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Introduction

In all the paper, λ denotes a real number, 0 < λ < 2. A λ-continued fraction is an expression of the form [a 0 , . . . , a n , . . .] λ := a 0 λ + 1

a 1 λ + 1 . . . + 1 a n λ+ . . .
where (a n ) n≥0 is a finite or infinite sequence, with a n ∈ Z\ {0} for n ≥ 1. This kind of continued fractions has been studied by Rosen in [START_REF] Rosen | A class of continued fractions associated with certain properly discontinuous groups[END_REF], where specific properties are enlightened when λ = λ k := 2 cos(π/k) for some integer k ≥ 3. For 0 < λ < 2, any real number can be expanded in λ-continued fraction, even if the expansion is not unique in general. In this paper we study a transformation associated to a particular expansion in λ-continued fractions, in which we always have a 0 = 0, a 1 > 0 and the signs of the a n 's alternate.

The motivations for the present article stem from several works by the same authors [START_REF] Janvresse | How do random Fibonacci sequences grow?[END_REF][START_REF] Janvresse | Almost-sure growth rate of generalized random Fibonacci sequences[END_REF], where the exponential growth of random Fibonacci sequences with parameter λ is studied. In [START_REF] Janvresse | Almost-sure growth rate of generalized random Fibonacci sequences[END_REF], the case λ = λ k for some integer k ≥ 3 is solved and involves a probability distribution on R + invariant under some dynamics. This measure is defined inductively on generalized Stern-Brocot intervals, whose endpoints are described in terms of finite expansion in λ-continued fraction. A key fact proved in [START_REF] Janvresse | Almost-sure growth rate of generalized random Fibonacci sequences[END_REF] is that the sequence of partitions of R + given by generalized Stern-Brocot intervals for λ = λ k is isomorphic to the sequence of partitions of [0, 1] associated to the expansion of real numbers in base (k -1). In this paper we investigate the link between λ-continued fractions and expansions in non-integer basis, generalizing the correspondence observed in the case λ = λ k .

Roadmap. We introduce in Section 2 a transformation T λ naturally associated to expansion in λ-continued fraction, for which we also give a nice geometrical interpretation. The study of this transformation leads to a symbolic coding of the orbits. In Section 3, we prove that distinct points have different codings, which provides an algorithm to expand any positive real number in λ-continued fraction (see Section 3.3). In Section 4.1 we give a characterization of symbolic coding of orbits for T λ (Theorem 4.4), which enables to prove the conjugacy between T λ and some β-shift, β > 1 (Theorem 4.6). In Section 4.2, we present some properties of the map λ → β(λ): It is increasing and continuous from ]0, 2[ onto ]1, ∞[ but non-analytic (Theorem 4.8 and Corollary 4.22). We end up by raising some open questions on the subject.

Description of the dynamics

2.1. The transformation T λ . We start by defining the homographic functions h and h 0 by setting h(y) := 1 λy ; h 0 (y) := y λy + 1 .

Observe that, when y ranges over [0, ∞[, h 0 (y) increases from m λ 0 := 0 to m λ 1 := 1/λ = h(m λ 0 ). We recursively define the sequence (m λ i ) by setting, while m λ i < λ, m λ i+1 := h(m λ i ).

Lemma 2.1. The sequence (m λ i ) is increasing, and there exists i λ ≥ 1 such that m λ i λ ≥ λ.

Proof. Since h is increasing on [0, λ[ and m λ 0 < m λ 1 , an easy induction shows that (m λ i ) is increasing. If the sequence (m λ i ) were infinite, it would be bounded above by λ, therefore it would converge to a fixed point for h. But, as λ < 2, such a fixed point does not exist.

The sequence (m λ i ) is thus finite, with (i λ + 1) terms satisfying

0 = m λ 0 < m λ 1 < • • • < m λ i λ -1 < λ ≤ m λ i λ < ∞.
We now recursively define the homographic functions (h i ) 0≤i≤i λ by h i+1 (y) := h • h i (y).

Note that, for i < i λ ,

I λ i := h i ([0, ∞[) = [m λ i , m λ i+1
[, and that the function h i has no pole on [0, ∞[. If m λ i λ > λ, the last function h i λ has a pole ℓ λ := h -1 i λ -1 (λ) and

h i λ ([0, ℓ λ [) = [m λ i λ , ∞[. If m λ i λ = λ, h i λ maps [0, ∞[ onto [m λ i λ , ∞[ (
and is thus a degenerate homographic function: h i λ is affine in this case). We will consider h i λ to be defined only on [0, ℓ λ [, where ℓ λ = ∞ in the second case, so that

I λ i λ := h i λ ([0, ℓ λ [) = [m λ i λ , ∞[. From the above, it follows that {I λ i , 0 ≤ i ≤ i λ } is a partition of [0, ∞[. We then define the transformation T λ : [0, ∞[-→ [0, ∞[ by setting ∀x ∈ I λ i , T λ (x) := h -1 i (x).
(See Figure 1.) 
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2.2.

Coding of the orbits. The way T λ is defined naturally leads to a symbolic coding of the orbits under the action of T λ , on the alphabet {0, . . . , i λ }: For x ∈ [0, ∞[, we set ω λ (x) := x 0 x 1 x 2 . . . , where x ℓ is the unique element of {0, . . . , i λ } such that T ℓ λ (x) ∈ I λ x ℓ . It will be useful in the sequel to consider the lexicographic order on {0, . . . , i λ } Z+ : If ω = (ω j ) and ω ′ = (ω ′ j ) belong to {0, . . . , i λ } Z+ , we shall note ω ≺ ω ′ or ω ′ ≻ ω whenever there exists ℓ ≥ 0 such that ω ℓ < ω ′ ℓ and ω j = ω ′ j for each 0 ≤ j < ℓ. By

ω ω ′ (or ω ′ ω), we mean ω ≺ ω ′ or ω = ω ′ . Lemma 2.2. If 0 ≤ x < x ′ < ∞, ω λ (x) ω λ (x ′ ). Proof. If ω λ (x) = ω λ (x ′ ), let ℓ be the smallest integer such that x ℓ = x ′ ℓ . Since the functions h -1
i are increasing, it is easily proved by induction on j that for 0

≤ j ≤ ℓ, T j λ (x) < T j λ (x ′ ). Hence T ℓ λ (x) < T ℓ λ (x ′ ) and x ℓ < x ′ ℓ . In Section 3, we prove that in fact ω λ (x) = ω λ (x ′ ) if x = x ′ .
An object of particular interest in the study of T λ will be the limit, as x → ∞, of ω λ (x) (which exists by Lemma 2.2). We shall denote this limit

ω λ (∞) = ∞ 0 ∞ 1 ∞ 2 . . . := lim x→∞ ↑ ω λ (x).
For n ≥ 0 and a 0 , . . . , a n ∈ {0, . . . , i λ }, we define I λ a0...an := {x : x j = a j , 0 ≤ j ≤ n}. It is easily checked by induction that I λ a0...an is either empty or an interval of the form

h a0 • • • • • h an ([0, r a0...an [) where 0 < r a0...an ≤ ∞.
We denote by σ the shift on {0, . . . , i λ } Z+ , so that ω λ (T λ (x)) = σω λ (x).

