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Abstract Recently, Dammak and coworkers [1] proposed that the quantum
statistics of vibrations in condensed systems at low temperature could be
simulated by running molecular dynamics simulations in the presence of a
colored noise with an appropriate power spectral density. In the present con-
tribution, we show how this method can be implemented in a flexible manner
and at a low computational cost by synthesizing the corresponding noise ’on
the fly’. The proposed algorithm is tested for a simple harmonic chain as well
as for a more realistic model of aluminium crystal. The energy and Debye-
Waller factor are shown to be in good agreement with those obtained from
harmonic approximations based on the phonon spectrum of the systems. The
limitations of the method associated with anharmonic effects are also briefly
discussed. Some perspectives for disordered materials and heat transfer are
considered.

Keywords Molecular dynamics, Thermostats

1 Introduction

Standard constant-energy molecular dynamics (MD) simulations explore the
phase space of a system by following the classical equations of motion, there-
fore producing a classical micro canonical distribution function. Very early
it was realized that these equations could be modified in several different
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manners to produce a canonical phase space distribution at fixed temper-
ature. Among the possible ways to achieve this is the implementation of a
”Langevin thermostat” [2] that couples each particle independently to a fic-
titious thermal bath by introducing in the equation of motion a random force
and a friction term related by the classical fluctuation-dissipation theorem.
This is illustrated by the following equation for a single degree of freedom X
of mass M submitted to an external force F (X):

M
dV

dt
= −MγV + F (X) +

√

2Mγ θ(t) (1)

where V = dX/dt is the velocity, and θ is a white noise verifying:

〈θ(t)θ(t′)〉 = kBTδ(t− t′). (2)

While this type of thermostat (and various other more sophisticated versions
developed by Hoover, Nosé and others, see for example Ref. [3]) provides
a convenient control of the temperature, it is intrinsically classical, and in
particular the equipartition theorem is strictly verified. Any quadratic degree
of freedom will on average correspond to an energy kBT/2. While this is a
minor problem in liquid systems at room temperature, in which quantum
effects are effectively rather small, the situation is quite different in solids.
The Debye temperature, that signals the onset of quantum effects, is often of
the order of a few hundred Kelvins, meaning that quantum effects are indeed
important. The most prominent manifestation of this fact is the deviation
from the Dulong and Petit law of heat capacity, which is manifest in most
solids already at room temperature.

Obviously quantum dynamics in solids is well handled by the usual har-
monic theory of solids, possibly including anharmonic corrections. Using this
theory however requires a full calculation of the normal mode spectrum,
which may be cumbersome for large or aperiodic systems. Calculations of
transport properties such as heat conductivity also represents a real chal-
lenge, as well as static properties in strongly anharmonic systems. While
static aspects can be dealt with using path integral methods, dynamical ef-
fects can not. Moreover, path integrals represent at low temperatures a rather
costly alternative to much simpler classical simulations due to the large num-
ber of replicas to include in the path integrals in order to converge to the
quantum limit [4].

It is therefore highly desirable to develop methods that would allow one
to describe correctly quantum effects at a relatively low computational cost,
even if the representation is approximate. Recently two very interesting steps
in this direction were taken by Dammak et al [1] and by Ceriotti et al [5].
The fundamental idea introduced in both papers is that the correct distri-
bution of positions and impulsions for a quantum harmonic oscillator can be
reproduced by using an equation similar to Eq. 1 but with a colored noise
replacing the white noise θ(t). In Ref. [5], the friction term was moreover
substituted by a Non-Markovian term, thus permitting a greater flexibil-
ity in the types of thermostats used. This non-Markovian term, and the
corresponding noise, were replaced by a coupling to a finite set of classical



3

degrees of freedom forming the ”quantum bath”, and the parameters charac-
terizing the evolution of the quantum bath were fitted to obtain the correct
energy distribution for a quantum harmonic oscillator. In Ref. [1], a slightly
different approach was used. The friction term γ was maintained Marko-
vian, and the noise was replaced by a colored noise with power spectrum
Θ̃(ω) = h̄ω

