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An experimental study is presented on the spatial structure of the internal wave field

emitted by a horizontally oscillating sphere in a uniformly stratified fluid. The limits

of linear theory and the nonlinear features of the waves are considered as functions of

oscillation amplitude. Fourier decomposition is applied to separate first harmonic waves

at the fundamental frequency and higher harmonic waves at multiples of this frequency.

For low oscillation amplitude, of 10% of the sphere radius, only the first harmonic is

significant and the agreement between linear theory and experiment is excellent. As

the oscillation amplitude increases up to 30% of the radius, the first harmonic becomes

slightly smaller than its linear theoretical prediction and the second and third harmonics

become detectable. Two distinct cases emerge depending on the ratio Ω between the

oscillation frequency and the buoyancy frequency. When Ω > 0.5, the second harmonic

is evanescent and localized near the sphere in the plane through its centre perpendicular
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to the direction of oscillation, while the third harmonic is negligible. When Ω < 0.5,

the second harmonic is propagative and appears to have an amplitude that exceeds the

amplitude of the first harmonic, while the third harmonic is evanescent and localized near

the sphere on either side of the plane through its centre perpendicular to the direction of

oscillation. Moreover, the propagative first and second harmonics have radically different

horizontal radiation patterns and are of dipole and quadrupole types, respectively.

1. Introduction

The interaction of the barotropic tidal flow with seafloor topography is known to pro-

vide a significant flux of energy into the internal tidal motion (see e.g. Morozov 1995;

Vlasenko, Stashchuk & Hutter 2005; Garrett & Kunze 2007). This has motivated many

investigations on internal tidal emission due to interaction with two-dimensional topogra-

phies. Two basic types of topography have been considered: a continental slope forming

the transition between a shallow shelf and a deep basin (as studied experimentally by

Baines & Fang 1985; Gostiaux & Dauxois 2007 and Zhang, King & Swinney 2008, and

numerically by Lamb 1994, 2007; Gerkema, Staquet & Bouruet-Aubertot 2006a, b and

Gayen & Sarkar 2010), and a ridge on an otherwise even bottom (as studied experimen-

tally by Matsuura & Hibiya 1990; Peacock, Echeverri & Balmforth 2008 and Echeverri

et al. 2009, and numerically by Matsuura & Hibiya 1990; Chen & Beardsley 1995; Khati-

wala 2003; Lamb 2004, 2007; Di Lorenzo, Young & Llewellyn Smith 2006; Legg & Huijts

2006; Legg & Klymak 2008 and Korobov & Lamb 2008). A common conclusion of these

investigations is the importance of the slope of the topography: the internal tide has rays

with a fixed slope set by the frequency, and its properties depend crucially on whether

the slope of the topography is everywhere smaller than the slope of the rays, a configura-
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tion called subcritical, or locally larger, a configuration called supercritical. The internal

tide is stronger in the supercritical case, owing to the existence of critical rays tangent

to the topography. Available theories, however, consider topographies with slopes that

are either infinitely small, corresponding to flat topography, or infinitely large, corre-

sponding to a step or a knife edge, as reviewed by Garrett & Kunze (2007). Significant

effort is currently devoted to building theories for finite slopes, for example by Pétrélis,

Llewellyn Smith & Young (2006), Balmforth & Peacock (2009) and Echeverri & Peacock

(2010).

Now, at small excursion A of the barotropic tide compared with the horizontal scale �

of the topography, the generation of the internal tide by the barotropic oscillation over

the topography is equivalent to the generation of internal waves by the oscillation of the

topography in a fluid at rest. For this latter problem, a topography exists which has a

slope varying continuously from zero to infinity and has been studied over the past five

decades: the semi-circular or semi-elliptical cylinder on a plane bottom, equivalent to a

circular or elliptical cylinder in an unbounded fluid, studied experimentally by Mowbray

& Rarity (1967), Makarov, Neklyudov & Chashechkin (1990), Sutherland et al. (1999),

Sutherland & Linden (2002), Zhang, King & Swinney (2007), Ermanyuk & Gavrilov

(2008) and Thomas, Marino & Dalziel (2009), to name but a few. The linear theory of

Hurley (1997) and Hurley & Keady (1997) has been seen to yield excellent quantitative

agreement with the measurements.

As the ratio A/� increases, sometimes called excursion parameter for internal tides and

Keulegan–Carpenter number for internal waves, nonlinear effects manifest themselves in

the form of higher harmonics nω of the fundamental oscillation frequency ω, with n = 2,

3, . . ., subject to the requirement nω < N that the waves can propagate, with N the

buoyancy frequency. Higher harmonics have been observed by Mowbray & Rarity (1967),
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Makarov et al. (1990), Sutherland et al. (1999), Sutherland & Linden (2002), Zhang et

al. (2007), Ermanyuk & Gavrilov (2008) and Thomas et al. (2009) for the cylinder, and

Lamb (2004), Tabaei, Akylas & Lamb (2005), Gerkema et al. (2006a, b), Legg & Huijts

(2006), Korobov & Lamb (2008) and Gayen & Sarkar (2010) for various topographies.