Lemma 2.3. For each 0 ≤ x ≤ ∞, and each ℓ ≥ 0, σ ℓ ω λ (x) ω λ (∞).

Proof. This is an immediate consequence of the definition of ω λ (∞) and Lemma 2.2.

Remark 2.4.

There exist some links between ω λ (∞), ω λ (λ) and ω λ (ℓ λ ). Let We thus introduce the matrices

ω λ (λ) = a 0 a 1 a 2 . . . If T λ (λ) = 0, then ω λ (ℓ λ ) = σ(ω λ (λ)) = a 1 a 2 . . . If T j λ (λ) = 0 for any j ≥ 1, then ω λ (∞) = (a 0 + 1)ω λ (ℓ λ ) = (a 0 + 1)a 1 a 2 . . .
H := 0 1 -1 λ and H 0 := 1 0 λ 1
respectively associated to h and h 0 . For 0 ≤ i ≤ i λ , let H i := H i H 0 be the matrix associated to h i . An easy induction shows that H i is of the form

H i = P i+1 (λ) P i (λ) P i+2 (λ) P i+1 (λ)
,

where the sequence of polynomials (P i ) is defined by P 0 (X) := 0, P 1 (X) := 1, and P i+2 (X) := XP i+1 (X) -P i (X).

Lemma 2.5. For 1 ≤ i ≤ i λ + 1, P i (λ) > 0, and P i λ +2 (λ) ≤ 0.

Proof. Since, for i < i λ , the function h i has no pole on [0, ∞[, all the P i (λ) are nonnegative for 1 ≤ i ≤ i λ + 1. It follows that, for 1 ≤ i ≤ i λ , P i (λ) > 0 (for, if P i (λ) = 0 and P i-1 (λ) > 0, then P i+1 (λ) < 0). If we had P i λ +1 (λ) = 0, h i λ -1 would be an affine function with positive slope, and then m λ i λ would be ∞, which is not possible. Hence

P i λ +1 > 0. Finally, since [m λ i λ , ∞[= h i λ ([0, ℓ λ [), we have P i λ +2 ≤ 0 (otherwise h i λ would be bounded on [0, ℓ λ [).
2.4. Geometrical interpretation of P i (λ). The key observation is the following: Let θ ∈]0, π/2[ be such that λ = 2 cos θ. Fix two points M, M ′ on a circle centered at the origin O, such that the oriented angle (OM, OM ′ ) equals θ. Let M ′′ be the image of M ′ by the rotation of angle θ and center O. Then the respective abscissae t, t ′ and t ′′ of M , M ′ and M ′′ satisfy t ′′ = λt ′t.

Let us consider the circle centered at the origin with radius R = 1/ cos(θπ/2). We fix on the circle the point M 0 = (0, -R), and define the sequence of points (M i ) such that M i is the image of M i-1 by the rotation of angle θ and center O. Let t i be the abscissa of M i . Observe that t 0 = 0 = P 0 (λ), t 1 = 1 = P 1 (λ) by choice of R, and by induction t i = P i (λ) for all i ≥ 0. (See Figure 2.)

M 1 M 0 M 2 M i λ +1 θ M i λ +2 P 2 (λ) P 1 (λ) P 0 (λ) Figure 2
. Geometrical interpretation of the sequence P i (λ) as the successive abscissae of points on the circle centered at the origin with radius R = 1/ cos(π/2θ), where θ is such that λ = 2 cos θ. Proposition 2.6. Let us define the increasing sequence (λ k ) k≥2 by λ k := 2 cos(π/k).

Then i λ = k -2 for λ ∈]λ k-1 , λ k ] (∀k ≥ 3).
Proof. Recall that i λ is characterized by the fact that P i λ +2 (λ) ≤ 0 and P i (λ) > 0 for 1 ≤ i ≤ i λ + 1. Since for λ = 2 cos θ ∈]λ k-1 , λ k ], we have π/k ≤ θ < π/(k -1), the result of Proposition 2.6 is a direct consequence of our geometrical interpretation.

Besides, we see that the P i (λ)'s are bounded by R = 1/ cos(π/2θ), and that (1) P i (λ) > 1 for 2 ≤ i ≤ i λ , and 0 ≤ P i λ +1 (λ) ≤ 1.

2.5. Geometrical interpretation of T λ . By definition, T λ (x) can be obtained by the following recursive algorithm:

If 0 ≤ x < 1/λ, T λ (x) = h -1 0 (x) = x 1 -λx , else T λ (x) = T λ (h -1 (x)) = T λ λx -1 x .
Suppose that x is written x = t 1 /t 0 , with t 1 ≥ 0, t 0 > 0. By Lemma 6.4 in [START_REF] Janvresse | Almost-sure growth rate of generalized random Fibonacci sequences[END_REF], we can find a circle centered at the origin and two points M 0 and M 1 on this circle with respective abscissae t 0 and t 1 , such that the oriented angle (OM 0 , OM 1 ) equals θ. Let M 2 be the image of M 1 by the rotation of angle θ, and denote its abscissa by t 2 = λt 1t 0 .

If x < 1/λ, then t 2 < 0. We get

T λ (x) = h -1 0 (x) = t 1 t 0 -λt 1 = t 1 -t 2
, and

H 0 t 1 -t 2 = t 1 t 0 .
Else, we have t 2 ≥ 0. We obtain

T λ (x) = T λ (h -1 (x)) = T λ λt 1 -t 0 t 1 = T λ t 2 t 1 and H t 2 t 1 = t 1 t 0 .
We recursively define the points M j on the circle, where M j is the image of M j-1 by the rotation of angle θ. Denote by t j the abscissa of M j and let i(x) be such that t i(x)+1 is the first negative abscissa. Then x ∈ I λ i(x)-1 , and

(2)

T λ (x) = t i(x) -t i(x)+1 = T λ t j+1 t j ∀0 ≤ j < i(x) .
Moreover,

(3)

H i(x) t i(x) -t i(x)+1 = t 1 t 0 .
If we want to iterate T λ in this setting, we have to find a new circle centered at the origin and two points N 0 and N 1 on this circle with respective abscissae -t i(x)+1 and t i(x) , such that the oriented angle (ON 0 , ON 1 ) equals θ. Let us denote by R ′ the radius of the new circle, whereas R stands for the radius of the first circle. (See Figure 3.) Proposition 2.7. With the above notations, we always have R ′ ≤ R. Moreover, there exists K(λ) > 1 such that R ′ ≤ R/K(λ) whenever T λ (x) and T 2 λ (x) do not both belong to I λ 0 , and

T λ (x) / ∈ I λ i λ .
Proof. Let α be the argument of M i(x) , so that t i(x) = R cos α and

t i(x)+1 = R cos(α + θ). Observe that π 2 -θ < α ≤ π 2 because t i(x)+1 < 0 and t i(x) ≥ 0. Let τ be the argument of N 1 , so that t i(x) = R ′ cos τ and -t i(x)+1 = R ′ cos(τ -θ). Observe that, since -t i(x)+1 > 0, τ -θ > -π/2, hence (4) τ > -α. θ θ R ′ t 0 M 1 t i(x) N 0 t i(x)+1 N 1 M 0 t 1 M i(x) M i(x)+1 R 0 O Figure 3. Geometrical interpretation of T λ : The transformation maps x = t 1 /t 0 to t i(x) /(-t i(x)+1
). The figure also illustrates the evolution of the radius of the circle.