(

1
2
+ (exp(h̄ω/kBT )− 1)−1

)

. In this manner, the correct energy
distribution for the harmonic oscillator was directly obtained, and a very
satisfactory agreement with low-temperature experimental data was demon-
strated. The only drawback of the approach proposed in Ref. [1] is practical
and concerns the colored noise generation. The authors used a method which
is classical in the physics community [6,7,8], but which requires to perform
an inverse Fourier transform of the power spectrum of the noise over the
entire time duration of the trajectory. The complete noise signal must there-
fore be generated and stored in the computer memory before starting the
simulation. The corresponding memory requirement, for large numbers of
particles or for long trajectories, is important, making the implementation of
the method rather cumbersome. Our contribution in the present paper is to
show how this problem can be circumvented by using a synthesis of the noise
employed in the signal processing community [9,8], based on an appropriate
linear filter applied to a white noise, thus making the quantum thermal bath
method much easier to implement in practice.

The manuscript is organized as follows. Section 2 recalls the basis of the
method and discusses some physical issues related to convergence. Section 3
describes the synthesis of the noise using a linear filter. Applications to two
selected examples are considered in Section 4.

2 The quantum thermal bath method

The principle of the quantum thermal bath is readily illustrated on the simple
case of an harmonic oscillator. Using a unit mass and frequency ω0, the
equations of motion are

Ẋ = V (3)

V̇ = −ω2
0X − γV +

√

2γ θ(t) (4)

where X and V are the position and velocity of the oscillator, γ the friction
and θ(t) the external noise. The Fourier components are easily obtained as

X(ω) =
√

2γ
θ(ω)

ω2
0 − ω2 + iωγ

(5)

and

V (ω) =
√

2γ
iωθ(ω)

ω2
0 − ω2 + iωγ

. (6)

And finally the average energy of the oscillator is given by:

E =

∫

dω

2π

(

1

2
ω2
0 |X(ω)|2 + 1

2
|V (ω)|2

)

=

∫

dω

2π
γ

ω2 + ω2
0

(ω2 − ω2
0)

2 + ω2γ2
Θ̃(ω)

(7)
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where Θ̃(ω) is the power spectral density (PSD) of the noise. In the following,
we will use capital letters and a˜to denote spectral densities associated with
a given random noise.

For a constant Θ̃(ω) (white noise), integration of Eq. 7 shows that the

energy is constant and independent of γ. If moreover Θ̃(ω) = kBT as required
by the classical fluctuation-dissipation theorem, the energy is just equal to
the thermal energy kBT .

For a colored noise with a finite frequency support [−Ωmax, Ωmax], Eq. 7

yields, providedΩmax > ω0+γ, E ≃ Θ̃(ω0) with an accuracy that depends on

γ (typically the actual value of the energy will average Θ̃(ω) in the frequency
range [ω0 − γ/2, ω0 + γ/2]). Hence, by choosing

Θ̃(ω) = h̄|ω|
(1

2
+

1

exp(h̄|ω|/kBT )− 1

)

(8)

and a value of γ small compared to ω0, one ensures that the energy of the
oscillator is given by the Bose-Einstein formula including the zero point en-
ergy. The reasoning is readily extended to a set of linearly coupled harmonic
oscillators (since the friction and covariance of the noise are diagonal matri-
ces). In this case, each eigenmode will have an energy equal to that of an
harmonic oscillator with the corresponding frequency.

A slight word of caution is in order here. The spectral density given in
Eq. 8 does not have a finite support, and moreover it diverges proportionally
to ω for high frequencies. The integrand in Eq. 7 thus decays as 1/ω for
large ω and the integral diverges at high frequency for any finite value of γ.
Clearly this divergence is associated with the fact that the quantum thermal
bath includes fluctuations at arbitrary high frequencies, which are picked up
by the broadening of the oscillator response function due to the damping γ.
These high frequency fluctuations, however, are not expected to be present
in any real system: in a crystal, the actual bath of oscillators that a given
oscillator couples with is physically limited to frequencies of the order of
the Debye frequency. No higher frequency is present in the system. Hence, it
appears reasonable to modify Eq. 8 by introducing an upper cutoff frequency
Ωmax of the order of a few times the highest frequencies observed in the
system. We will see in the following that such a cutoff frequency appears most
naturally in a numerical implementation of the colored noise. The divergent
contribution to the energy in Eq. 7 then behaves as γ ln(Ωmax), and can be
made arbitrarily small by choosing a small enough value of γ, once Ωmax has
been specified. In general, and for a given cutoff frequency, the independence
of the results on the damping parameter γ should be checked to ensure that
the relevant spectrum of frequencies is properly thermostated.