Two mechanisms can produce higher harmonics, as discussed e.g. by Zhang et al.

(2007). For A/� > 1, the dominant mechanism is advection (by the barotropic flow for

a topography at rest, by the boundary forcing for an oscillating body); the theory by

Bell (1975a) and Khatiwala (2003) predicts amplitudes scaling linearly as A for all the

harmonics. In this parameter regime, Legg & Huijts (2004) have observed four harmonics

for a Gaussian ridge, with relative amplitudes consistent with the theory. For A/� < 1, the

dominant mechanism is interaction between wave beams (emanating from the topography

and their reflections at the bottom, and in case of a body, between wave beams emanating

from the body); the theory by Tabaei et al. (2005) and Jiang & Marcus (2009) predicts

an amplitude scaling as An for the nth harmonic. In this parameter regime, Sutherland

et al. (1999), Sutherland & Linden (2002) and Zhang et al. (2007) have observed a second

harmonic for the cylinder, with an amplitude varying as A2, for A/� as low as 0.05 with

� = a the radius of the cylinder.

Much less is known about three-dimensional geometries. Bell-shaped seamounts have

been investigated experimentally by Zhang & Boyer (1993) and numerically by Holloway

& Merrifield (1999) and Munroe & Lamb (2005); the sphere has been investigated ex-

perimentally by Flynn, Onu & Sutherland (2003) and Peacock & Weidman (2005) and

both experimentally and numerically by King, Zhang & Swinney (2009). Quantitative

measurements, in particular, have been performed for the sphere by Flynn et al. (2003)

and King et al. (2009). However, the lack of an adequate theory, even for the linear case

A/� � 1 with � = a the radius of the sphere, has made the comparison with theory
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unsuccessful. For A/� > 1, Bell (1975b) provided the three-dimensional generalization of

the two-dimensional theory of Bell (1975a), but for A/� < 1 no such generalization of

the two-dimensional theory of Tabaei et al. (2005) exists, whereas the measurements for

the sphere have all been performed at A/� < 0.6. A second harmonic has indeed been

observed by Peacock & Weidman (2005) and King et al. (2009), but the observation was

only qualitative for the former, and for the latter was limited to the frequency range

0.5 < ω/N < 1, in which the second harmonic is evanescent.

The present paper continues the investigations initiated in Voisin, Ermanyuk & Flór

(2010) of the internal wave field emitted by a horizontally oscillating sphere. Namely,

Voisin et al. (2010) introduced an original linear theory for the calculation of three-

dimensional internal wave fields, based on Voisin (2003) and taking into account viscous

effects and the unsteady effects arising from the finite time elapsed since the start-up of

the motion. In addition, an original method for the measurement of internal wave motions

from fluorescent dye planes (see Hopfinger et al. 1991 and Flór, Ungarish & Bush 2002)

was exploited to give accurate quantitative results. The analysis focused on the linear

regime and the measurements were performed in the vertical plane through the centre

of the sphere along the direction of oscillation; the agreement between experiment and

theory was excellent. Here the analysis focuses on the onset of nonlinearity at moderate

amplitude of oscillation, applying Fourier decomposition to the experimental time series

in order to separate the first to third harmonics, and on the spatial structure of these

harmonics. No nonlinear theory is presented; instead, our aim is to use linear theory to

identify nonlinear effects in the measurements, then to characterize these effects as fully

as possible so as to set the basis for future investigators to develop a nonlinear theory.

A brief theoretical summary of the linear theory of internal wave emission by a sphere is

presented in §2. The essentials of the measurement technique as well as the decomposition



6 E. V. Ermanyuk, J.-B. Flór and B. Voisin

into harmonics are briefly considered in §3. The results are discussed in §4, separating

three cases: the linear case, the nonlinear case with evanescent second harmonic, and the

nonlinear case with propagating second harmonic.

2. Theory

In an unbounded Boussinesq fluid of kinematic viscosity ν, uniformly stratified with

buoyancy frequency N , a sphere of radius a starts at time t = 0 to oscillate horizontally

at the frequency ω < N with amplitude A � a, namely at the reduced frequency or

frequency ratio Ω = ω/N < 1 with Keulegan–Carpenter number or amplitude ratio

Ke = A/a � 1.

