images.

shape expected from figure 2. This shape is consistent with the radiation patterns
observed in the numerical simulations by Holloway & Merrifield (1999) and Munroe
& Lamb (2005) for Gaussian seamounts, exhibiting stronger amplitude along the
X-axis parallel to the barotropic flow than along the Y-axis perpendicular to it.

4.2. Case B: nonlinear waves with evanescent second harmonic at 2 > 0.5

The onset of nonlinear effects due to increase of the amplitude of oscillation from
Ke=0.13 to 0.27 is represented by experimental series B, involving the small sphere
oscillating at the frequency ratio £2=0.76. At such a ratio £2 > 0.5, the higher
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FiGURE 6. Horizontal profiles of the vertical velocity amplitude in the plane ¥ =0 for case B
at Ke=0.27 and (a) Z=—1.54, (b) Z=—-247, (¢) Z=-3.32 and (d) Z=—4.22. The black
and dark grey dots and open circles represent the measured waves |W| and the Fourier-filtered
first and second harmonics |W;| and |W,|, respectively, and the light grey lines represent the
linear theory.

harmonics if present are evanescent, since their frequencies nw, with n=2,3, ..., are
larger than the buoyancy frequency N. Accordingly, they can be observed only in the
vicinity of the sphere.

This is exactly the case for the amplitude profiles in figure 6, corresponding to
the largest amplitude ratio Ke =0.27: a second harmonic is present, which is well
localized in space; namely, its Fourier-filtered profile is significant close to the sphere
at Z=—1.54, with main maximum at X =0 and secondary maxima on the side,
and negligible away from it at Z=—-2.47, —3.32 and —4.22. Higher harmonics are
negligible at all Z.

In view of these observations, we introduce for the nth harmonic the notation |W,|©
for the maximum at X =0, if present, and |W,|"™ for the successive other maxima,
with increasing index m as the distance of the maximum from X =0 increases. This
notation is illustrated in figure 6(a) for the first and second harmonics.

The first harmonic exhibits reasonable agreement with linear theory. Its normalized
peak magnitude |W;|V is nearly independent of the normalized amplitude of
oscillation Ke, while the normalized peak magnitudes |W,|® and |W,|"V of the
second harmonic vary linearly with Ke. These scalings, substantiated in figure 7 at all
the positions Z where the harmonics are observed, imply that the dimensional peak
magnitude |w;|V of the first harmonic varies linearly, as A, with the dimensional
amplitude of oscillation A, and the dimensional peak magnitudes |w,|* and |w,|V of
the second harmonic vary quadratically, as A%. The same scalings are seen in figure 8
to apply not only to the peak magnitudes but also to the whole profiles.
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FIGURE 7. Variations of the peak magnitudes of the first and second harmonics, defined
according to figure 6(a), with amplitude of oscillation Ke in case B, for (a) both harmonics
at Z=—1.54 and (b) the first harmonic only at Z=—1.54, —2.47, —3.32 and —4.22. In (a),
the measurements of |W;|V (black dots), |W>|(") (small open circles) and |W,|© (big open
circles) are compared with the theoretical prediction of |W;|V (solid black line) and linear
regressions for |W,|() and |W5|© (dashed lines). In (b), the measurements of |W;|() (symbols)
are compared with its theoretical prediction (lines) at Z =—1.54 (black dots and solid line),
—2.47 (dark grey dots and solid line), —3.32 (light grey dots and solid line) and —4.22 (open
circles and dashed line). The error estimate, of +0.006, is represented as error bars for |W,|(©
and is smaller than the size of the dots for |W;|") and |W,|().
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FIGURE 8. Scaled experimental profiles of (a) the first harmonic and (b) the second harmonic
in case B at Z=—1.54 and Ke =0.13 (open circles), 0.16 (light grey dots), 0.20 (dark grey
dots) and 0.27 (black dots), together with theoretical profile of the first harmonic (light grey
line).

