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Introduction

In this note we study a generalized version of the so called twisted Dirichlet eigenvalue problem. More precisely, for Ω an open bounded subset of R N we set (1.1) λ p,q (Ω) = inf

   ∇v L p (Ω) v L q (Ω) , v = 0, v ∈ W 1,p 0 (Ω), Ω |v| q-2 v dx = 0    .
Among the sets Ω with fixed volume, we are interested in characterizing those which minimize λ p,q (Ω). In other words we look for an isoperimetric inequality of Rayleigh-Faber-Krahn type. This kind of inequality is related to the optimization of the first eigenvalue for the Dirichlet problem associated to nonlinear operators in divergence form and have been widely studied for functionals that do not involve mean constraints. In such cases a rearrangement technique proves that the minimizing set is a ball and several results concerning its stability are also available (see for instance [START_REF] Nazarov | On the symmetry of extremals in the weight embedding theorem[END_REF], [START_REF] Kawohl | Simplicity of the principal eigenvalue for indefinite quasilinear problems[END_REF], [START_REF] Fusco | The sharp quantitative isoperimetric inequality[END_REF]). When mean type constraints are considered together with the Dirichlet boundary condition in an eigenvalue problem, the optimization problem becomes more difficult, since one is lead to deal with non local problems. Due to the fact that an eigenfunction for λ p,q (Ω) is forced to change sign inside Ω, and hence has at least two nodal domains, one cannot expect in general to have a radial optimizer.

The adjective twisted was introduced by Barbosa and Bérard in [START_REF] Barbosa | Eigenvalue and "twisted" eigenvalue problems, applications to cmc surfaces[END_REF], in the study of spectral properties of the second variation of a constant mean curvature immersion of a Riemannian manifold. In that framework a Dirichlet eigenvalue problem arose naturally with a vanishing mean constraint. The condition on the mean value comes from the fact that the variations under consideration preserve some balance of volume.

Further results in this direction can be found in the paper of Freitas and Henrot [START_REF] Freitas | On the first twisted Dirichlet eigenvalue[END_REF], where, dealing with the linear case, the authors solved the shape optimization problem for the first twisted Dirichlet eigenvalue. In particular they considered λ 2,2 (Ω), and they proved that the only optimal shape is given by a pair of balls of equal measure. The one-dimensional case has also attracted much interest. In [START_REF] Dacorogna | Sur une généralisation de l'inégalité de Wirtinger. (A generalization of Wirtinger's inequality)[END_REF], Dacorogna, Gangbo and Subía studied the following generalization of the Wirtinger inequality

(1.2) inf u ′ L p ((-1,1)) u L q ((-1,1)) , u ∈ W 1,p (-1, 1) \ {0} , u(-1) = u(1) = 0 , 1 -1
|u| q-2 u dx = 0 for p, q > 1 proving that the optimizer is an odd function. Moreover they explained the connection between the value of λ p,p ′ ((-1, 1)), where p = p p-1 , and an isoperimetric inequality. Indeed, let A ⊂ R 2 whose boundary is a simple closed curve t ∈ [-1, 1] → (x(t), y(t)) with x, y ∈ W 1,p 0 ((-1, 1)). Let

L(∂A) = 1 -1 (|x ′ (t)| p + |y ′ (t)| p ) 1 p dt and M (A) = 1 2 1 -1 [y ′ (t)x(t) -y(t)x ′ (t)]dt .
Then L 2 (∂A) -4λ p,p ′ ((-1, 1))M (A) ≥ 0. The case of equality holds if and only if

A = {(x, y) ∈ R 2 : |x| p ′ + |y| p ′ = 1}
, up to a translation and a dilation. Several other results are available in the one-dimensional case, see for instance [START_REF] Croce | On a generalized Wirtinger inequality[END_REF], [START_REF] Buslaev | On a family of extremal problems and related properties of an integral[END_REF], [START_REF] Belloni | A symmetry problem related to Wirtinger's and Poincaré's inequality[END_REF], [START_REF] Kawohl | Symmetry results for functions yielding best constants in Sobolev-type inequalities[END_REF], [START_REF] Farroni | Best constant and extremals for a vector Poincaré inequality with weights[END_REF] and the references therein for further details.

Our aim here, as in [START_REF] Freitas | On the first twisted Dirichlet eigenvalue[END_REF], is to prove that the optimal shape for λ p,q (Ω) is a pair of equal balls. The main result can be stated as follows.