Internal waves are generated, which we assume of small enough amplitude for linear

theory to apply. The hydrostatic assumption, which would restrict the frequency range

to Ω � 1, is not made. Close to the sphere, the waves are steady inviscid and propagate

up and down at the angle θ = arccosΩ to the vertical, forming beams inside a conical

shell delimited by the two double cones of vertical axis and semi-angle θ tangent to the

sphere above and below. This geometry is illustrated in figure 1 in a Cartesian system

of coordinates (x, y, z) with origin at the centre of the sphere, vertical z-axis, and x-axis

along the direction of oscillation. Away from the sphere, the beams widen and the wave

profiles flatten under the joint influences of unsteadiness and viscosity. In the following

both influences are assumed small, which in terms of the product ωt and the Reynolds–

Stokes number Re = 2ωa2/ν means ωt � 1 and Re � 1, respectively.

On these assumptions, the waves have been calculated in Voisin et al. (2010) based on

earlier work by Voisin (2003). In complex notation and cylindrical coordinates (rh, ϕ, z),
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Figure 1. Geometry of linear internal waves from a sphere oscillating horizontally at the reduced

frequency Ω. The waves propagate inside a conical shell delimited by the two double cones of

vertical axis and semi-angle θ = arccosΩ tangent to the sphere above and below.

the vertical velocity is obtained as

W =
2Ω3

1 +B(Ω)
e−i(ωt+Θ) cosϕ signZ

∫ Ω/(α|Z|)

0

exp(−βK3|Z|/Ω)

×Kj1(K)J1(KRhΩ) exp
[−iK|Z|(1−Ω2)1/2

]
dK, (2.1)

with (A, 0, 0) sin(ωt+Θ) the position of the centre of the sphere, J1(x) a cylindrical Bessel

function and j1(x) = (sin x)/x2 − (cosx)/x a spherical Bessel function. The coordinates

(x, y, z) and rh have been nondimensionalized as (X,Y, Z) = (x, y, z)/a and Rh = rh/a,

and the velocity components (u, v, w) as (U, V,W ) = (u, v, w)/(ωA). The term

B(Ω) = Ω2
{
1− (1 −Ω2)1/2

[
arccosh(1/Ω) + i 12π

]}
(2.2)

represents the effect of the stratification on the added mass of the sphere, and the two

parameters

α =
1

ωt(1/Ω2 − 1)1/2
and β =

1

Re(1/Ω2 − 1)1/2
, (2.3)

both small, represent the respective effects of unsteadiness and viscosity. The azimuthal

variation as cosϕ follows from the dipolar nature of forcing by the oscillation of a rigid
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Figure 2. Horizontal structure of dipolar internal waves. The annular propagation of the waves,

inherited from the conical geometry of figure 1, and the dipolar radiation pattern as cos(ϕ) are

represented in light grey and their combination in dark grey.

body; it implies, in the horizontal plane, radiation along the direction of oscillation and

attenuation in the perpendicular direction. When this dipolar pattern is combined with

the conical propagation of internal waves, a two bean-like amplitude distribution follows

in the horizontal plane, illustrated in dark grey in figure 2.

3. Experimental set-up and data processing

The experimental set-up, sketched in figure 3, is based on the set-up used by Voisin

et al. (2010) for measuring the waves in a vertical plane, modified in order to allow the

spatial reconstitution of the wave field.

Experiments were conducted in a Plexiglas tank of dimensions (height×width×length)

50×97×97 cm3 filled to a height of 47 cm with a linearly salt-stratified fluid of buoyancy

frequency N = 1.19 rad s−1 and kinematic viscosity ν = 1.2 mm2 s−1. A sphere, attached

to a pendulum of length l = 1.3 m, was brought into oscillation at the frequency ω by a

wheel rotating around an eccentric axis. The pendulum was kept against the wheel by a

counterweight. The oscillation amplitude, A, was kept small compared to the length of
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Figure 3. Sketch of the experimental set-up in (a) front view and (b) side view, with the

dark grey lines the fluorescein dye planes and the light grey line the laser plane. The mobility

of the laser plane in the y-direction allows for the measurement of successive planes, and the

reconstitution of the horizontal wave field at levels z/a. These levels differ from one experiment

to another.

the pendulum (A/l < 0.016), and the motion was in good approximation horizontal and

sinusoidal. The amplitude was varied with the vertical position of the wheel. Two spheres

were used, a large one of radius a = 3.125 cm and a small one of radius a = 2.25 cm.

Three series of experiments, called A, B and C were performed, of which the parameters

are indicated in table 1.

The waves were visualized with the fluorescein-dye-line method employed in Hopfinger

et al. (1991) and Flór et al. (2002), and the results processed according to the method

described in detail in Voisin et al. (2010). A set of equidistant horizontal dye planes

(at mutual distances of 2 cm) was created in the fluid prior to the experiment, and

illuminated by a vertical laser sheet parallel to the direction of oscillation, so as to create

an image of dye lines materializing the deformation of isopycnal lines within the fluid.
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Series Sphere Ω Re Ke |Z|

A Large 0.76 1500 0.10 1.67, 2.23, 2.89

B Small 0.76 760 0.13, 0.16, 0.20, 0.27 1.54, 2.47, 3.32, 4.22

C Small 0.42 420 0.13, 0.16, 0.20, 0.27 1.54, 2.47, 3.32, 4.22

Table 1. Nondimensional parameters for the experimental series, namely reduced frequency Ω,

Reynolds–Stokes number Re and Keulegan–Carpenter number Ke, together with positions |Z|

of the dye planes at which the measurements are performed.