We want to estimate the ratio

R R ′ = cos τ cos α = cos(τ -θ) cos(α + θ + π) .
Write the last equality in the form

cos(τ -θ) cos τ = cos(α + θ + π) cos α .
Expanding the cosines yields

(5) tan τ = tan α -2 cos θ sin θ ≤ tan α -λ,
hence τ ≤ α (where equality only holds when tan α = ∞, that is α = π/2). Together with (4), this proves R/R ′ ≥ 1.

We are now going to prove that under the additional hypothesis of the Proposition, there exists δ(λ) > 0 such that

(6) π 2 -θ + δ(λ) < α ≤ π 2 -δ(λ).
Indeed, if T λ (x) and T 2 λ (x) do not both belong to I λ 0 , and

T λ (t i(x) /t i(x)-1 ) = T λ (x), we deduce that t i(x) /t i(x)-1 / ∈ I λ 000 . Therefore t i(x) t i(x)-1 = cos α cos(α -θ) ≥ sup I λ 000 > 0.
The inequality on the righthand side of ( 6) follows.

Assuming moreover that T λ (x) / ∈ I λ i λ , we get by (2)

t i(x) -t i(x)+1 = - cos α cos(α + θ) < min I λ i λ ,
which yields the inequality on the lefthand side of [START_REF] Janvresse | Almost-sure growth rate of generalized random Fibonacci sequences[END_REF].

Recalling that τ > θπ/2, we get by the lefthand side ( 6) that τ > -α + δ(λ). Moreover, (5) together with the righthand side of [START_REF] Janvresse | Almost-sure growth rate of generalized random Fibonacci sequences[END_REF] proves that there exists a constant C(λ) > 0 such that τ < α -C(λ). Therefore, there exists a constant

K(λ) > 1 such that R/R ′ = cos τ / cos α > K(λ).

Distinct points have different codings

The purpose of this section is to prove the following statement:

Theorem 3.1. For all 0 ≤ x < x ′ ≤ ∞, ω λ (x) = ω λ (x ′ )
The first step is an elementary particular case. Lemma 3.2. For any n ≥ 0, for any a 0 , . . . , a n-1 , there is at most one x such that ω λ (x) = a 0 a 1 . . . a n-1 0 . . . 0 . . .. Proof. We first prove that ω λ (x) = 0 . . . 0 . . . ⇒ x = 0. Note that for all 0 ≤ y < ∞, h 0 (y) ≤ y, with equality only when y = 0. If ω λ (x) = 0 . . . 0 . . ., for each n, x = h n 0 (T n λ x) and the sequence (T n λ x) is increasing, and bounded by m λ 1 = 1/λ. Therefore it converges to a fixed point for h 0 , that is 0. This is possible only if T n λ x = 0 for all n.

The result follows by an easy induction on n, using the fact that T λ restricted to an interval I λ i is one-to-one.

As a corollary, we get the following lemma which will be useful.

Lemma 3.3.

There exist infinitely many n such that ∞ n = 0.

Proof. If ω λ (∞) = ∞ 0 ∞ 1 . . . ∞ n 0 . . . 0 . . ., then by definition of ω λ (∞) we would have ω λ (x) = ∞ 0 ∞ 1 . . . ∞ n 0 . . . 0 .
. . for all large enough x. But this would contradict Lemma 3.2.

3.1.

Infinity is unreachable. The second step of the proof deals with the case of ∞.

Proposition 3.4. For x ∈ [0, ∞[, ω λ (x) ≺ ω λ (∞).
For a fixed n ≥ 0, the intervals I λ a0...an form a partition of R + associated to the coding of T λ up to time n. The object of interest is here the decreasing sequence of rightmost intervals (I λ ∞0...∞n ) n in the successive partitions. Observe that an equivalent statement to the above proposition is: For all x ∈ [0, ∞[, there exists n large enough such that x / ∈ I λ ∞0...∞n . Before turning to the proof of Proposition 3.4, we prove a few results about matrices associated to iterates of the homographic functions h i .

3.1.1. Matrices. Lemma 3.5. For each a 0 . . . a n such that I λ a0...an = ∅, the matrix

H a0 • • • H an associated to h a0 • • • • • h an is of the form α β γ δ with β ≥ 0 and δ > 0. Moreover, γ ≤ 0 if a 0 . . . a n = ∞ 0 . . . ∞ n .
Proof. We prove the result by induction on n. This is true for n = 0 by Lemma 2.5

(observe that ∞ 0 = i λ ). Assume the result is true up to n, and consider

α β γ δ = H a0 • • • H an+1 = H a0 H a1 • • • H an+1 .
Observe that Lemma 2.5 also ensures the positivity of the upper left coefficient of H a0 . Hence, by induction hypothesis,

β ≥ 0. Moreover, β δ = h a0 • • • • • h an+1 (0) ≥ 0, thus δ > 0.
If we have γ > 0, since δ > 0 the homographic function associated to the matrix is bounded on [0, ∞[. This is impossible for a 0 . . . a n = ∞ 0 . . . ∞ n , as I λ ∞0...∞n is the rightmost interval of the partition at order n + 1. [START_REF] Blanchard | β-expansions and symbolic dynamics[END_REF]. Since γ n ≤ 0 by Lemma 3.5, we obtain in this case δ n+1 ≤ δ n . On the other hand, if 0 < i < i λ , the pole -δ n /γ n of h ∞0 • • • •• h ∞n is smaller than or equal to the right endpoint P i+1 (λ)/P i+2 (λ) of I λ i . Since the matrix H i has determinant 1, we can write P i+1 (λ) 2 -P i (λ)P i+2 (λ) = 1, which is bounded above by P i+1 (λ) by [START_REF] Blanchard | β-expansions and symbolic dynamics[END_REF]. It follows that

Lemma 3.6. Let H (n) = α n β n γ n δ n := H ∞0 • • • H ∞n . Then δ n+1 ≤ δ n for all n ≥ 0. Proof. Observe that H (n+1) = H (n) H i , where i = ∞ n+1 is the largest index such that the pole -δ n /γ n of h ∞0 • • • • • h ∞n is larger than the left endpoint of I λ i , that is -δ n /γ n > h i (0) = P i (λ)/P i+1 (λ). (See Figure 4.) Considering the lower right coefficient of the product H (n) H i , we get δ n+1 = γ n P i (λ) + δ n P i+1(λ) . If i = i λ or if i = 0, 0 < P i+1 (λ) ≤ 1 by
δ n -γ n ≤ P i+1 (λ) P i+2 (λ) < P i (λ) P i+1 (λ) -1 ,
and δ n+1 ≤ δ n .

3.1.2. Proof of Proposition 3.4. The idea consists in proving that the slope of the upper branch h ∞0 • • • • • h ∞n is always larger than 1, so that each time ∞ n+1 = 0, the left endpoint of the rightmost interval increases by at least m λ 1 = 1/λ (see Figure 4).