Theorem 1.1. Let Ω be an open bounded subset of R N . Then, for

(1.3) 1 < p < ∞ and 1 < q < p * , if 1 < p < N 1 < q < ∞ , if p ≥ N we have λ p,q (Ω) ≥ λ p,q (B 1 ∪ B 2 )
, where B 1 and B 2 are disjoint balls of measure |Ω|/2.

The rest of the paper is devoted to the proof of Theorem 1.1 and it is divided into two steps. In the first one, using the symmetrization technique, we show that it is enough to minimize the functional λ p,q on sets given by the union of two disjoint balls B 1 and B 2 (not necessarily equal) and to identify the minimizing pairs. Moreover we write the Euler equation for a minimizer u of λ p,q (B 1 ∪ B 2 ), proving that the Lagrange multiplier associated to the constraint

Ω |u| q-2 u = 0 is zero (cf. Theorem 2.5).
The second step, which consists in showing that the two optimal balls have to be equal, is more subtle. In the case p = q = 2 solved in [START_REF] Freitas | On the first twisted Dirichlet eigenvalue[END_REF], the proof is based on the explicit formula for the (radial) solutions to the Euler equation of the functional and on fine properties of the zeroes of Bessel functions. Here we use a more geometric argument obtaining as a byproduct a simpler proof of the results of Freitas and Henrot. More precisely λ p,q (B 1 ∪ B 2 ) is attained at a function u = u 1 χ B 1 -u 2 χ B 2 , with u 1 and u 2 radial positive functions. If we look at λ p,q (B 1 ∪ B 2 ) as a function of sets we obtain the following optimality condition from the domain derivative (cf. Theorem 3.2):

∂u 1 ∂ν 1 = ∂u 2 ∂ν 2 .
From the other hand, the divergence theorem applied to the Euler equation gives that

∂u 1 ∂ν 1 p-1 |∂B 1 | = ∂u 2 ∂ν 2 p-1 |∂B 2 | .
This, combined with the previous condition, implies that B 1 and B 2 have the same measure.

The first generalized twisted eigenvalue

We start our study proving that the the value λ p,q (Ω) is attained for any choice of a bounded open set Ω ⊂ R N . Lemma 2.1. Assume (1.3). Then λ p,q (Ω) > 0 and there exists a bounded function u ∈ W 1,p 0 (Ω) such that

λ p,q (Ω) = ∇u L p (Ω) u L q (Ω)
and

Ω |u| q-2 u dx = 0 . Proof. Let H 1 n (v) = ∇v p L p (Ω) -[λ p,q (Ω)] p + 1 n v p L q (Ω)
with n ∈ N, and

G(v) = Ω |v| q-2 v dx.
By definition of infimum, for every n there exists u n such that

Ω |u n | q-2 u n dx = 0 , H 1 n (u n ) < 0 .
Without loss of generality we can assume that ∇u n L p (Ω) = 1. By Poincaré inequality, u n W 1,p (Ω) is uniformly bounded. Since p > 1, up to a subsequence, u n converges weakly to some u ∈ W 1,p 0 (Ω). By hypotheses (1.3) on p and q, u n → v in L q (Ω) and then

Ω |u| q-2 u dx = 0.
This implies that ∇u p L p (Ω) -[λ p,q (Ω)] p u p L q (Ω) ≤ 0. By definition of λ p,q (Ω), necessarily we have

∇u p L p (Ω) -[λ p,q (Ω)] p u p L q (Ω) = 0.
To prove that u = 0 and λ p,q (Ω) > 0, it is sufficient to pass to the limit in

H n (u n ) < 0 to get 1 ≤ [λ p,q (Ω)] p u p L q (Ω) . We are now going to prove that u is bounded. For ϕ, θ ∈ C ∞ 0 (Ω), let Φ(ε, t) = Ω |∇u dx + ε∇ϕ + t∇θ| p dx -[λ p,q (Ω)] p   Ω |u + εϕ + tθ| q dx   p q .
Let θ be such that (q -1)

Ω |u| q-2 θ dx = 1,
if such θ does not exist one would have |u| q-2 = 0 which is a contradiction. Then, set

ψ(ε, t) = Ω |u + εϕ + tθ| q-2 (u + εϕ + tθ) dx .
The hypotheses on θ imply that ψ t (0, 0) = 1. By the implicit function theorem applied to ψ, there exists a function τ such that ψ(ε, τ (ε))=0 and τ ′ (0) = -ψ ε (0, 0). Since (0, 0) is a minimizer for Φ, we deduce that