On the other hand, it is also clear from Eq. 7 that, for a fixed cutoff
Ωmax, the result will be a decreasing function of the damping γ. In practice,
γ should be kept small enough (compared to ω0) that the integrand actually
behaves like a δ function, while the equilibration time remains reasonable.
We will see in the following that values of γ/ω0 ∼ 10−2 provide a good
compromise between these various requirements.
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3 Noise synthesis

The numerical implementation of the quantum bath as described above re-
duces to generating a colored noise with a prescribed PSD, Θ̃(ω). We use
here a classical method of signal processing based on filtering a white noise
signal [9]. For a continuous noise, we introduce the filter

H̃(ω) =

√

Θ̃(ω) (9)

and its inverse Fourier transform H(t) (Θ̃ is given in Eq. 8). The noise θ(t)
is then obtained by convoluting H(t) with a random white noise r(t) with

PSD R̃(ω) = 1. We have:

θ(t) =

∫

∞

−∞

H(s)r(t − s)ds (10)

The spectral density of the resulting noise is then |H̃(ω)|2R̃(ω) = Θ̃(ω),
which is the target PSD. This scheme can be implemented in a discrete al-
gorithm suitable for computer calculation. The filter H̃(ω) is first discretized
in 2Nf values with steps δω over an interval [−Ωmax, Ωmax[:

H̃k = H̃(kδω), k = −Nf ...Nf − 1. (11)

The cutoff frequencyΩmax can be chosen on physical grounds as discussed
above, and will typically be taken to be a few times the maximum eigenmode
frequency of the system. A discrete Fourier transform yields H(t) over the

interval [−π/δω, π/δω[ with a timestep h = π/Ωmax. H̃(ω) being even and
real, so is H(t):

Hn =
1

2Nf

Nf−1
∑

k=−Nf

H̃k cos
( π

Nf

kn
)

. (12)

The convolution is then performed discretely in the range [−π/δω, π/δω[,
yielding a discrete colored noise with a time step h:

θn = θ(nh) =

Nf−1
∑

m=−Nf

Hmrn−m, (13)

where rm is a white noise drawn from a gaussian or a uniform distribution
with a variance

√
h in order to yield a unity PSD.

In practice, {Hm}m=−Nf ...Nf−1 is first computed using Eqs. 11 and 12 and
stored. The noise generator is then initialized by drawing 2Nf initial values
{rm}m=0...2Nf−1 and time is initialized to Nfh. Then, at each subsequent
time step, with time nh and n ≥ Nf , rn−Nf

is discarded and a new random
number rn+Nf

is drawn and stored. The correlated noise is then obtained
by computing the convolution in Eq. 13. The present algorithm has a CPU
computational cost close to a classical Langevin thermostat since the only
difference is the convolution in Eq. 13. The main difference is the memory
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storage because the present algorithm requires to store 4Nf values per degree
of freedom, corresponding to the filter and white noise. This requirement can
however be easily managed and is much less than in the method used by
Dammak et al [1], where an inverse Fourier transform is performed to create
a signal over the complete duration of the simulation with a discretization
that corresponds to the time step used by the MD integrator, i.e. a required
storage (number of time steps) × (number of degrees of freedom).