Recall that the determinant of

H (n) is equal to 1. Therefore, the second deriva- tive of h ∞0 • • • • • h ∞n is -2γ n /(γ n x + δ n ) 3 , which is nonnegative on [0, -δ n /γ n [ by Lemma 3.5. This proves that h ∞0 • • • • • h ∞n is convex on [0, -δ n /γ n [. Moreover, by Lemma 3.6, we get that (h ∞0 • • • • • h ∞n ) ′ (0) = δ -2 n ≥ δ -2 0 = P i λ +1 (λ) -2 ≥ 1. Hence, (h ∞0 • • • • • h ∞n ) ′ ≥ 1 on [0, -δ n /γ n [. Observe that h ∞0 • • • • • h ∞n+1 (0) = h ∞0 • • • • • h ∞n (m λ ∞n+1 ). I λ ∞ n+1 -δn γn m λ ∞ n+1 -βn δn h∞ 0 • • • • • h∞ n -β n+1 δ n+1 I λ ∞ 0 •••∞n Figure 4.
The upper branch at order n + 1.

If ∞ n+1 ≥ 1, m λ ∞n+1 ≥ m λ 1 = 1/λ. Hence, for all n such that ∞ n+1 ≥ 1, we get that h ∞0 • • • • • h ∞n+1 (0) ≥ h ∞0 • • • • • h ∞n (0) + 1 λ .
But by Lemma 3.3, we know that there exist infinitely many such n's, thus the left endpoint of I λ ∞0...∞n satisfies

h ∞0 • • • • • h ∞n (0) ----→ n→∞ ∞.
This concludes the proof of Proposition 3.4.

3.2.

Proof of Theorem 3.1. It remains to prove that for any 0 ≤ x < ∞, the length of I λ x0...xn goes to 0, where x 0 . . . x n • • • = ω λ (x). We have already dealt with the case when x n = 0 for all n large enough (Lemma 3.2). From now on, we assume that there exist infinitely many n's such that x n = 0. Lemma 3.7. For all n ≥ 0, for all z ∈ I λ x0...xn , there exist real numbers u n (z) and v n (z) such that

(7) T n+1 λ z = u n (z) v n (z)
, where

H x0 • • • H xn u n (z) v n (z) = z 1 .
Moreover, there exists

(ρ n ) n depending only on ω λ (x) such that 0 ≤ u n (z) ≤ ρ n , 0 < v n (z) ≤ ρ n and ρ n goes to 0 as n → ∞.
Proof. Let n ≥ 0 and z ∈ I λ x0...xn . We obtain (7) by iteration of ( 2) and (3). Recalling the geometrical interpretation in Section 2.5, u n (z) and v n (z) can be seen as abscissae of points on a circle, whose radius R n (z) is non-increasing with n. Moreover the initial radius R 0 (z) is a continuous function of z. By taking n large enough so that

x 0 • • • x n ≺ ∞ 0 • • • ∞ n (application of Proposition 3.4), I λ x0...xn is bounded, hence R 0 (z) is bounded on I λ x0.
..xn . Let s n be the number of j ∈ {0, . . . , n-2} such that x j+1 = i λ and (x j+1 , x j+2 ) = (0, 0). Since we assumed that the orbit of x does not end with infinitely many 0's, and since it cannot end with infinitely many i λ 's (consequence of Proposition 3.4), we get s n ----→ n→∞ ∞. For each z ∈ I λ x0...xn , the number of times the hypothesis of Proposition 2.7 are fulfilled up to time n is s n , and whenever they are fulfilled, the radius is divided by at least K(λ) > 1. We thus get the announced result with

ρ n := sup z∈I λ x 0 ...xn R 0 (z) K(λ) -sn .
We say that a finite sequence a 0 , . . . , a n is a standard block if a i = ∞ i for all i < n and a n < ∞ n . By Proposition 3.4, ω λ (x) can be decomposed into standard blocks in a unique way. The interest of standard blocks is enlightened by the following result: Lemma 3.8. If a 0 , . . . , a n is a standard block, then the matrix

H a0 • • • H an associ- ated to h a0 • • • • • h an has nonnegative coefficients. Moreover, I λ a0...an = h a0 • • • • • h an ([0, ∞[).
Proof. We consider the homographic function

h a0 • • • • • h an-1 = h ∞0 • • • • • h ∞n-1
which is the upper branch at order n. Since its pole lies in I λ ∞n , this function is bounded on I λ an , which means that

h a0 • • • • • h an is bounded on [0, ∞[. Moreover, since a n < ∞ n ≤ i λ , I λ a0,...,an = h ∞0 • • • • • h ∞n-1 (I λ an ) = h ∞0 • • • • • h ∞n-1 h an ([0, ∞[) .
In particular, I λ a0,...,an = ∅, thus, by Lemma 3.5, we know that H a0 

↑ αx + β γx + δ > 0, hence α > 0.
We are now ready to achieve the proof of Theorem 3.1. Consider n such that x 0 . . . x n is a concatenation of standard blocks. By the previous Lemma, the matrix

H x0 • • • H xn is of the form H x0 • • • H xn = α β γ δ ,
where αδγβ = 1, all the coefficients are nonnegative, and

I λ x0...xn = h x0 • • • • • h xn ([0, ∞[) = β δ , α γ .
Observe that the length of I λ x0...xn is 1/γδ. Our purpose is to prove that γδ is large if n is large enough.

By Lemma 3.7, we have 1 = γu n (z) + δv n (z) for any z ∈ I λ x0...xn . Choose z = β/δ, so that u n (z) = 0. Then δ = 1/v n (z) ≥ 1/ρ n .

Choose now z j = α/γǫ j with ǫ j → 0. By compacity, we can assume that (ǫ j ) is chosen such that u n (z j ) and v n (z j ) converge, respectively to u n and v n . Since lim j→∞ u n (z j )/v n (z j ) = ∞, we have v n = 0. Therefore, γ = 1/u n ≥ 1/ρ n . This concludes the proof of Theorem 3.1.

3.3.

Convergence of λ-continued fractions. The above results can be interpreted in terms of convergence of λ-continued fractions. Starting from x ∈ [0, ∞[, we define, via the coding of its orbit ω λ (x) = x 0 x 1 . . ., a sequence of real numbers having finite expansions in λ-continued fractions: For any j ≥ 0, we consider the left endpoint

m λ x0...xn := h x0 • h x1 • • • • • h xn (0) of the interval I λ x0,.
..,xn . We can recursively construct a finite expansion in λ-continued fractions of these endpoints by observing that, if

y = [0, b 1 , . . . , b ℓ ] λ , then h i (y) = [0, 1, -1, . . . , (-1) i-1 i terms , (-1) i (1 + b 1 ), (-1) i b 2 , . . . , (-1) i b ℓ ] λ .
If y = 0, and its expansion is [0] λ , the preceding formula is to be understood as

h i (0) = [0, 1, -1, . . . , (-1) i-1 ] λ .
We obtain in this way finite expansions in λ-continued fractions, where the first coefficient is zero, the second one is positive, and the signs of the following coefficients alternate. It will therefore be useful to introduce the following notation which corresponds to this particular form of λ-continued fractions: For positive integers (b i ) 1≤i≤ℓ , we set Lemma 3.9. Consider the prefix x 0 . . . x n of the orbit ω λ (x) and write this finite sequence as 0 e0 a 0 0 e1 a 1 . . . 0 e ℓ a ℓ 0 e ℓ+1 , where a i > 0 and e i ≥ 0. Proof. It is an immediate induction using [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF].