The vertical displacement of the lines was determined with an accuracy of approximately

0.05 pixel, for the pictures taken in these experiments corresponding to 20 μm.

Successive images were taken with time increment Δt = 0.40 s for series A and 0.48 s

for series B and C. This increment was sufficiently small compared to the period of

oscillation T = 2π/ω so that the number of images per period was large, between 14 and

26. Accordingly, the vertical velocity could be estimated from the dye-line displacement

Δζ(t) = ζ(t + Δt) − ζ(t) between two successive images, as w(t) = Δζ(t)/Δt. Further,

the velocity amplitude |w| was calculated as the period-averaged r.m.s. value of the time

series multiplied by 21/2, similar to the procedure introduced in Sutherland & Linden

(2002) and Flynn et al. (2003). To discriminate the effects of fundamental and multiple

frequencies, Fourier filtering of the harmonics was performed, as did Zhang et al. (2007),

King et al. (2009) and Thomas et al. (2009). The amplitude |wn| of each harmonic,

with n = 1, 2, . . ., was determined in the same way. The contribution of harmonics

higher than the third was found to be negligible (of the order of the noise level), so that

|w| = (|w1|2 + |w2|2 + |w3|2)1/2.

The accuracy of this procedure was evaluated by generating numerically ‘clean’ signals

with amplitudes equivalent to those observed experimentally for each harmonic. Adding
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random noise uniformly distributed between ±0.1 pixel, and applying the procedure to

the ‘clean’ and ‘noisy’ signals separately, the error was identified as the difference between

the results for the two, with the worst combination of parameters yielding the maximum

error. In this way a ‘safe’ error estimate was obtained. In practice, for each series of

experiments the worst combination of parameters corresponded to the lowest oscillation

amplitude, i.e. the lowest Ke.

Attention was focused on the steady state, which under typical experimental conditions

is after 10 oscillation periods, as evaluated experimentally by Ermanyuk & Gavrilov

(2005, 2008) and theoretically by Voisin et al. (2010). Measurements were taken after 20

oscillations, so that period-to-period variations of the wave amplitudes could be neglected

and α could be set safely to 0 in (2.1).

To reconstruct the three-dimensional wave field, measurements were performed in sev-

eral parallel planes shifted in the transverse direction by Δy = 1.6 cm, and the mea-

surements were spline-interpolated for intermediate values of y. This was attained by

shifting the mirror used to reflect the laser sheet below the tank with the help of a

traverse mechanism driven by a computer-controlled step motor (see figure 3). At each

position, starting with y = 0, the mirror remained fixed during one period of oscillation,

allowing to measure the time series for subsequent calculation of period-averaged r.m.s.

velocity and Fourier analysis.

4. Experimental results and discussion

The experimental parameters are presented in table 1. The results will be given in terms

of the nondimensional quantities W = w/(ωA) for the vertical velocity and (X,Y, Z) =

(x, y, z)/a for the system of coordinates, with origin at the centre of the sphere, X-axis

along its direction of oscillation and upward vertical Z-axis. We distinguish three cases,
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|W|

Figure 4. Horizontal profiles of the vertical velocity amplitude in the plane Y = 0 for case A.

The experimental profiles (dots) and the theoretical profiles (solid lines) are plotted at Z = −1.67

in black, −2.23 in dark grey and −2.89 in light grey.

with A the linear wave regime, B the nonlinear regime with evanescent second harmonic,

and C the nonlinear regime with propagating second harmonic. The linear regime is used

as a reference case for the comparison with the theory of Voisin et al. (2010), recalled in

§2, which showed excellent agreement with experiment in the vertical plane Y = 0.

4.1. Case A: linear waves

Case A involves the large sphere oscillating at the small amplitude Ke = 0.1. Figure 4

shows three profiles of vertical velocity amplitude along the X-axis in the planes Z =

−1.67, −2.23 and −2.89 below the sphere. The contribution of all harmonics but the first

is negligible, and as in Voisin et al. (2010) the agreement between experiment and theory

is good. The same is true for the two-dimensional amplitude distributions in the planes,

shown in figure 5. The distributions exhibit the typical two bean-like shape expected from

figure 2. This shape is consistent with the radiation patterns observed in the numerical

simulations by Holloway & Merrifield (1999) and Munroe & Lamb (2005) for Gaussian

seamounts, exhibiting stronger amplitude along the X-axis parallel to the barotropic flow

than along the Y -axis perpendicular to it.
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(a) (b) (c)

Figure 5. Horizontal cross sections of the vertical velocity amplitude in case A at (a) Z = −1.67,

(b) Z = −2.23 and (c) Z = −2.89. Here the right side of the symmetry plane of figure 2 is

represented, with the experimental and theoretical values respectively in the upper and lower

halves of the images.