In principle, there is no specific reason to set the time step of the MD inte-
grator (δt) equal to the time step of the noise generator h (which corresponds
to the inverse of the cutoff frequency Ωmax). Taking again the harmonic os-
cillator as an example, a reasonable time step for integration of the equation
of motion is δt = 0.01ω−1

0 . The cutoff frequency for the noise, on the other
hand, should be physically limited to a few times ω0, let us say for concrete-
ness Ωmax = 2ω0. Hence the noise time step can be taken to be M times
larger than the MD time step, with M = 50 for this specific example. The
simplest way to manage the two time steps is to generate the noise according
to the procedure outlined above, with a time step h = Mδt, and to keep
the noise value constant for M integration time steps δt. This amounts to
generating a noise with an actual power spectrum

Ξ̃(Ω) = H̃(ω)2C(ω)2, (14)

where

C(ω) =
sin(ωh/2)

ωh/2
(15)

is the Fourier transform of the square function of amplitude unity and dura-
tion h. Obviously the function Ξ̃(ω) is not the desired PSD Θ̃(ω), but this

problem is easily cured by replacing H̃(ω) in Eq. 11 by a corrected spectrum

H̃1(ω) = H̃(ω)C(ω)−1 (16)

so that the proper spectral density is generated over the interval [0, Ωmax].
As an illustration, Fig. 1 compares on a specific example the PSD of the
noise generated by the above procedure with or without the final correction.
Before correction, the intensity of the noise is below Θ̃ and decreases rapidly
at high frequencies. The reason is the suppression of the high frequencies
due to the noise plateaus between successive updates. On the other hand,
after correction, the PSD of the noise matches very well Θ̃ up to the cutoff
frequency Ωmax. The results of the quantum thermal bath are illustrated
below for two simple examples.

4 Examples

4.1 Linear chain of oscillators

We consider first the very simple example of a linear chain of oscillators cou-
pled by Hookean springs between nearest neighbors, with periodic boundary
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Fig. 1 (Color online) Noise generation at different temperatures. The dashed lines

show the target PSD Θ̃ at T = 10 K and T = 1000 K. The blue curves are the PSDs
of the noise generated without correction and the red curves are after correction.
The parameters of the quantum thermal bath used here are: Ωmax = 100 THz,
Nf = 100, M = 30.

conditions. The frequency of an individual spring is ω0. In Fig. 2 the energy
obtained from a MD run using a thermostat with Ωmax = 2ω0 and γ = ω0/50
is compared to the exact result for this system.

In Fig. 3, we show the influence of the friction parameter γ. As expected,
a too large γ results in a broadening of the oscillator response function which
does not pick up the correct range of frequency spectrum. As the spectrum
has been cut off to a rather low frequency here, the result is an artificial
decrease of the energy. However, a value of γ of the order of ω0/50 provides
both a good approximation to the spectrum and reasonable equilibration
time.

4.2 Aluminium crystals

We model an aluminum perfect crystal using the many-body embedded atom
method potential developed by Ercolessi and Adams [10]. The simulation cell
contains a perfect periodic crystal made of 6 × 6 × 6 repeating cells with
crystallographic orientation X = [100], Y = [010] and Z = [001]. The cell
comprises N=864 atoms. We compute the evolution of the crystal energy and
Debye-Waller factor as a function of temperature using the quantum thermal
bath thermostat. In both cases, the results of the MD simulations are com-
pared to classical mechanics calculations performed using a classical Langevin
thermostat, to path-integral molecular dynamics (PIMD) calculations (see
Ref [4] for details) and to quantum and classical harmonic approximations
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Fig. 2 (Color online) Reduced energy (in units of h̄ω0) as a function of reduced
temperature h̄ω0/kB , for a chain of 50 oscillators. The dots are the result from a
numerical calculation using the implementation of the quantum bath described in
the text, with Ωmax = 2ω0, γ = 0.02ω0, and δω = 0.02ω0, i.e. Nf = 50. The full
line is the exact energy.
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Fig. 3 (Color online) Reduced energy (in units of h̄ω0) for reduced temperatures
h̄ω0/kB = 0.2 and h̄ω0/kB = 1.0 for a single oscillator, as a function of the friction
coefficient γ/ω0. The point at γ = 0 is the exact energy.
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Fig. 4 (Color online) Average energy per atom in an Aluminum crystal as a
function of temperature. Different frictions γ are used, averages over 5 × 104 MD
steps after 5×104 steps of equilibration. Parameters of the quantum thermal bath:
ωmax = 101.34 THz, Nf = 100, δt = 1 fs, h = 31δt. Results are compared to quan-
tum and classical harmonic approximations computed from the phonon spectrum,
as well as PIMD simulations with a number P of replica satisfying PT = 4096 K.