(2.1) Φ ε (0, 0) + Φ t (0, 0)τ ′ (0) = Φ ε (0, 0) -Φ t (0, 0)ψ ε (0, 0) = 0 .
By explicit calculations we have

Φ ε (0, 0) = p Ω |∇u| p-2 ∇u • ∇ϕ dx -[λ p,q (Ω)] p p u p-q L q (Ω) Ω |u| q-2 uϕ dx; Φ t (0, 0) = p Ω |∇u| p-2 ∇u • ∇θ dx -[λ p,q (Ω)] p p u p-q L q (Ω) Ω |u| q-2 uθ dx; ψ ε (0, 0) = (q -1) Ω |u| q-2 ϕ dx , the equation (2.1) is indeed equivalent to Ω |∇u| p-2 ∇u • ∇ϕ dx -[λ p,q (Ω)] p u p-q L q (Ω) Ω |u| q-2 uϕ dx = µ 0 (q -1) Ω |u| q-2 ϕ dx with µ 0 = Ω |∇u| p-2 ∇u • ∇θ dx -[λ p,q (Ω)] p u p-q L q (Ω) Ω |u| q-2 uθ dx .
By standard regularity results on elliptic equations (see § 5 of Chapter 2 in [START_REF] Ladyzhenskaya | Linear and quasilinear elliptic equations[END_REF]) we deduce that u is bounded.

Let now u ∈ W 1,p 0 (Ω) be such that

λ p,q (Ω) = ∇u L p (Ω) u L q (Ω)
and

Ω |u| q-2 u dx = 0 and set Ω + = {x ∈ Ω : u(x) > 0} , Ω -= {x ∈ Ω : u(x) < 0}.
Our aim is to prove that we can reduce to the case of two balls. We will use a technique used in [START_REF] Freitas | On the first twisted Dirichlet eigenvalue[END_REF] based on the Schwarz rearrangement. Here we recall just the definition and the properties that we will need in the proof. For more details on rearrangement techniques we refer to [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF] and [START_REF] Kawohl | Rearrangements and convexity of level sets in PDE[END_REF]. Definition 2.2. For a measurable set ω ⊂ R N , we denote by ω * the ball of same measure as ω. If u is a non-negative measurable function defined on a measurable set Ω and u = 0 on ∂Ω, let Ω(c) = {x ∈ Ω : u(x) ≥ c}. The Schwarz rearrangement of u is the function u * defined on Ω * by

u * = sup{c : x ∈ Ω(c) * }.
The next theorem summarizes some of the main properties of the Schwarz symmetrization.

Theorem 2.3. Let u be a non-negative measurable function defined on a measurable set Ω with u = 0 on ∂Ω. Then

(1) u * is a radially symmetric non-increasing function of |x|;

(2) for any measurable function ψ :

R + → R Ω ψ(u) dx = Ω * ψ(u * ) dx ; (3) if u ∈ W 1,p 0 (Ω), then u * ∈ W 1,p 0 (Ω * )
and

Ω |∇u| p dx ≥ Ω * |∇u * | p dx.
Using the Schwarz symmetrization and suitable constrained variations we are now able to reduce our problem to the "radial" one. Indeed we have the following theorem.

Theorem 2.4. Let B ± be a ball of same measure as |Ω ± |. Then λ p,q (Ω) ≥ λ p,q (B + ∪ B -).

Proof. Let u + = u⌊ Ω + and u -= -u⌊ Ω -. By symmetrizing u + and u -respectivelly, by the properties of Schwarz rearrangement (cfr. Theorem 2.3) we can write

[λ p,q (Ω)] p ≥ ∇u * + p L p (B + ) + ∇u * - p L p (B -) u * + q L q (B + ) + u * - q L q (B -) p q
.

Moreover, by equimeasurability ensured by Theorem 2.3.(2), using the volume constraint, we deduce that

0 = Ω + |u + | q-2 u + dx - Ω - |u -| q-2 u -dx = B + |u * + | q-2 u * + dx - B - |u * -| q-2 u * -dx .
If we set

λ * = inf A ∇f p L p (B + ) + ∇g p L p (B -) f q L q (B + ) + g q L q (B -) p q
where A is defined by

A = (f, g) ∈ W 1,p 0 (B + ) × W 1,p 0 (B -) : B + |f | q-2 f = B - |g| q-2 g , we clearly have (2.2) [λ p,q (Ω)] p ≥ λ * . It is easily seen that λ * is attained in (f + , f -), with f + , f -≥ 0.
Without loss of generality we can moreover assume that (2.3)

B + |f + | q dx + B - |f -| q dx = 1. For ϕ ± , θ ± ∈ C ∞ 0 (B ± ), define Φ(ε, t) = B + |∇f + dx + ε∇ϕ + + t∇θ + | p dx + B - |∇f -dx + ε∇ϕ -+ t∇θ -| p dx+ -λ *    B + |f + + εϕ + + tθ + | q dx + B - |f -+ εϕ -+ tθ -| q dx    p q
.