4.2. Case B: nonlinear waves with evanescent second harmonic at Ω > 0.5

The onset of nonlinear effects due to increase of the amplitude of oscillation from Ke =

0.13 to 0.27 is represented by experimental series B, involving the small sphere oscillating

at the frequency ratio Ω = 0.76. At such ratio Ω > 0.5, the higher harmonics if present

are evanescent, since their frequencies nω, with n = 2, 3, . . ., are larger than the buoyancy

frequency N . Accordingly, they can be observed only in the vicinity of the sphere.

This is exactly the case for the amplitude profiles in figure 6, corresponding to the

largest amplitude ratio Ke = 0.27: a second harmonic is present which is well localized in

space; namely, its Fourier-filtered profile is significant close to the sphere at Z = −1.54,

with main maximum at X = 0 and secondary maxima on the side, and negligible away

from it at Z = −2.47, −3.32 and −4.22. Higher harmonics are negligible at all Z.

In view of these observations, we introduce for the nth harmonic the notations |Wn|(0)

for the maximum at X = 0, if present, and |Wn|(m) for the successive other maxima,
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Figure 6. Horizontal profiles of the vertical velocity amplitude in the plane Y = 0 for case B

at Ke = 0.27 and (a) Z = −1.54, (b) Z = −2.47, (c) Z = −3.32 and (d) Z = −4.22. The black,

dark grey and white dots represent the measured waves |W | and the Fourier-filtered first and

second harmonics |W1| and |W2|, respectively, and the light grey lines the linear theory.

with increasing index m as the distance of the maximum from X = 0 increases. These

notations are illustrated in figure 6(a) for the first and second harmonics.

The first harmonic exhibits reasonable agreement with linear theory. Its normalized

peak magnitude |W1|(1) is independent of the normalized amplitude of oscillation Ke,

while the normalized peak magnitudes |W2|(0) and |W2|(1) of the second harmonic vary

linearly with Ke. These scalings, substantiated in figure 7 at all the positions Z where

the harmonics are observed, imply that the dimensional peak magnitude |w1|(1) of the

first harmonic varies linearly, as A, with the dimensional amplitude of oscillation A,

and the dimensional peak magnitudes |w2|(0) and |w2|(1) of the second harmonic vary

quadratically, as A2. The same scalings are seen in figure 8 to apply not only to the peak

magnitudes but also to the whole profiles.
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Figure 7. Variations of the peak magnitudes of the first and second harmonics, defined according

to figure 6(a), with amplitude of oscillation Ke in case B, for (a) both harmonics at Z = −1.54

and (b) the first harmonic only at Z = −1.54, −2.47, −3.32 and −4.22. In (a) the measurements

of |W1|(1) (black dots), |W2|(1) (white dots) and |W2|(0) (big white dots) are compared with the

theoretical prediction of |W1|(1) (solid black line) and linear regressions for |W2|(1) and |W2|(0)

(dashed lines). In (b) the measurements of |W1|(1) (dots) are compared with its theoretical

prediction (lines) at Z = −1.54 (black dots and solid line), −2.47 (dark grey dots and solid

line), −3.32 (light grey dots and solid line) and −4.22 (white dots and dashed line). The error

estimate, of ±0.006, is represented as error bars for |W2|(0) and is smaller than the size of the

dots for |W1|(1) and |W2|(1).

0 2 4
0.0

0.2

0.4

0.6

0.8
|W1|

X

(a)

0 2 4
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|W2|/Ke
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Figure 8. Scaled experimental profiles of (a) the first harmonic and (b) the second harmonic in

case B at Z = −1.54 and Ke = 0.13 (white dots), 0.16 (light grey dots), 0.20 (dark grey dots)

and 0.27 (black dots), together with theoretical profile of the first harmonic (light grey line).

King et al. (2009) observed in their figure 11 similar variations of the dimensional

velocity as Ke in the plane Y = 0 where the first harmonic is dominant, and Ke2
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in the plane X = 0 where the second harmonic is dominant. However, the variation

with Ke2 does not belong to the second harmonic itself but to the zero-frequency flow

accompanying it. This flow is essentially horizontal, having a vertical length scale about

20 times smaller than the horizontal length scale, and is confined to the close vicinity of

the sphere. There is no such flow in the present measurements of the vertical velocity,

performed at |Z| > 1.54 that is just outside the overlap region of the wave beams defined

by the wave cones tangent to the sphere above and below in figure 1.