based on the phonon frequency distribution of the crystal, {ωi}i=0;3N−1. The
latter is computed after diagonalization of the Hessian matrix of the crystal.
In the harmonic approximation, the quantum average energy is given by:

〈Eharmo〉 =
3N−4
∑

i=0

Θ̃(ωi), (17)

where the 3 translational modes have been omitted and Θ̃ is the harmonic
oscillator energy given in Eq. 8. The classical harmonic approximation is
obtained by replacing Θ̃ by kBT . The comparison is shown in Fig. 4. The
quantum thermal bath allows to recover very well the quantum harmonic ap-
proximation at both frictions γ = 0.1 THz and 1 THz and the figure shows
the convergence to the classical regime and the gradual slight departure from
the harmonic approximation at high temperatures. The highest frequency in
the crystal being ωmax = 59.7 THz, we conclude again that a ratio γ/ωmax

in the range 1/50 to 1/500 is sufficient to ensure the convergence of the
energy. In this example, Nf = 100, meaning that the memory requirement
is about 100 times larger than would be the case for a classical molecular
dynamics simulation, independently of the duration of the simulation. The
present algorithm is therefore much less demanding than the previously pro-
posed implementation [1], in which memory storage was proportional to the
duration of the simulation.
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Fig. 5 (Color online) Debye-Waller factor, or average mean square displacement,
in an Aluminum crystal as a function of temperature. The same parameters are
used here as in Fig. 4.

The second example is the Debye-Waller factor computed here as the

atomic mean-square displacement 〈u2〉 = 1
N

∑N

i=1〈(ri(t) − ri(0))
2〉. In the

harmonic approximation, the Debye-Waller factor is expressed as:

〈u2〉 = 1

N − 1

3N−4
∑

i=0

h̄

2Mωi

coth
( h̄ωi

2kBT

)

=
1

N − 1

3N−4
∑

i=0

Θ̃(ωi)

Mω2
i

(18)

The result is shown in Fig. 5, where again a good agreement is seen be-
tween the QTB MD simulations and the harmonic approximation at low
temperatures. It should be noted however that, in contrast with the PIMD
results, the QTB simulations tend to slightly overestimate the harmonic ap-
proximation, a feature that will be discussed in section 5 below.

5 Some words of caution

In this section, we point out some differences between this method and the use
of a classical Langevin thermostat. With a classical thermostat, the equations
of motion can be transformed into a Fokker-Planck equation for the probabil-
ity distribution of the positions and momenta. This Fokker-Planck equation
admits as a stationary solution the classical Gibbs-Boltzmann distribution,
independently of the manner in which each specific coordinate is coupled
to the thermostat. In particular, with a set of weakly coupled (eg. trough
a small anharmonic term in the energy) harmonic oscillators, the coupling
of a finite number of oscillators to the thermostat is sufficient to ensure the
thermalization of the whole system at the same temperature T .
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Fig. 6 (Color online) Reduced energies (measured in units of h̄ω1) of two coupled
quantum oscillators with frequencies ω1 and ω2, as a function of the reduced tem-
perature (measured in units of h̄ω1/kB). The oscillator with the smaller frequency
(ω1) is directly coupled to a thermal bath with the same parameters as used in

figure 2. The second oscillator has a frequency ω2 =
√
2ω1 and is not coupled to

the thermal bath. The coupling between the two oscillators is ensured by a linear
(squares) or quartic (dots) term Hc in the energy (see text). In both cases the
strength of the coupling is ǫ = 0.05 in reduced units. The points correspond to
simulation data, the lines are the exact energies for decoupled oscillators.