b 1 , b 2 , . . . , b ℓ λ := [0, b 1 , -b 2 , . . . , (-1) ℓ-1 b ℓ ] λ = 1 b 1 λ - 1 . . . - 1 
Note that the number of coefficients in the expansion of m λ x0...xn obtained in this way is 4.1.1. Classical results on β-shifts. For any β > 1, Renyi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF] introduced the βexpansion of a real number 0 ≤ t < 1 as the series

x 0 + • • • + x n ,
t = n≥0 t n β n+1 ,
where the coefficients t n are nonnegative integers defined as follows. We consider the transformation S β : [0, 1[→ [0, 1[, which sends t to βt mod 1; The natural partition of [0, 1[ associated to this transformation is composed of intervals of the form J β j := j β , j+1 β , for 0 ≤ j < β -1, together with J β ⌊β⌋ := ⌊β⌋ β , 1 , where ⌊β⌋ denotes the largest integer smaller than β; The coefficients t n are given by the orbit of t under the transformation S β :

t n = j if S n β (t) ∈ J β j . 0 1 0 1 1/β β -[β] J β 0 J β 1 2/β J β ⌊β⌋ Figure 5. Graph of S β for β = 9/4.
We denote by O β (t) the sequence (t n ) n≥0 coding the orbit of t ∈ [0, 1[ under the transformation S β . As in the case of T λ , the map t → O β (t) is increasing with respect to the lexicographic order of sequences. We denote by O β (1) the limit, as t → 1, of O β (t). Observe that for any n ≥ 0,

σ n O β (1) O β (1).
Parry characterized the sequences which code orbits for S β using the β-expansion of the fractional part β -[β] of β. For our purpose, it is useful to translate his result in terms of O β (1), which can be done by the following lemma. 

σ n O β (β -[β]) = O β (1),
which would contradict the theorem.

4.1.2. Characterization of orbits of T λ . As in the case of β-expansions, we can characterize the sequences which code orbits for T λ .

Theorem 4.4. A sequence (x n ) n≥0 codes the orbit of a real number x under the action of T λ if and only if

(10) x n x n+1 • • • ≺ ω λ (∞), ∀n ≥ 0.
Proof. The condition is necessary by Proposition 3.4. Conversely, consider a sequence (x n ) n≥0 satisfying x n x n+1 • • • ≺ ω λ (∞) for any n ≥ 0. This means that this sequence can be decomposed into a concatenation of standard blocks

x 0 x 1 • • • = B 0 B 1 . . . . For any standard block B = b 0 . . . b ℓ , let h B := h b0 • • • • • h b ℓ . By Lemma 3.8, for each k ≥ 0, the interval [u k , v k [:= I λ B0...B k is equal to h B0 • . . . h B k ([0, ∞[). Therefore, v k = h B0 •. . . h B k (∞), and v k+1 = h B0 •. . . h B k (h B k+1 (∞)). Since h B k+1 (∞) < ∞, we get that v k+1 < v k . Hence n I λ x0...xn = k I λ B0...B k = k [u k , v k [= k [u k , v k ] = ∅.
Since the sets of sequences coding orbits for T λ and for S β have the same structure, we are led to find a correspondence between λ and β: In view of the statements of Theorems 4.2 and 4.4, given λ ∈]0, 2[, we want to find β > 1 such that O β (1) = ω λ (∞).

How to find β(λ).

The main tool to find β is the following result by Parry. It also follows from Parry that β is unique whenever it exists. By Lemma 2.3,

σ n ω λ (∞) ω λ (∞) for all n ≥ 1. If ω λ (∞) = ∞ 0 ∞ 1 .
. . is non periodic, then the previous inequality is strict. Therefore, there exists a unique β > 1 with integer part ∞ 0 such that the β-expansion of (β -[β]) is coded by (∞ i ) i≥1 . By Lemma 3.3 and Lemma 4.1, we conclude that O β (1) = ω λ (∞). It remains to study the case where ω λ (∞) is periodic. Let p be the smallest integer such that ω λ (∞) is a periodic repetition of the pattern ∞ 0 . . . ∞ p . We then define ω := ∞ 0 . . . ∞ p-1 (∞ p + 1)00 . . . . We let the reader check that σ n ω ≺ ω for all n ≥ 1. Therefore, there exists a unique

β > 1 with integer part ∞ 0 (∞ 0 +1 if p = 0) such that the β-expansion of (β -[β]) is coded by ∞ 1 . . . ∞ p-1 (∞ p + 1)00 . . . . By Lemma 4.1, we conclude that O β (1) = ω λ (∞).
Eventually, we proved that for any λ ∈]0, 2[, there exists a unique

β > 1 such that O β (1) = ω λ (∞).
By Theorem 4.4, x → ω λ (x) is a one-to-one map from [0, ∞[ onto the set of integer-valued sequences satisfying (10). In the same way, by Theorem 4.2, t → O β (t) is a one-to-one map from [0, 1[ onto the set of integer-valued sequences satisfying [START_REF] Rosen | A class of continued fractions associated with certain properly discontinuous groups[END_REF]. If β is such that O β (1) = ω λ (∞), we get by composition a one-toone map

φ λ sending x ∈ [0, ∞[ to t ∈ [0, 1[, where O β (t) = ω λ (x).
The following diagram commutes:

T λ S β x ∈ [0, ∞[ t ∈ [0, 1[ T λ x ∈ [0, ∞[ S β t ∈ [0, 1[ φ λ φ λ Figure 6.
Moreover, φ λ is increasing, and since it is onto, φ λ is continuous.

Theorem 4.6. For any λ ∈]0, 2[, there exists a unique β = β(λ) > 1 and a homeomorphism

φ λ : [0, ∞[→ [0, 1[ conjugating [0, ∞[, T λ and [0, 1[, S β .
We observed in [START_REF] Janvresse | How do random Fibonacci sequences grow?[END_REF] some connection, when λ = 1, with Minkowski's question mark function. Translated in the context of the present paper, this connection can be written as follows:

φ 1 (x) = 1 2 ?(x) if 0 ≤ x ≤ 1, 1 2 + 1 2 ?(1 -1/x) otherwise.
Since it is well known that the topological entropy of the β-shift is log β (see e.g. [START_REF] Ito | Markov subshifts and realization of β-expansions[END_REF]), we get the following corollary of Theorem 4.6: Corollary 4.7. For any λ ∈]0, 2[, the topological entropy of T λ is equal to log β(λ), where β(λ) is defined in Theorem 4.6.

4.2.

Properties of λ → β(λ). The purpose of this section is to prove the following theorem:

Theorem 4.8. The map λ → β(λ) is increasing and continuous from ]0, 2[ onto ]1, ∞[.

Variation of λ → β(λ).

Lemma 4.9. Let W be a finite sequence of nonnegative integers. The left endpoint m λ W of I λ W is a continuous decreasing function of λ on its interval of definition.

Proof. Lemma 3.9 gives the explicit expression of m λ W in terms of λ-continued fractions. It is easily checked by induction on ℓ that λ → a 1 , a 2 , . . . , a ℓ λ is a decreasing function of λ.