Let (θ + , θ -) be such that (q -1)

B + |f + | q-2 θ + dx -(q -1) B - |f -| q-2 θ -dx = 1 .
Such choice of (θ + , θ -) is possible, since, if not, one would have |f

+ | q-2 = |f -| q-2 = 0, that contradicts (2.
3). If we define the functional

ψ(ε, t) = B + |f + + εϕ + + tθ + | q-2 (f + + εϕ + + tθ + ) dx+ - B - |f -+ εϕ -+ tθ -| q-2 (f -+ εϕ -+ tθ -) dx ,
the hypotheses on (θ + , θ -) imply that ψ t (0, 0) = 1. By the implicit function theorem applied to ψ, there exists a function τ such that ψ(ε, τ (ε))=0 and τ ′ (0) = -ψ ε (0, 0). Since (0, 0) is a minimizer for Φ,

Φ ε (0, 0) + Φ t (0, 0)τ ′ (0) = Φ ε (0, 0) -Φ t (0, 0)ψ ε (0, 0) = 0 , that is, µ 0 (q -1)    B + |f + | q-2 ϕ + dx - B - |f -| q-2 ϕ -dx    = B + |∇f + | p-2 [∇f + ] • ∇ϕ + dx + + B - |∇f -| p-2 ∇f -• ∇ϕ -dx -λ *    B + |f + | q-2 f + ϕ + dx + B - |f -| q-2 f -ϕ -dx    with µ 0 = B + |∇f + | p-2 ∇f + • ∇θ + dx + B - |∇f -| p-2 ∇f -• ∇θ -dx + -λ *    B + |f + | q-2 f + θ + dx + B - |f -| q-2 f -θ -dx    . It follows that w = f + χ B + -f -χ B -satisfies on B + ∪ B -the equation (2.4) -div(|∇w| p-2 ∇w) = λ * |w| q-2 w + µ 0 (q -1)|w| q-2 .
Now we observe that multiplying (2.4) by w, one has

B + ∪B - |∇w| p dx B + ∪B - |w| q dx = λ * ≥ inf      B + ∪B - |∇v| p dx , v : B + ∪B - |v| q-2 v dx = 0, v L q (B + ∪B -) = 1      = [λ p,q (B + ∪ B -)] p .
The above inequality and (2.2) imply that λ p,q (Ω) ≥ λ p,q (B + ∪ B -).

We are now going to write the Euler equation for λ p,q (Ω) in the case where Ω is the union of two disjoint balls. We will make use of a technique introduced in [START_REF] Dacorogna | Sur une généralisation de l'inégalité de Wirtinger. (A generalization of Wirtinger's inequality)[END_REF] to carefully choose the variations.

Theorem 2.5. Let Ω = B 1 ∪ B 2 where B 1 and B 2 are two disjoint balls. Let u ∈ W 1,p 0 (Ω) be a bounded function such that Ω |u| q-2 u dx = 0 and λ p,q (Ω) = ∇u L p (Ω)

u L q (Ω)
. Then

(2.5) -div(|∇u| p-2 ∇u) = [λ p,q (Ω)] p u p-q L q (Ω) |u| q-2 u . Proof. We set

G(v) = Ω |v| q-2 v dx , F (v) = Ω |∇v| p dx -[λ p,q (Ω)] p Ω |v| q dx p/q . Let ϕ ∈ C ∞ 0 (Ω) and t ∈ (0, 1). Let Ψ : R → R β → G(u + tϕ + β) .
Then Ψ is continuous, Ψ(-1 -u + tϕ L ∞ (Ω) ) < 0 and Ψ(1 + u + tϕ L ∞ (Ω) ) > 0. By continuity there exists β t ∈ R such that Ψ(β t ) = G(u + tϕ + β t ) = 0.