King et al. (2009) observed in their figure 11 similar variations of the dimensional
velocity as Ke in the plane ¥ =0, where the first harmonic is dominant, and Ke’
in the plane X =0, where the second harmonic is dominant. However, the variation
with Ke® does not belong to the second harmonic itself but to the zero-frequency
flow accompanying it. This flow is essentially horizontal, having a vertical length
scale about 20 times smaller than the horizontal length scale, and is confined to the
close vicinity of the sphere. There is no such flow in the present measurements of the
vertical velocity, performed at |Z| > 1.54, that is just outside the overlap region of
the wave beams defined by the wave cones tangent to the sphere above and below in
figure 1.
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FiGURE 9. Horizontal cross-sections of the vertical velocity amplitude in case B at Ke =0.27
and Z =—1.54 for (a) the total waves |W| and (b, ¢) their harmonic components |W;| and |W>|.
The experimental and linear theoretical values are presented in the upper and lower halves of
the images, respectively.
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FiGUre 10. Horizontal cross-sections of the vertical velocity amplitude in case B at Ke =0.27
and (a) Z=-2.47, (b) Z=-3.32 and (¢) Z =—4.22. At these positions, the second harmonic
component is negligible. The experimental and linear theoretical values are presented in the
upper and lower halves of the images, respectively.

Also seen in figures 68 is a drop of the experimental values of the first harmonic
below the theoretical values with Ke. This effect, especially marked at Z =—1.54 and
smaller at larger |Z|, can be attributed to the large local slopes of the isopycnal lines
near the apex at Z=—1/(1 — £2)"/2 =—1.54 of the wave cone tangent to the lower
part of the sphere (see figure 1): the apex corresponds to a focus of internal wave
energy, so that the assumptions of linear theory are likely to be violated in its vicinity
and nonlinear effects are expected to appear. As Ke increases further, the drop turns
into saturation of the wave amplitude at all |Z|, as reported by Voisin et al. (2011)
at Ke =0.50 for the first harmonic and by King et al. (2009) at Ke = 0.3 for the first
harmonic and the zero-frequency flow.

The two-dimensional amplitude distribution in horizontal planes is shown at Z =
—1.54 in figure 9, in which case the second harmonic is present and the first and
second harmonics are plotted separately; and at Z=-2.47, —3.32 and —4.22 in
figure 10, in which case the second harmonic is absent. The first harmonic exhibits
good agreement with linear theory at all distances from the sphere; in particular, it
has the same two bean-like shape as in case A. The second harmonic is confined
around the transverse vertical plane X =0, consistent with King et al. (2009), and
decreases rapidly with both |Y| and |Z] in this plane.



Spatial structure of first and higher harmonic internal waves 375

(@) (b) 02 -

|| @ 0.1
W
8 0 ‘
(©) (d)
0.15 0.10
a@@
°Q’o ° %
] o <)
0.10{ o © . &
88 ® %
o} o
mooe oos| & % -
o(., s. o° c.) "Oroo
005 19 T N‘. b G Y
A q, o o:’d'.’ ¢
% f:).M“ o~’ 0P
4 B~ i P P e e el o
0 2 4 6 8 0 2 4 6 8
X X

FiGURe 11. Horizontal profiles of the vertical velocity amplitude in the plane ¥ =0 for case C
at Ke=0.27 and (a) Z=—1.54, (b) Z=-2.47, (c) Z=-3.32 and (d) Z=—4.22. The black
dots, dark grey dots, open circles and black triangles represent the measured waves |W| and
the Fourier-filtered first, second and third harmonics |W;|, |W,| and |Ws|, respectively, and the
light grey lines represent the linear theory.