Also seen in figures 6 to 8 is a drop of the experimental values of the first harmonic

below the theoretical values with Ke. This effect, especially marked at Z = −1.54 and

smaller at larger |Z|, can be attributed to the large local slopes of the isopycnal lines near

the apex at Z = −1/(1−Ω2)1/2 = −1.54 of the wave cone tangent to the lower part of

the sphere (see figure 1): the apex corresponds to a focus of internal wave energy, so that

the assumptions of linear theory are likely to be violated in its vicinity and nonlinear

effects are expected to manifest. As Ke increases further, the drop turns into saturation

of the wave amplitude at all |Z|, as reported by Voisin et al. (2010) at Ke = 0.50 for

the first harmonic and by King et al. (2009) at Ke � 0.3 for the first harmonic and the

zero-frequency flow.

The two-dimensional amplitude distribution in horizontal planes is shown at Z =

−1.54 in figure 9, in which case the second harmonic is present and the first and second

harmonics are plotted separately; and at Z = −2.47, −3.32 and −4.22 in figure 10, in

which case the second harmonic is absent. The first harmonic exhibits good agreement

with linear theory at all distances from the sphere; in particular, it has the same two

bean-like shape as in case A. The second harmonic is confined around the transverse

vertical plane X = 0, consistent with King et al. (2009), and decreases rapidly with both

|Y | and |Z| in this plane.
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|W | |W1| |W2|

Figure 9. Horizontal cross sections of the vertical velocity amplitude in case B at Ke = 0.27

and Z = −1.54 for the total waves |W | and their harmonic components |W1| and |W2|. The

experimental and linear theoretical values are presented in the upper and lower halves of the

images, respectively.

(a) (b) (c)

Figure 10. Horizontal cross sections of the vertical velocity amplitude in case B at Ke = 0.27

and (a) Z = −2.47, (b) Z = −3.32 and (c) Z = −4.22. At these positions, the second harmonic

component is negligible. The experimental and linear theoretical values are presented in the

upper and lower halves of the images, respectively.

4.3. Case C: nonlinear waves with propagating second harmonic at Ω < 0.5

In contrast to the cases above, experimental series C, involving the small sphere oscillating

at the frequency ratio Ω = 0.42 < 0.5, admits the radiation of a propagating second

harmonic along with the first harmonic. Figure 11 shows the amplitude profiles at the

same amplitude ratio Ke = 0.27 and vertical levels as in figure 6 for case B: both

harmonics are observed at all levels, together with an evanescent third harmonic well
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Figure 11. Horizontal profiles of the vertical velocity amplitude in the plane Y = 0 for case C

at Ke = 0.27 and (a) Z = −1.54, (b) Z = −2.47, (c) Z = −3.32 and (d) Z = −4.22. The black

dots, dark grey dots, white dots and black triangles represent the measured waves |W | and the

Fourier-filtered first, second and third harmonics |W1|, |W2| and |W3|, respectively, and the light

grey lines the linear theory.

localized in space and visible only at the closest level Z = −1.54 to the sphere, with

maximum next to X = 0.

The first harmonic exhibits good agreement with linear theory. Its normalized am-

plitude |W1| drops substantially compared with case B, yielding a dimensional ampli-

tude |w1| roughly 10 times smaller. This effect is in agreement with the dependence of

the radiated wave power on frequency Ω at fixed amplitude of oscillation Ke: as measured

experimentally in Ermanyuk (2002) and Ermanyuk & Gavrilov (2003) and demonstrated

theoretically in Voisin et al. (2010), the wave power increases from 0 at Ω = 0 up to a

maximum at Ω = 0.85 then decreases down to 0 at Ω = 1. As a result, the noise-to-
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signal ratio increases from cases B to C as becomes evident when comparing the data in

figures 6 and 11.

The second harmonic provides an important contribution to the wave field. Its central

peak |W2|(0) is dominant at Z = −1.54 and secondary at Z = −2.47. The central peak is

not observed at larger |Z|, while the side peak |W2|(1) is present at all Z. The dependence

of the normalized peak magnitudes on the normalized amplitude of oscillation Ke is

shown in figure 12 for the first to third harmonics. On log-log scale at Z = −1.54 in

figure 12(a), straight lines of slopes 0, 1 and 2 are obtained for the first, second and third

harmonics, respectively, implying independence from Ke for the first and variations as Ke

for the second and Ke2 for the third. These variations are confirmed on linear scale at all

Z in figures 12(b, c) for the first and second harmonics. As a consequence, the variations

of the dimensional peak magnitudes with the dimensional amplitude of oscillation A are

linear, as A, for the first harmonic, quadratic, as A2, for the second and cubic, as A3, for

the third.