Let t ∈ (0, 1) fixed. We set c t = β t t . We are going to prove the existence of a sequence t n → 0 such that c tn has a finite limit as n → ∞ (up to a subsequence). If there exists a sequence t n → 0 and x tn ∈ Ω such that ϕ(x tn ) + c tn = 0, then we have the result, since ϕ is bounded. If there exists δ > 0 such that, for every 0 < t < δ, ϕ(x) + c t = 0 for every x ∈ Ω, let us show that ϕ(x) + c t must change sign in Ω. Otherwise, by the strict convexity of s → |s| q (and then by the strict monotonicity of s → |s| q-2 s) we should have

Ω |u + tϕ + β t | q-2 (u + tϕ + β t ) dx > Ω |u| q-2 u dx or Ω |u + tϕ + β t | q-2 (u + tϕ + β t ) dx < Ω |u| q-2 u dx , that is, 0 = Ω |u + tϕ + β t | q-2 (u + tϕ + β t ) dx > Ω |u| q-2 u dx = 0 or 0 = Ω |u + tϕ + β t | q-2 (u + tϕ + β t ) dx < Ω |u| q-2 u dx = 0
which is a contradiction. Then, for 0 < t < δ, on a subset of Ω one has ϕ(x) + c t > 0 and on its complement ϕ(x) + c t < 0. This implies that |c t | ≤ ϕ L ∞ (Ω) . Therefore there exists 0 < t n < δ such that t n → 0 and c tn → c as n → +∞.

We have

< F ′ (u), ϕ >= p Ω |∇u| p-2 ∇u • ∇ϕ dx -p[λ p,q (Ω)] p u p-q L q (Ω) Ω
|u| q-2 uϕ dx .

On the other hand,

0 ≤ lim n→∞ F (u + t n (ϕ + c tn )) -F (u) t n = =< F ′ (u), ϕ > -c p [λ p,q (Ω)] p u p-q L q (Ω) Ω |u| q-2 u dx =< F ′ (u), ϕ > .
The previous inequality implies that

Ω |∇u| p-2 ∇u • ∇ϕ dx = [λ p,q (Ω)] p u p-q L q (Ω) Ω |u| q-2 uϕ dx for every ϕ ∈ C ∞ 0 (Ω).

The shape optimization problem

In this section we are going to find a geometrical necessary condition for a set Ω to be a minimizer of λ p,q (Ω), where Ω is the union of two disjoint balls. We will exploit the derivative with respect to the domain of the set functional λ p,q (Ω) and investigate an optimality condition, i.e. we will identify the domains with vanishing domain derivative. Here we briefly recall, for the reader's convenience, the ideas underlying the concept of domain derivative and we refer for instance to [START_REF] Henrot | Variation et optimisation de formes[END_REF] and [START_REF] Simon | Differentiation with respect to the domain in boundary value problems[END_REF] for a detailed description of the theory and for further details on its applicability.

Roughly speaking the domain derivative can be understood in the following way. Let Ω be a bounded smooth domain in R n , V : R n → R n be a sufficiently smooth vector field, t ≥ 0 and denote by Ω t the image of Ω under the map I + tV , where I stands for the identity. Let us consider the boundary value problem

(3.1) A(t, u) = 0 in Ω t u = 0 on ∂Ω t
and an integral functional given by

J (t) := Ωt C(u) dx,
with A and C are differential operators acting on a space of functions defined in Ω t . Under suitable regularity hypotheses, the function t → u t , that associates to t the solution of problem (3.1), is differentiable and its derivative in zero, denoted by u := u ′ t (0), satisfies the following conditions

(3.2) ∂ t A(0, u 0 ) + ∂ t A(0, u 0 ) u = 0 in Ω u = - ∂u 0 ∂ν V • ν on ∂Ω
where ν is the outward unit normal to ∂Ω. Moreover, we can calculate the domain derivative for t = 0 of the functional J in the direction V as

(3.3) J ′ (0) = Ω ∂ u C u dx + ∂Ω C(u 0 ) V • ν dH N -1 .
The results of the previous section ensure us that we can restrict our study to the sets Ω = B 1 ∪ B 2 where B 1 and B 2 are two disjoint balls of radius R 1 and R 2 respectively such that |B 1 ∪ B 2 | = ω N , where ω N is the measure of the unit ball in R N . Let u be the minimizer function realizing the value λ p,q (Ω). Using the Schwarz rearrangement as in Theorem 2.4 we can assume that λ p,q (B 1 ∪ B 2 ) is attained at a function u = u 1 χ B 1 -u 2 χ B 2 , with u 1 and u 2 non negative radial functions on B 1 and B 2 respectively.