4.3. Case C: nonlinear waves with propagating second harmonic at 2 <0.5

In contrast to the cases above, experimental series C, involving the small sphere
oscillating at the frequency ratio £2 =0.42 < 0.5, admits the radiation of a propagating
second harmonic along with the first harmonic. Figure 11 shows the amplitude profiles
at the same amplitude ratio Ke =0.27 and vertical levels as in figure 6 for case B:
both harmonics are observed at all levels, together with an evanescent third harmonic
well localized in space and visible only at the closest level Z =—1.54 to the sphere,
with maximum next to X =0.

The first harmonic exhibits good agreement with linear theory. Its normalized
amplitude |W;| drops substantially compared with case B, yielding a dimensional
amplitude |w;| roughly 10 times smaller. This effect is in agreement with the
dependence of the radiated wave power on frequency 2 at fixed amplitude of
oscillation Ke: as measured experimentally by Ermanyuk (2002) and Ermanyuk &
Gavrilov (2003) and demonstrated theoretically by Voisin et al. (2011), the wave
power increases from zero at 2 =0 up to a maximum at 2 =0.85, then decreases
down to zero at £2 =1. As a result, the noise-to-signal ratio increases from cases B to
C as becomes evident when comparing the data in figures 6 and 11.

The second harmonic provides an important contribution to the wave field. Its
central peak |W>|® is dominant at Z=—1.54 and secondary at Z=—2.47. The
central peak is not observed at larger |Z|, while the side peak |W,|!) is present at all
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FIGURE 12. Variations of the peak magnitudes of the first to third harmonics, defined according
to figure 11(a), with amplitude of oscillation Ke in case C, for (a) all three harmonics at
Z =—1.54 and (b) the first harmonic and (c¢) the second harmonic at Z =—1.54, —2.47, —3.32
and —4.22. In (a), the measurements of |W;|(V) (black dots), |W,|") (small open circles), |W,|®
(big open circles) and |W;|(V (black triangles) are compared with the theoretical prediction of
|W1|) (solid black line) and linear regressions for |W>|(!) and |W,|© (dashed lines) and |W3|()
(dotted line). In (b) and (c), the measurements of |W;|(!) and |W>|!!) (symbols) are compared
with the theoretical prediction of |W;|(!) and a linear regression for |W,|) (lines) at Z =—1.54
(black dots and solid lines), —2.47 (dark grey dots and solid lines), —3.32 (light grey dots and
solid lines) and —4.22 (open circles and dashed lines); they are accompanied in (c¢) by the

measurements of the additional peak |W,|© at Z = —1.54 (big black dots). The error estimate
is +0.006, as in figure 7.

Z. The dependence of the normalized peak magnitudes on the normalized amplitude
of oscillation Ke is shown in figure 12 for the first to third harmonics. On log-log
scale at Z =—1.54 in figure 12(a), straight lines of slopes 0, 1 and 2 are obtained for
the first, second and third harmonics, respectively, implying independence from Ke
for the first and variations as Ke for the second and Ke’ for the third harmonics.
These variations are confirmed on linear scale at all Z in figures 12(b, ¢) for the first
and second harmonics. As a consequence, the variations of the dimensional peak
magnitudes with the dimensional amplitude of oscillation A are linear, as A, for
the first harmonic, quadratic, as A2, for the second and cubic, as A%, for the third
harmonics.

Formally speaking, the second harmonic, though a second-order effect, can
nevertheless exceed the first harmonic which is a first-order effect, in contrast to
what is generally observed for a cylinder (see Sutherland & Linden 2002; Zhang
et al. 2007; Ermanyuk & Gavrilov 2008). In figure 12(a), the side peak |W,|") of the
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FIGURE 13. Scaled experimental profiles of (a) the first harmonic, (b) the second harmonic
and (c) the third harmonic in case C at Z=—1.54 and Ke =0.13 (open circles), 0.16 (light
grey dots), 0.20 (dark grey dots) and 0.27 (black dots), together with theoretical profile of the
first harmonic (light grey line).