Formally speaking, the second harmonic, though a second-order effect, can neverthe-

less exceed the first harmonic which is a first-order effect, in contrast to what is generally

observed for a cylinder (see Sutherland & Linden 2002, Zhang et al. 2007 and Ermanyuk

& Gavrilov 2008). In figure 12(a), the side peak |W2|(1) of the second harmonic is seen

to overtake |W1|(1) of the first harmonic around Ke = 0.15, a value to be compared with

Ke = 0.09, at which the zero-frequency flow takes over the first harmonic in figure 11

of King et al. (2009). At Z = −1.54, the central peak |W2|(0) becomes so strong with

increasing Ke that a small departure from linearity is observed after Ke = 0.2 in fig-

ure 12(c). This behaviour indicates a tendency toward saturation of the second harmonic

close to the apices of the wave cones, similar to the tendency observed for the first har-

monic in case B. It may be expected that the tendency toward saturation is sensitive to
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Figure 12. Variations of the peak magnitudes of the first to third harmonics, defined according

to figure 11(a), with amplitude of oscillation Ke in case C, for (a) all three harmonics at

Z = −1.54 and (b) the first harmonic and (c) the second harmonic at Z = −1.54, −2.47,

−3.32 and −4.22. In (a) the measurements of |W1|(1) (black dots), |W2|(1) (white dots), |W2|(0)

(big white dots) and |W3|(1) (black triangles) are compared with the theoretical prediction of

|W1|(1) (solid black line) and linear regressions for |W2|(1) and |W2|(0) (dashed lines) and |W3|(1)

(dotted line). In (b) and (c) the measurements of |W1|(1) and |W2|(1) (dots) are compared with

the theoretical prediction of |W1|(1) and a linear regression for |W2|(1) (lines) at Z = −1.54

(black dots and solid lines), −2.47 (dark grey dots and solid lines), −3.32 (light grey dots and

solid lines) and −4.22 (white dots and dashed lines); they are accompanied in (c) with the

measurements of the additional peak |W2|(0) at Z = −1.54 (big black dots). The error estimate

is ±0.006 as in figure 7.

the value of the Reynolds number. The existing body of data does not allow us to draw

a final conclusion concerning this issue, which represents an area for future research.

The small nonzero value at Ke = 0 in figure 12(c) obtained from the linear regressions
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Figure 13. Scaled experimental profiles of (a) the first harmonic, (b) the second harmonic and

(c) the third harmonic in case C at Z = −1.54 and Ke = 0.13 (white dots), 0.16 (light grey

dots), 0.20 (dark grey dots) and 0.27 (black dots), together with theoretical profile of the first

harmonic (light grey line).

characterizes the overall level of noise in the experiments. Plotting each harmonic scaled

by the appropriate power of the amplitude of oscillation in figure 13 reveals again that

the scalings are confirmed for the entire profiles (the increase in noise level with harmonic

order is an artifact due to the smaller number of experimental images per period, from

26 for the first harmonic to 13 for the second to 9 for the third).

The two-dimensional structure of the wave field in horizontal planes is visualized in

figures 14 and 15. The variations of the amplitude with azimuthal angle ϕ are seen to

be different for the first harmonic, propagating at the angle θ = arccosΩ = 65◦ to the

vertical, and the second harmonic, propagating at the smaller angle arccos(2Ω) = 33◦

hence observed at smaller |X | and |Y |. Fourier decomposition allows the separation of
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|W | |W1|

|W2| |W3|

Figure 14. Horizontal cross sections of the vertical velocity amplitude in case C at Ke = 0.27

and Z = −1.54 for the total waves |W | and their harmonic components |W1| to |W3|. The mode

of representation is the same as in figure 9.

the two in the regions where they overlap. In spite of appreciable noise-to-signal ratio,

even at moderate Ke, the measured and calculated first harmonics are in reasonably good

agreement and exhibit the same two bean-like shape already observed in cases A and B,

associated with dipolar azimuthal variations of the form cosϕ as illustrated in figure 2.

The second harmonic exhibits a different clover-like shape, which may be associated with

quadrupolar azimuthal variations of the form cos(2ϕ) as illustrated in figure 16.

The origin of quadrupolar radiation in this context is unclear. Since the amplitude

variations of the second and third harmonics are proportional to, respectively, the sec-

ond and third powers of the amplitude of oscillation (as discussed in §1), the generation

by advection is ruled out, implying the generation by nonlinear interaction. Higher har-
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|W | |W1| |W2|
(a)

(b)

(c)

Figure 15. Horizontal cross sections of the vertical velocity amplitude in case C at Ke = 0.27

and (a) Z = −2.47, (b) Z = −3.32 and (c) Z = −4.22 for the total wave field |W | and its first

and second harmonic components |W1| and |W2|. The mode of representation is the same as in

figures 9 and 10.