For this kind of domains, by Theorem 2.5, u satisfies (2.5). By scaling invariance, it is not restrictive to deal with solutions that satisfy the condition (3.4)

Ω |u| q dx = 1 .
Thus we are lead to consider u satisfying (3.4), the constraint

Ω |u| q-2 v dx = 0 and the Dirichlet eigenvalue problem -div(|∇u| p-2 ∇u) = [λ p,q (Ω)] p |u| q-2 u in Ω u = 0 on ∂Ω .
Observe that in dimension 1, the minimizer of λ p,q ((a, b)) is an anti-symmetric function with respect to ( a+b 2 , 0), as proved in [START_REF] Dacorogna | Sur une généralisation de l'inégalité de Wirtinger. (A generalization of Wirtinger's inequality)[END_REF]. Therefore in the sequel we will assume that N ≥ 2. Clearly an optimal set, i.e. a set that minimizes λ p,q (Ω), will be a critical set with respect to the domain variations. If we prove that the eigenvalue has a domain derivative λp,q (Ω), which will be true if λ p,q (Ω) is a simple eigenvalue, then λp,q (Ω) = 0 (see for example [START_REF] Henrot | Variation et optimisation de formes[END_REF] for further details and proof of the differentiability of a simple eigenvalue). This motivates the next theorem. Theorem 3.1. Let Ω = B 1 ∪ B 2 , where B 1 and B 2 are two disjoint balls. Then λ p,q (Ω) is a simple eigenvalue, i.e. there exists a unique function u = u 1 χ B 1 -u 2 χ B 2 , modulo a multiplicative constant, that realizes

λ p,q (Ω) = ∇u L p (Ω) u L q (Ω) , Ω |u| q-2 u dx = 0. Proof. Let u = u 1 χ B 1 -u 2 χ B 2 and û = û1 χ B 1 -û2 χ B 2
be two functions at which λ p,q (Ω) is attained. We can assume that u i and ûi , for i = 1, 2, are radial by Lemma 4.1 in the appendix. Moreover u 1 , u 2 , û1 , û2 are nonnegative and

(3.5)

B 1 u q-1 1 dx = B 2 u q-1 2 dx , B 1 û1 q-1 dx = B 2 û2 q-1 dx .
Without loss of generality we can assume that u L q (Ω) = û L q (Ω) = [λ p,q (Ω)] p q-p . Therefore (3.6)

B 1 u q 1 dx + B 2 u q 2 dx = B 1 û1 q dx + B 2 û2 q dx .
Since we are working with normalized functions, the domain derivative of u q L q (Ω) has to be zero, i.e. by (3.4), using (3.3), we deduce that

Ω |u| q-2 u u dx = - ∂Ω |u| q V • ν dH N -1 .
As u vanishes on ∂Ω, (3.12)

Ω |u| q-2 u u dx = 0 .
Moreover, by Theorem 2.5, u satisfies -div(|∇u| p-2 ∇u) = λ p |u| q-2 u ; this implies that (3.13)

Ω |∇u| p-2 ∇u • ∇ u dx = ∂Ω u ∂u ∂ν p-2 ∂u ∂ν dH N -1 + λ p Ω |u| q-2 u u dx.
Combining (3.12) and (3.13), (3.11) reduces to

λ p p -1 λ p-1 = ∂Ω u ∂u ∂ν p-2 ∂u ∂ν dH N -1 .
We recall that on ∂Ω, by (3.2), we have

u = - ∂u ∂ν V • ν; as a consequence λ p p -1 λ p-1 = - ∂Ω ∂u ∂ν p V • ν dH N -1 .
It follows that λp,q (Ω) = 0

⇐⇒ ∂Ω V • ν ∂u ∂ν p dH N -1 = 0.
Since Ω = B 1 ∪ B 2 and since u is radial on B 1 and on B 2 , this is equivalent to

∂u 1 ∂ν 1 p ∂B 1 V • ν dH N -1 + ∂u 2 ∂ν 2 p ∂B 2 V • ν dH N -1 = 0 .
For variations V preserving the volume, we must choose V such that

Ω div(V ) dx = 0. We deduce λp,q (Ω) = 0 ⇐⇒ ∂u 1 ∂ν 1 p - ∂u 2 ∂ν 2 p = 0 ,
that implies the claim.

Using the previous analysis and the Pohozaev type identity (4.3) in the appendix, we will uniquely identify the critical domain for λ p,q (Ω).

Theorem 3.3. The only critical domain among union of balls of given volume for λ p,q (Ω) is the union of two balls of same measure.