second harmonic is seen to overtake |W;|!) of the first harmonic around Ke =0.15,
a value to be compared with Ke =0.09, at which the zero-frequency flow takes over
the first harmonic in figure 11 of King et al. (2009). At Z =—1.54, the central peak
|W,|© becomes so strong with increasing Ke that a small departure from linearity is
observed after Ke =0.2 in figure 12(c). This behaviour indicates a tendency towards
saturation of the second harmonic close to the apices of the wave cones, similar to
the tendency observed for the first harmonic in case B. It may be expected that the
tendency towards saturation is sensitive to the value of the Reynolds number. The
existing body of data does not allow us to draw a final conclusion concerning this
issue, which represents an area for future research.

The small non-zero value at Ke=0 in figure 12(c) obtained from the linear
regressions characterizes the overall level of noise in the experiments. Plotting each
harmonic scaled by the appropriate power of the amplitude of oscillation in figure 13
reveals again that the scalings are confirmed for the entire profiles (the increase
in noise level with harmonic order is an artefact due to the smaller number of
experimental images per period, from 26 for the first harmonic to 13 for the second
to 9 for the third).

The two-dimensional structure of the wave field in horizontal planes is visualized in
figures 14 and 15. The variations of the amplitude with azimuthal angle ¢ are seen to
be different for the first harmonic, propagating at the angle 6§ = arccos £2 = 65° to the
vertical, and the second harmonic, propagating at the smaller angle arccos (2£2) = 33°,
hence observed at smaller |X| and |Y|. Fourier decomposition allows the separation of
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FiGURE 14. Horizontal cross-sections of the vertical velocity amplitude in case C at Ke =0.27
and Z =—1.54 for (a) the total waves |W| and (b—d) their harmonic components |W;| to |Wj3].
The mode of representation is the same as in figure 9.

the two in the regions where they overlap. In spite of appreciable noise-to-signal ratio,
even at moderate Ke, the measured and calculated first harmonics are in reasonably
good agreement and exhibit the same two bean-like shape as observed in cases A
and B, associated with dipolar azimuthal variations of the form cos ¢, as illustrated
in figure 2. The second harmonic exhibits a different clover-like shape, which may be
associated with quadrupolar azimuthal variations of the form cos(2¢), as illustrated
in figure 16.

The origin of quadrupolar radiation in this context is unclear. Since the amplitude
variations of the second and third harmonics are proportional to, respectively, the
second and third powers of the amplitude of oscillation (as discussed in §1), the
generation by advection is ruled out, implying the generation by nonlinear interaction.
Higher harmonics have only been considered theoretically for the two-dimensional
case (see Tabaei et al. 2005; Jiang & Marcus 2009). If we look closely at the
visualizations of propagating higher harmonics in the literature, all two-dimensional
(see Sutherland & Linden 2002, Zhang et al. 2007 and Thomas et al. 2009 for a
cylinder, and Lamb 2004, Tabaei et al. 2005, Gerkema et al. 2006a,b and Korobov
& Lamb 2008 for various topographies), we note that the generation of higher
harmonics is a very local process, taking place at the locations where the critical
wave rays tangent to the body (or topography) either (i) intersect each other (or
their reflection at the bottom) or (ii) touch the body (or topography). Location (i)
suggests nonlinear interaction of wave beams and corresponds to locations where
the linear theory for a spherical body of Voisin et al. (2011) predicts higher-order
steady inviscid singularities, i.e. the apices of the wave cones tangent to the sphere
at |Z|=1/(1 — £2?)'/2, and the circular intersection of these cones at R, = 1/£2 in the
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FIGURE 15. Horizontal cross-sections of the vertical velocity amplitude in case C at Ke =0.27
and (a) Z=-2.47, (b) Z=-3.32 and (c) Z=—4.22 for the total wave field |W| and its first
and second harmonic components |W;| and |W,|. The mode of representation is the same as
in figures 9 and 10.

midplane Z=0. Location (ii) suggests nonlinear interaction between a wave beam
and the oscillatory boundary layer at the body (or topography). The boundary layer
is neglected by Voisin et al. (2011).