Lemma 4.10. Let 0 < λ < λ ′ < 2. If x ≥ 0 is such that there exists a 0 , . . . , a n-1 satisfying x ∈ I λ a0...an-1 ∩ I λ ′ a0...an-1 , then T n λ (x) < T n λ ′ (x).
Proof. For n = 1, we get the result by an easy induction on a 0 . We then make an induction on n to prove the lemma.

Lemma 4.11. For a fixed x ∈ [0, ∞[, if 0 < λ < λ ′ < 2, then ω λ (x) ≺ ω λ ′ (x).
Proof. Let ω λ (x) = a 0 . . . a n . . ., and

ω λ ′ (x) = a ′ 0 . . . a ′ n . . .. Assume that for some n ≥ 1, a 0 . . . a n-1 = a ′ 0 . . . a ′ n-1 . Then by Lemma 4.10, T n λ (x) < T n λ ′ (x). But T n λ (x) ∈ I λ an = [m λ an , m λ an+1 [, while T n λ ′ (x) ∈ I λ ′ a ′ n = [m λ ′ a ′ n , m λ ′ a ′ n +1 [, thus m λ an < m λ ′ a ′ n +1 . By Lemma 4.9, m λ ′ an ≤ m λ an , therefore m λ ′ an < m λ ′ a ′ n +1
. This proves that a n ≤ a ′ n . It follows that ω λ (x) ω λ ′ (x). It remains to show that the orbits are different. If a 0 = a ′ 0 by Lemma 4.10, we get T λ (x) < T λ ′ (x). Hence by Theorem 3.1, ω λ ′ (T λ (x)) ≺ ω λ ′ (T λ ′ (x)). But we already know that ω λ (T λ (x)) ω λ ′ (T λ (x)). Proposition 4.12. λ → β(λ) is increasing.

Proof. By Lemma 3 in [START_REF] Parry | On the β-expansions of real numbers[END_REF], it is enough to show that for λ < λ ′ , ω λ (∞) ≺ ω λ ′ (∞). Since ω λ (∞) and ω λ ′ (∞) respectively start with i λ and i λ ′ , we can assume that there exists k ≥ 1 such that λ k+1 < λ < λ ′ ≤ λ k+2 , so that i λ = i λ ′ = k (otherwise, we have i λ < i λ ′ which directly gives the result).

We first show that

ℓ λ < ℓ λ ′ . If λ ′ = λ k+2 , then ℓ λ < ∞ = ℓ λ ′ . Otherwise, ℓ λ ′ = T λ ′ (λ ′ )
. By Lemma 4.9, we have

m λ ′ k-1 < m λ k-1 < λ < λ ′ ≤ m λ ′ k < m λ k , hence λ ∈ I λ k-1 ∩ I λ ′ k-1 . Then by Lemma 4.10, ℓ λ ′ = T λ ′ (λ ′ ) > T λ ′ (λ) > T λ (λ) = ℓ λ . Observe now that, since ℓ λ ′ > ℓ λ , σω λ ′ (∞) = lim x↑ℓ λ ′ ↑ ω λ ′ (x) ≻ ω λ ′ (ℓ λ ),
which by Lemma 4.11 is lexicographically after ω λ (ℓ λ ). The conclusion follows by noting that ω λ (ℓ λ ) lim x↑ℓ λ ↑ ω λ (x) = σω λ (∞). 4.2.2. Surjectivity of λ → β(λ). We define the set of sequences which are lexicographically shift maximal (LSM) as:

LSM := W = x 0 x 1 • • • ∈ Z Z+ + : x 0 > 0 and ∀k ≥ 0, x k x k+1 • • • x 0 x 1 • • • . By Lemma 2.3, for any 0 < λ < 2, ω λ (∞) ∈ LSM.
In the same way, we define the set of words of length n + 1 which are lexicographically shift maximal as:

LSM n := W = x 0 • • • x n ∈ Z n+1 + : x 0 > 0 and ∀0 ≤ k ≤ n, x k • • • x n x 0 • • • x n . Lemma 4.13. Let W = x 0 • • • x n ∈ LSM n . Then succ(W ) := min{W ′ ∈ LSM n : W ′ ≻ W }
always exists and is obtained in the following way: Consider the longest strict suffix x k+1 . . . x n of W which is also a prefix of . Then

succ(W ) =          x 0 . . . x k-1 (x k + 1) 0 . . . 0 n-k terms if k = 0 (x 0 + 1) 0 . . . 0 n terms if k = 0. Proof. easy exercise !!! For any λ ∈]0, 2[, let MAX λ n be the prefix of length n + 1 of ω λ (∞): MAX λ n ∈ LSM n and by Lemma 4.11 λ → MAX λ n is non-decreasing. Lemma 4.14. Let W ∈ LSM n . If the set λ ∈]0, 2[: MAX λ n = W is nonempty, then it is an interval of the form λ min W , λ max W .
Proof. Since λ → MAX λ n is non-decreasing, the above set is an interval. Let λ be such that MAX λ n = W and consider x > m λ W . By Lemma 4.9, for λ ′ < λ close enough to λ, x > m λ ′ W , thus MAX λ ′ n W . On the other hand, λ ′ → MAX λ ′ n is non-decreasing. We conclude that MAX λ ′ n = W for all λ ′ < λ close enough to λ.

We denote by I the interior of I. If j = 0, x 0 = i λ and λ = m λ i λ . In this case, we have lim x→∞ T λ (x) = ∞, thus ω λ (∞) = i λ i λ . . . and W = i λ . . . i λ .

Assume now that j ≥ 1. Since λ ∈ Iλ x0...xj-1 , Lemma 4.15 proves that, for all λ ′ close enough to λ, MAX λ ′ j-1 = (x 0 + 1)x 1 . . . x j-1 . On the other hand, T j λ (λ) = b λ xj , x j = 0 and x j+1 = • • • = x n = 0. We have in this case ℓ λ = T λ (λ). Thus,

lim x↑ℓ λ ↑ T j-1 λ (x) = b λ xj and lim x↑ℓ λ ↑ T j λ (x) = ∞. Since lim x→∞ ↑ T λ (x) = ℓ λ , we get lim x↑∞ ↑ T j λ (x) = b λ xj and lim x↑∞ ↑ T j+1 λ (x) = ∞.
This means that the (j + 1)-th term of ω λ (∞) is x j -1 and ω λ (∞) is periodic of period j + 1. This proves that W is the prefix of length n + 1 of the periodic repetition of the pattern (x 0 + 1)x 1 . . . x j-1 (x j -1). Moreover, j + 1 is the smallest period for ω λ (∞). Indeed, if we had a smallest period r, we would have lim x→∞ T r λ (x) = ∞, which would imply by a similar argument that T r-1 λ (λ) = b λ xr-1 . This would contradict the definition of j.

It remains to prove that for any λ ′ > λ close enough to λ, MAX λ ′ n = succ(W ), that is (x 0 + 1)x 1 . . . x j-1 x j 0 . . . 0 when j ≥ 1 and (x 0 + 1)0 . . . 0 when j = 0. Observe that the prefix of length n + 1 of ω λ ′ (λ ′ ) is a right-continuous function of λ ′ by Lemmas 4.9 and 4.10. Therefore, for any λ ′ > λ close enough to λ, ω λ ′ (λ ′ ) starts with x 0 x 1 . . . x j 0 . . . 0 and λ ′ ∈ Iλ ′ x0...xj 0...0 . Applying Lemma 4.15 we conclude the proof. Proposition 4.17. For all n ≥ 0 and all W ∈ LSM n , there exists λ ∈]0, 2[ such that W is a prefix of ω λ (∞).