Proof. Let u = u 1 χ B 1 -u 2 χ B 2 be the function at which λ p,q (B 1 ∪ B 2 ) is realized, satisfying (3.9). By the divergence theorem applied to (2.5) one has

∂u 1 ∂ν 1 p-1 |∂B 1 | = ∂u 2 ∂ν 2 p-1 |∂B 2 | .
By the above equality and Theorem 3.2 we easily deduce that

(3.14) ∂u 1 ∂ν 1 p-2 ∂u 1 ∂ν 1 |∂B 1 | = ∂u 1 ∂ν 1 p-2 ∂u 1 ∂ν 1 |∂B 2 | .
We are going to show, arguing by contradiction, that ∂u 1 ∂ν 1 = 0 on ∂Ω. Indeed, if this is not true, thanks to the regularity given by Lemma 4.1, we can use Theorem 4.3 to infer that

[λ p,q (Ω)] p N -p p - N q = - p -1 p ∂u 1 ∂ν 1 p ∂B 1 (x • ν)dH N -1 + ∂B 2 (x • ν)dH N -1 = 0
which gives in turns that N -p p -N q = 0. The last equality contradicts hypotheses (1.3) on p, q, N . Therefore (3. We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. We recall that by Theorem 2.4 we have λ p,q (Ω) ≥ λ p,q (B + ∪ B -) .

Moreover, using Theorem 3.3, we infer that

λ p,q (B + ∪ B -) ≥ λ p,q (B ′ 1 ∪ B ′ 2 ) where B ′ 1 and B ′ 2 are disjoint balls such that |B ′ 1 | = |B ′ 2 | = |B + ∪B -| 2 
. We now observe that, if, Ω 1 and Ω 2 are two sets, with Ω 1 ⊆ Ω 2 , then λ p,q (Ω 1 ) ≥ λ p,q (Ω 2 ). Indeed, it suffices to consider a function u 1 in which λ p,q (Ω 1 ) is attained and defining 0 in

Ω 2 \ Ω 1 . Therefore λ p,q (B ′ 1 ∪ B ′ 2 ) ≥ λ p,q (B 1 ∪ B 2 )
, where B 1 and B 2 are disjoint balls of measure |Ω| 2 . Combining the previous inequalities we end up with λ p,q (Ω) ≥ λ p,q (B 1 ∪ B 2 ) . This proves the claim. Remark 3.4. One could ask about the limit as p → 1 of λ p,q (Ω). Observe that the limit, as p → 1, of

α p (Ω) = inf ∇v L p (Ω) v L p (Ω) , v = 0, v ∈ W 1,p 0 (Ω) is the Cheeger constant, defined by inf D⊂Ω H N -1 (∂D) |D|
with D varying on all smooth subdomains of Ω whose boundary does not touch ∂Ω, as proved by Kawohl and Fridman [START_REF] Kawohl | Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant[END_REF]. The limit of λ p,q (Ω) as p → 1 seems to be much more difficult, due to the presence of the parameter q not necessarily equal to p and the non-local constraint Ω |u| q-2 q = 0.

Appendix

We recall here some results about quasilinear elliptic equations. The first (see [START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF] and the references therein) gives the radial simmetry of positive solutions to p-laplacian equations.

Theorem 4.1. Let u ∈ W 1,p 0 (B) be a positive solution to -div(|∇u| p-2 ∇u) = λ|u| q-2 u, where B is a ball. Then u ∈ C 1,α (B) for some α > 0 and u is radial.

The next result is a useful comparison lemma for solutions of an initial value problem for the ordinary differential equation arising when one writes in radial coordinates the Euler-Lagrange equation of λ p,q (Ω). This result is widely discussed for example in [START_REF] Franchi | Existence and uniqueness of nonnegative solutions of quasilinear equations in R n[END_REF] and [START_REF] Erbe | Uniqueness theorems for positive radial solutions of quasilinear elliptic equations in a ball[END_REF] and used in this form in [START_REF] Franzina | Existence and uniqueness for a p-laplacian nonlinear eigenvalue problem[END_REF]. The proof of the previous lemma goes exactly as the one of the Lemmata 3.1 and 3.3 of [START_REF] Erbe | Uniqueness theorems for positive radial solutions of quasilinear elliptic equations in a ball[END_REF]. The only comment to make concers the slightly restrictive hypotheses on the values of p and q that we find in [START_REF] Erbe | Uniqueness theorems for positive radial solutions of quasilinear elliptic equations in a ball[END_REF]. We observe that we need to check that setting u(0) = α, we can invert the unique solution of (4.1) u = u(t, α) and this is ensured by Propositions 1.2.6 and A2 in [START_REF] Franchi | Existence and uniqueness of nonnegative solutions of quasilinear equations in R n[END_REF]. Once we have this, the only hypothesis that has to be satisfied for the applicability of the results in [START_REF] Erbe | Uniqueness theorems for positive radial solutions of quasilinear elliptic equations in a ball[END_REF] is the following inequality [(N -p)|s| q-2 s + (N -p)s(q -1)|s| q-2 -N p|s| q-2 s]|s| q-2 s ≤ (q -1)|s| q-2 [(N -p)|s| q -N p q |s| q ] , that is, (4.2) (N -p)q ≤ N p .