Based on symmetry considerations alone, variations of the form cos(2¢) are
consistent with the observation of Ermanyuk & Gavrilov (2008) that, in the two-
dimensional case of a cylinder in their figure 12(b), the first harmonic is antisymmetric
with respect to the vertical axis X =0 while the second harmonic is symmetric. When
combined with symmetry with respect to the vertical plane ¥ =0 in the three-
dimensional case of a sphere, dipolar variations of the form cos¢ are anticipated
naturally for the first harmonic and quadrupolar variations of the form cos(2¢) for
the second harmonic.
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FiGure 16. Horizontal structure of quadrupolar internal waves. The annular propagation of
the waves and the quadrupolar radiation pattern as cos(2¢) are represented by light grey and
their combination by dark grey.

Finally, we also verify in figure 14 that the evanescent third harmonic is, as the
evanescent second harmonic in case B, confined around the transverse vertical plane
X =0 and decreases rapidly with both |Y| and |Z] in this plane.

5. Conclusion

In this paper, we have further explored the dye-line technique developed by Voisin
et al. (2011) for the quantitative measurement of the spatial distribution of vertical
velocities in the internal wave field emitted by a horizontally oscillating sphere.
Following the approach of Sutherland & Linden (2002) and Flynn et al. (2003),
the velocity amplitudes were estimated from the period-averaged r.m.s. velocities
multiplied by 2!/2; following the approach of Zhang et al. (2007), King et al. (2009)
and Thomas et al. (2009), the velocity fluctuations were decomposed into harmonics
of the oscillation frequency using Fourier analysis. Three cases were considered, as
characterized in table 1.

For the linear case A, corresponding to low ratio Ke=0.1 of the amplitude of
oscillation to the radius of the sphere, good agreement was observed between the
experimental data and the linear theory presented by Voisin et al. (2011). The wave
structure was dipolar and two bean-shaped in the horizontal plane, most radiation
taking place along the direction of oscillation. The data exhibited high accuracy
and a low level of noise, and the contribution of all harmonics but the first (at the
fundamental frequency) was negligible.

For case B, corresponding to higher amplitude ratio Ke up to 0.3 and a ratio
£2 > 0.5 of the oscillation frequency to the buoyancy frequency, an evanescent second
harmonic was observed near the sphere, confined around the transverse vertical plane
through its centre, and was negligible away from the sphere. The amplitude of the
first harmonic, which in a linear scenario should vary linearly with the amplitude
of oscillation, was seen to fall gradually below this variation as Ke increases. This
weak but detectable effect was accentuated close to the sphere, a likely consequence
of the large local slopes of the isopycnal surfaces near the vertices of the wave cones,
offering favourable conditions for the development of nonlinear effects leading to
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saturation. The amplitude of the second harmonic is proportional to the oscillation
amplitude squared, which rules out generation by advection and suggests nonlinear
wave—wave or wave—boundary-layer interaction.

For case C, corresponding to the same amplitude ratio Ke as for case B and a
frequency ratio £2 <0.5, the second harmonic was seen to propagate away from the
sphere and to have a quadrupolar radiation pattern, associated with a clover-shaped
structure in the horizontal plane, most radiation taking place along and perpendicular
to the direction of oscillation. In addition, an evanescent third harmonic was observed
near the sphere, confined around the transverse vertical plane through its centre. The
most striking observation is that, in contrast to its two-dimensional counterpart for
the cylinder, the second harmonic can exceed the first even at moderate oscillation
amplitude (say, Ke >0.2). The amplitude of the third harmonic is proportional to
the oscillation amplitude to the third power, suggesting nonlinear interaction of the
second harmonic with the first or with the oscillatory boundary layer at the sphere.
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