Proof. Fix n ≥ 0. The smallest sequence in LSM n is W = 10 . . . 0. We first prove that W = MAX λ n for λ small enough. For any λ < 1, i λ = 1. Thus, ℓ λ is the pole of h 1 : ℓ λ = λ(1λ 2 ) -1 which tends to zero as λ ↓ 0. By Lemmas 4.9 and 4.10, for λ small enough, we can ensure that W = MAX λ n . Any W ∈ LSM n is such that {W ′ ∈ LSM n : W ′ W } is finite. Hence, a repeated iteration of Lemma 4.16 gives the desired result. Proposition 4.18. For all W ∈ LSM, there exists λ ∈]0, 2[ such that W = ω λ (∞) if and only if W does not end with infinitely many zeros.

Proof. By Lemma 3.3, ω λ (∞) cannot end with infinitely many zeros. Conversely, let W ∈ LSM and for each n ≥ 0, let W n ∈ LSM n be the prefix of length n + 1 of W . By Proposition 4.17, ]λ min Wn , λ max Wn ] is nonempty. Thus, the decreasing sequence of these intervals has a nonempty intersection if λ min Wn+1 > λ min Wn infinitely often. Since λ → MAX λ n+1 is non-decreasing, the equality λ min Wn+1 = λ min Wn is equivalent to

W n+1 = W n 0.
Proof of Theorem 4.8. By Proposition 4.12, λ → β(λ) is increasing. By Proposition 4.18 and Lemma 4.

1, λ ∈]0, 2[ → β ∈]1, ∞[ is onto. By monotonicity, it is henceforth continuous. 4.2.
3. Particular values of λ → β(λ). We turn in this section to the determination of β corresponding to specific values of λ. The simplest case is when λ = λ k = 2 cos(π/k) for some integer k ≥ 3. We know by Proposition 2.6 that λ k is the largest λ for which i

λ = k -2. Hence ω λ k (∞) is the largest LSM sequence starting with (k -2), that is (k -2)(k -2)(k -2) . . . The corresponding β satisfies O β (1) = (k -2)(k -2)(k -2) . . ., thus β(2 cos(π/k)) = k -1.
Another family of λ's for which we determine the associated

β is λ = 1/ √ k for k ≥ 2. Lemma 4.19. For all k ≥ 1, if λ ≤ 1/ √ k the sequence ω λ (∞) starts with 1 0 . . . 0 k-1 .
Proof. We prove the result by induction on k.

If λ ≤ 1, Proposition 2.6 shows that i λ = 1 hence ∞ 0 = 1, which proves the result for k = 1.

Let k ≥ 1 such that the result holds for k. This means that for λ ≤ 1/ √ k, the upper branch at order k is h

1 • h k-1 0 . The associated matrix is (11) H 1 H k-1 0 = kλ 1 kλ 2 -1 λ .
Observe that the pole of

h 1 • h k-1 0 is λ/(1 -kλ 2 ) ≤ m λ 1 = 1/λ as soon as λ ≤ 1/ √ k + 1. Therefore ∞ λ k+1 = 0 if λ ≤ 1/ √ k + 1.

Note that the function h

1 • h k-1 0 is affine if λ = 1/ √ k by (11). We then have lim x↑∞ ↑ T k 1/ √ k (x) = ∞, hence ω 1/ √ k (∞) is a periodic repetition of the pat- tern 1 0 . . . 0 k-1 . It remains to find the associated β. By Lemma 4.1, O β (β -[β]) is 0 . . . 0 k-2 10 . . . 0 . . . Since β corresponds to λ = 1/ √ k < 1, we know that β < 2 = β(1), thus [β] = 1. Hence β satisfies β -1 = 1 β k-1 . Since β > 1, β(1/ √ k) is the largest real root of X k -X k-1 -1.
4.2.4. Asymptotic behaviour of τ → β(2 cos(π/τ )). As suggested by the particular values of β obtained for λ = 2 cos(π/k), k integer, k ≥ 3, we investigate here some properties of β seen as a function of τ , where τ > 2 is related to λ by the relation λ = 2 cos(π/τ ). By composition, the map τ → β is also increasing, continuous, and sends ]2, ∞[ onto ]1, ∞[. We present in Figure 7 a numerical plot of this map, on which an asymptotic phenomenon appears: As t grows to infinity, we see more and more abrupt steps passing from one integer to the next one, whereas β remains almost constant when τ ranges over an interval ]k -1/2, k + 1/2[. This staircase phenomenon is proved in the following proposition.

Proposition 4.20. For all 0 < ε < 1/2, we have

(12) sup τ ∈]k-1 2 +ε , k+ 1 2 -ε[ β(2 cos(π/τ )) -(k -1) ----→ k→∞ 0.
Lemma 4.21. Let β > 1 be such that O β (1) starts with k j, for some integer k ≥ 2 and some 0 ≤ j ≤ k. Then 

β -k + j k ≤ 1 k . 3 
β -k = j β + 1 β S β (β -[β]).
Since 0 ≤ S β (β -[β]) < 1, we get the announced result.

Proof of Proposition 4.20. The main tool here is the geometrical interpretation of the transformation T λ developped in Sections 2.4 and 2.5. Let us fix 0 < ε < 1/2, 0 < r < 1/2ε.

Let τ := k + r for some large integer k. Let θ := π/τ . We want to find the beginning of ω λ (∞) = ∞ 0 ∞ 1 . . . for λ := 2 cos θ. By Proposition 2.6, we already know that ∞ 0 = i λ = k -1. We introduce the points M j , 0 ≤ j ≤ k + 1 as defined on Figure 2: These points lie on a circle centered at the origin, M 0 and M 1 have respective abscissae 0 and 1, and M j+1 is the image of M j by the rotation of angle θ. Denote by t j the abscissa of M j : We have t k = R sin kθ > 0 and t k+1 = R sin(k + 1)θ < 0, where R is the radius of the circle. Note that (13) -t k+1t k t k ∼ k→∞ 1 -2r r

To estimate geometrically ∞ 1 , we have to introduce a new circle centered at the origin, and two points N 0 and N 1 lying on this circle so that their abscissae are respectively -t k+1 and t k , and the angle (ON 0 , ON 1 ) equals θ. We again define the sequence (N j ) of points on this circle by successive rotations of angle θ. Then ∞ 1 is the smallest j such that N j+2 has negative abscissa. Let ϕ be the argument of N 1 , so that the argument of N 0 is ϕθ. We have -t k+1t k t k = cos θ -1 + sin θ tan ϕ.

Hence, by (13), observing that θ ----→ k→∞ 0, we get lim k→∞ sin θ tan ϕ = 1 -2r r > 4ε.