If N -p ≤ 0, clearly we have (4.2) for any q. If on the contrary we have N -p > 0, then (4.2) is satisfied exatly for q ≤ p * as in our hypotheses. We finally recall the following generalization of the Pohozaev identity, established in [START_REF] Pucci | A general variational identity[END_REF] and [START_REF] Dinca | Generalized Pohozaev identity and a non-existence result for the p-Laplacian: weak solutions[END_REF]. 

  14) is equivalent to |∂B 1 | = |∂B 2 | and so the two balls B 1 and B 2 have the same radius.

Lemma 4 . 2 .

 42 Under hypotheses(1.3) and N > 1, the Cauchy problem(4.1) -(r N -1 |φ ′ | p-2 φ ′ ) ′ = r N -1 |φ| q-1 φ(0) = c , φ ′ (0) = 0 has at most a positive solution on [0, R] of class C 1 ([0, R]) ∩ C 2 ((0, R)). Moreover, let φ 1 , φ 2 be two positive solutions with c = c 1 and c 2 respectively; if c 1 < c 2 , then φ 1 ≤ φ 2 on [0, R].

Theorem 4 . 3 .

 43 Let G(u) = u 0 g(s) ds where g : R → R is a continuous function. Let Ω ⊂ R N , N ≥ 2, be an open bounded set of class C 1 . Let u ∈ W 2,p (Ω) ∩ W 1,p 0 (Ω) be a solution to -div(|∇u| p-2 ∇u) = g(u)in Ω u = 0 on ∂Ω . Then

  ∂Ω |∇u| p (x • ν)dH N -1 = Ω N -p p |∇u| p -N G(u) dx .
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We remark that, by Theorem 2.5, letting r = |x|, we have that u 1 = u 1 (r) and û1 = û1 (r) satisfy on [0, R 1 ], the Cauchy problem

with possibly different constants c for u 1 (0) and û1 (0), and a similar result holds for u 2 = u 2 (r) and û2 = û2 (r) on [0, R 2 ].

Assume, without loss of generality, that u 1 (0) > û1 (0). By Lemma 4.2 in the appendix,

and this is in contradiction with (3.8). If, on the other hand, u 2 (0) < û2 (0), again using Lemma 4.2 we have u 2 (r) ≤ û2 (r) on [0, R 2 ] and this contradicts (3.7). Then u 1 (0) = û1 (0). Finally, another application of Lemma 4.2 gives us that u 1 = û1 and by (3.6) we get also u 2 = û2 . Now, by (3.2) (cf. [START_REF] Emamizadeh | Monotonicity of the principal eigenvalue of the p-laplacian in an annulus[END_REF][START_REF] Brock | A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative[END_REF]) we have that u1 and u2 solve, in B 1 and B 2 respectively, the equation (3.9) -div (p -2)|∇u| p-1 ∇u • ∇ u |∇u| 3 ∇u + |∇u| p-2 ∇ u = pλ p-1 λu q-1 + (q -1)λ p u q-2 u where we use the notation λ instead of λ p,q (B 1 ∪ B 2 ). We are in position to prove the optimality condition for the radial problem associated to λ p,q (B 1 ∪ B 2 ). Theorem 3.2. Consider the following minimization problem

Let the pair ( B1 , B2 ) be critical for (3.10). Then, denoted by u = u 1 χ B1 -u 2 χ B2 the function at which λ p,q ( B1 ∪ B2 ) is attained, we have

Proof. We will denote B 1 ∪ B 2 by Ω. We recall that u 1 and u 2 satisfy (3.9). Multiplying by u and integrating we obtain Ω |u| q dx + (q -1)λ p Ω |u| q-2 u u dx.