In the case of colored noise, the transformation to a Fokker Planck equa-
tion is not possible, and there is to our knowledge no general expression
available for the stationary phase space distribution. The quantum ther-
mal bath presented above is coupled to all degrees of freedom, and ensures
that each independent harmonic mode acquires the correct quantum energy,
independently of the coupling between modes. One may however question
the influence of such a coupling, and in particular the manner in which a
”quantum” mode would transfer energy to other modes that are not directly
coupled to the quantum bath. We have performed an exploratory numerical
study of this situation by considering two weakly coupled oscillators, X1 and
X2, with frequencies ω1 and ω2 and identical masses, and coupled trough a
weak coupling Hamiltonian Hc(X1, X2). The first oscillator is coupled to the
quantum thermal bath, while the second one evolves according to the classi-
cal equations of motion, MẌ2 = −Mω2

2X2−∂X2
Hc. We have considered the

case of a linear coupling Hc = ǫX1X2, and the case of a nonlinear coupling
Hc = ǫX2

1X
2
2/2. In both cases, we find (see figure 6) that both oscillators

equilibrate, within numerical accuracy, at the desired energy. The equilibra-
tion time in the case of a nonlinear coupling is however extremely long, and
the error on the energy of the second oscillator remains significant even after
107 periods of oscillation.
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In the more practical case of a weakly anharmonic system with a large
number of modes, such as a crystal at low temperatures, a related ques-
tion arises. Here each mode is coupled to the quantum bath with a coupling
strength γ. However, the equation of motion is also affected by the coupling
to other modes through the anharmonic terms of the energy. Classically, such
anharmonic couplings give rise to a finite lifetime of the mode, characterized
by an effective damping Γanh. In order for the quantum thermal bath to
operate properly, it is desirable that the coupling strength γ is stronger than
this anharmonic coupling Γanh. On the other hand, as discussed previously,
a large γ also leads to inaccurate results for a single mode. One therefore has
to find a reasonable compromise, in which the coupling is strong enough so
that the mode can be thermalized within its lifetime Γ−1

anh, but weak enough
to keep the thermalisation accurate. In fact, the slight deviation observed for
the Debye-Waller factor in Fig. 5 can be ascribed to the failure in finding a
completely satisfactory compromise. By computing the lifetime of the short
wavelength phonons using a classical simulation at a temperature that cor-
responds to the quantum zero point energy, we find indeed that the order of
magnitude of the lifetime is of a few picoseconds for the present interatomic
potential. This implies that the friction γ should be at least in the Terahertz
range, which indeed yields the best results for the Debye-Waller factor. It is
found that smaller values of γ yield a repartition of energy among the normal
modes of the crystal that tends to a classical distribution, independent of the
mode frequency.

6 Conclusions and perspectives

In this manuscript, we have presented an ”on the fly” implementation of
a quantum thermal bath for molecular dynamics simulations, suitable for
long calculations in large systems. Two simple test cases were considered
as validations. The present algorithm is easily portable with limited memory
requirements, and therefore opens the possibility of studying complex systems
at a relatively modest computational cost.

Direct applications of interest in this context include, for static properties,
all cases in which the use of the harmonic approximation requires a numer-
ically demanding matrix diagonalisation. This is the case in particular of
amorphous or nanocrystalline systems at low temperatures. Using the quan-
tum thermal bath allows one to access directly thermodynamic quantities
from a simple molecular dynamics calculation.

A more involved potential application, which may require further develop-
ments, is the investigation of thermal transport properties in nanostructures
and nanostructured materials, for which the use of classical approximations
based on phonon spectra and lifetimes is not practical. The study presented in
section 5 suggests that modes that are only indirectly coupled to the thermal
bath also equilibrate correctly at their quantum energy. Therefore it should
be possible, as is done in classical heat transfer simulations, to equilibrate a
temperature profile by connecting a sample to two quantum thermal baths
operating at different temperatures and in different regions of space.
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Finally, the fundamental properties of the quantum thermal bath, and
in particular of the phase space distribution created by the colored noise in
a system which is not strictly harmonic, should also be investigated in the
future.
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