When k → ∞, ϕ → π/2 uniformly with respect to r. This implies that ∞ 1 /k → 0 uniformly with respect to r. By Lemma 4.21, we conclude that

β 2 cos π τ -(k -1) ----→ k→∞ 0,
uniformly with respect to r ∈]0, 1/2ε[. It remains to study the case where τ := kr. We now have k -1 < τ < k, and Proposition 2.6 gives here ∞ 0 = k -2. The new points N 0 and N 1 have respective abscissae -t k = -R sin kθ and t k-1 = R sin(k -1)θ. The analog of the estimation (13) is

t k-1 + t k t k-1 ∼ k→∞ 1 -2r 1 -r ,
and the lefthand side is equal to 1cos θsin θ tan ϕ (where ϕ is the argument of N 1 ). We get now ϕ ----→ k→∞ -π/2 uniformly with respect to r. This implies that ∞ 1 /k → 1 uniformly with respect to r. We conclude by using Lemma 4.21.

Corollary 4.22. The map λ → β(λ) is not analytic.

Proof. We know that β(2 cos(π/k)) = k -1 for all integer k ≥ 3. If the map λ → β(λ) were analytic, we would then have β(2 cos(π/τ )) = τ -1 for all real τ > 2. This is clearly not the case by Proposition 4.20.

Open questions

5.1. Invariant measures. It can be shown that in the case λ = λ k , the transformation T λ admits a unique absolutely continuous invariant measure µ, whose density with respect to the Lebesgue measure is dµ dx (x) = 1/x. Can we describe absolutely continuous T λ -invariant measures for other λ's? 5.2. Algebraic properties of λ. Many works have been devoted to the connections between algebraic properties of β and the dynamical properties of the associated β-shift (see e.g. [START_REF] Blanchard | β-expansions and symbolic dynamics[END_REF]). Are these properties also connected to the algebraic properties of the corresponding λ? We can stress the fact that the particular values of λ studied in Section 4.2 are algebraic, and are always associated to an algebraic β. Does the correspondence between λ and β always associate algebraic numbers to algebraic numbers? 5.3. Lazy and random expansions in λ-continued fractions. For β > 1, there are generally many ways to expand a real number t ∈ [0, 1[ in the form t = n≥0 t n β n+1 , where the t n 's are taken from {0, 1, . . . , ⌊β⌋}. The expansion given by iteration of the map S β defined in Section 4.1.1 is sometimes refered to as the greedy expansion, since at each step it uses the largest possible digit. It therefore gives the maximal expansion of t with respect to the lexicographic order. Symmetrically, one can consider the minimal β-expansion of t, given by iteration of the so-called lazy map which at each step outputs the smallest possible digit (see [START_REF] Dajani | Measures of maximal entropy for random β-expansions[END_REF] and references therein). Between the lazy and the greedy expansions, one can find a continuum of possible β-expansions among which the random β-expansions studied in [START_REF] Dajani | Measures of maximal entropy for random β-expansions[END_REF][START_REF]Invariant densities for random β-expansions[END_REF]. Can we develop some expansions in λ-continued fractions corresponding to these notions of lazy and random β-expansions? 5.4. Regularity of λ → β(λ). We proved in Section 4.2 that the map λ → β(λ) is increasing and continuous but non-analytic. A careful look at the details in Figure 7 suggests some kind of self-similarity in the graph. We thus may expect the map to be not even differentiable.
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 1 Figure 1. Top: Graphs of the homographic functions h i . Bottom: Graph of the transformation T λ . (Here λ = 1.5)

2. 3 .

 3 Matrices associated to the homographic functions h i . Recall that each homographic function can be written in the form x → ax + b cx + d where adbc = 1 and is associated to the matrix a b c d . Composition of homographic functions corresponds to matrix multiplication.
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 41 If β ∈ Z + , O β (1) = (β -1)(β -1) . . . . If β / ∈ Z + , let (b i ) i≥0 be the coding of the orbit of β -[β]. If (b i ) i contains infinitely many nonzero terms, then O β (1) = [β]b 0 b 1 . . . . Otherwise, O β (1) is a periodic repetition of the pattern [β]b 0 . . . b ℓ-1 (b ℓ -1), where b ℓ is the last nonzero term.Proof. The case where β is an integer is clear. We now assume that β / ∈ Z. Then lim t↑1 S β (t) = β -[β]. If (b i ) i contains infinitely many nonzero terms, the orbit of β -[β] never meets 0, hence S n β is continuous at β -[β]. We thus have lim t↑β-[β] ↑ O β (t) = O β (β -[β]). This proves that O β (1) = [β]b 0 b 1 . . . in this case. On the other hand, if there exists a smaller integer ℓ ≥ 0 such that b n = 0 for all n > ℓ, then S ℓ+1 β (β -[β]) = 0 and S ℓ β (β -[β]) = b ℓ /β, where b ℓ ≥ 1. Therefore, lim t↑β-[β] ↑ S ℓ+1 β (t) = 1, and lim t↑1 ↑ S ℓ+2 β (t) = 1. Then O β (1) is periodic, with period ℓ + 2, and it is easily checked that the periodic pattern is [β]b 0 . . . b ℓ-1 (b ℓ -1).
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 45 Parry [7], Corollary 1). Let b be a positive integer and let (b i ) i≥0 be a sequence of nonnegative integers. There exists β > 1 with integer part b such that the β-expansion of (β-[β]) is coded by (b i ) i≥0 if and only if b n b n+1 • • • ≺ b b 0 b 1 .. . , for all n ≥ 0.

Lemma 4 .

 4 15. Let λ be such that ω λ (λ) starts with x 0 . . . x n . If λ ∈ Iλ x0...xn , then MAX λ ′ n = (x 0 + 1)x 1 . . . x n for any λ ′ close enough to λ.Proof. Since λ ∈ Iλ x0 , we have x 0 = i λ -1, thus ω λ (∞) starts with i λ = x 0 + 1. Moreover, λ = m λ i λ implies that ℓ λ = T λ (λ). Hence, ℓ λ ∈ Iλ x1 , T λ (ℓ λ ) ∈ Iλ x2 , . . . , T n-1 λ (ℓ λ ) ∈ Iλ xn . It follows that MAX λ n = (x 0 + 1)x 1 . . . x n because lim x→∞ T λ (x) = ℓ λ .By continuity with respect to λ of the endpoints of the interval I λ x0...xn , any λ ′ close enough to λ also satisfies the hypothesis of the lemma and the claim follows.

Lemma 4 .

 4 16. Let W ∈ LSM n such that λ ∈]0, 2[: MAX λ n = W is nonempty. For any λ ′ > λ max W close enough to λ max W , MAX λ ′ n = succ(W ). Proof. Let λ := λ maxW and x 0 x 1 . . . := ω λ (λ). By definition, λ = λ max W does not satisfy the conclusion of Lemma 4.15. Therefore, λ / ∈ Iλ x0...xn . Consider the smallest j ≥ 0 such that λ / ∈ Iλ x0...xj .

Figure 7 .

 7 Figure 7. Graph of τ → β(2 cos(π/τ )). Detail of the graph for 10.5 ≤ τ ≤ 11. Proof. We use Lemma 4.1. If O β (1) = kkk . . . , then β = k + 1 = k + j/k. In all the other cases, observe that [β] = k. If O β (1) is a periodic repetition of the pattern kj with j < k, then O β (β -[β]) = (j + 1)000 . . . Hence we have βk = (j + 1)/β, which gives the result since βk ≤ 1. Otherwise, O β (β -[β]) starts with j, which yields