monics have only been considered theoretically for the two-dimensional case (see Tabaei

et al. 2005 and Jiang & Marcus 2009). If we look closely at the visualizations of propa-

gating higher harmonics in the literature, all two-dimensional (see Sutherland & Linden

2002; Zhang et al. 2007 and Thomas et al. 2009 for a cylinder, and Lamb 2004; Tabaei et
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Figure 16. Horizontal structure of quadrupolar internal waves. The annular propagation of the

waves and the quadrupolar radiation pattern as cos(2ϕ) are represented in light grey and their

combination in dark grey.

al. 2005; Gerkema et al. 2006a, b and Korobov & Lamb 2008 for various topographies),

we note that the generation of higher harmonics is a very local process, taking place at

the locations where the critical wave rays tangent to the body (or topography) either

(i) intersect each other (or their reflection at the bottom) or (ii) touch the body (or

topography). Location (i) suggests nonlinear interaction of wave beams and corresponds

to locations where the linear theory for a spherical body of Voisin et al. (2010) predicts

higher order steady inviscid singularities, i.e. the apices of the wave cones tangent to the

sphere at |Z| = 1/(1−Ω2)1/2, and the circular intersection of these cones at Rh = 1/Ω

in the midplane Z = 0. Location (ii) suggests nonlinear interaction between a wave beam

and the oscillatory boundary layer at the body (or topography). The boundary layer is

neglected in Voisin et al. (2010).

Based on symmetry considerations alone, variations of the form cos(2ϕ) are consistent

with the observation of Ermanyuk & Gavrilov (2008) that, in the two-dimensional case

of a cylinder in their figure 12(b), the first harmonic is antisymmetric with respect to

the vertical axis X = 0 while the second harmonic is symmetric. When combined with
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symmetry with respect to the vertical plane Y = 0 in the three-dimensional case of a

sphere, dipolar variations of the form cosϕ are anticipated naturally for the first harmonic

and quadrupolar variations of the form cos(2ϕ) for the second harmonic.

Finally we also verify in figure 14 that the evanescent third harmonic is, as the evanes-

cent second harmonic in case B, confined around the transverse vertical plane X = 0 and

decreases rapidly with both |Y | and |Z| in this plane.

5. Conclusion

In this paper we have further explored the dye-line technique developed in Voisin et al.

(2010) for the quantitative measurement of the spatial distribution of vertical velocities

in the internal wave field emitted by a horizontally oscillating sphere. Following the

approach of Sutherland & Linden (2002) and Flynn et al. (2003), the velocity amplitudes

were estimated from the period-averaged r.m.s. velocities multiplied by 21/2; following

the approach of Zhang et al. (2007), King et al. (2009) and Thomas et al. (2009), the

velocity fluctuations were decomposed into harmonics of the oscillation frequency using

Fourier analysis. Three cases were considered, characterized in table 1.

For the linear case A, corresponding to low ratio Ke = 0.1 of the amplitude of oscilla-

tion to the radius of the sphere, good agreement was observed between the experimental

data and the linear theory presented in Voisin et al. (2010). The wave structure was

dipolar and two bean-shaped in the horizontal plane, most radiation taking place along

the direction of oscillation. The data exhibited high accuracy and a low level of noise,

and the contribution of all harmonics but the first (at the fundamental frequency) was

negligible.

For case B, corresponding to higher amplitude ratio Ke up to 0.3 and a ratio Ω > 0.5

of the oscillation frequency to the buoyancy frequency, an evanescent second harmonic
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was observed near the sphere, confined around the transverse vertical plane through its

centre, and was negligible away from the sphere. The amplitude of the first harmonic,

which in a linear scenario should vary linearly with the amplitude of oscillation, was seen

to fall gradually below this variation as Ke increases. This weak but detectable effect was

most pronounced close to the sphere, a likely consequence of the large local slopes of the

isopycnal surfaces near the vertices of the wave cones, offering favourable conditions for

the development of nonlinear effects leading to saturation. The amplitude of the second

harmonic is proportional to the oscillation amplitude squared, which rules out generation

by advection and suggests nonlinear wave-wave or wave-boundary-layer interaction.

For case C, corresponding to the same amplitude ratio Ke as for case B and a frequency

ratio Ω < 0.5, the second harmonic was seen to propagate away from the sphere and to

have a quadrupolar radiation pattern, associated with a clover-shaped structure in the

horizontal plane, most radiation taking place along and perpendicular to the direction

of oscillation. In addition, an evanescent third harmonic was observed near the sphere,

confined around the transverse vertical plane through its centre. The most striking obser-

vation is that, in contrast to its two-dimensional counterpart for the cylinder, the second

harmonic can exceed the first even at moderate oscillation amplitude (say, Ke > 0.2).

The amplitude of the third harmonic is proportional to the oscillation amplitude to the

third power, suggesting nonlinear interaction of the second harmonic with the first or

with the oscillatory boundary layer at the sphere.
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