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Abstract  

In the study presented here, we used a pushbroom CCD camera fitted on a motorised tractor rail to take 
hyperspectral images of wheat plots. Reflectance correction was performed using a ceramic plate as a 
reference.  
The hyperspectral images have been used to build nitrogen (N) content images for wheat plots using two
Partial Least Square regression models. The first chemometrical model was calibrated on nitrogen 
contents (in percentage of dry matter, % DM) obtained in laboratory and flat leaf normalised spectra (5 
latent variables, R² = 0.907, RMSEP = 0.326 N % DM); the second one on greenhouse pot plant leaf 
spectra (8 latent variables, R² = 0.919, RMSEP = 0.412 N % DM). Subsequently, they were directly 
applied to field plant spectra, providing images of nitrogen content. The range of nitrogen content values 
in these images was not satisfactory. Due to important spectral differences between greenhouse pot plant 
leaf spectra and field leaf spectra, a model calibrated directly on field leaves is necessary. 
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1. Introduction 

Vegetation monitoring is a major issue for agriculture, crop genetical selection, etc. Nitrogen 
content, water status, can be obtained by destructive laboratory measurements. However, non-
destructive measurement methods are needed to follow a same plant over time. One of them is 
the use of spectroscopic measurement. Light hitting a leaf is partially reflected depending on 
optical properties of leaf constituents. Studying the reflected signal can give information about 
leaf physiological status (Curran (1989)). 
In agronomy, vegetation reflectance spectra are largely used and make agronomical data 
acquisition possible at plant or leaf scale. A large amount of wavelengths generating a 
continuous spectrum provides us with accurate information even though partially redundant. 
Spectroscopy, formerly reserved to laboratory samples has been extended to field spectroscopy 
from the fifties (Milton et al. (2009)) and has been generalised over the last years thanks to the 
development of robust field spectroscopy devices (Milton et al. (2009)). Different devices can be 
used to collect spectra on an organ like a leaf or on a whole plant. Spectral measurements are 
used to obtain information about leaf area (Baret et al. (1987)) or chlorophyll concentration 
(Hansen and Schjoerring (2003)), and to assess total dry matter (Aparicio et al. (2002)).  
At another scale, many hyperspectral airborne or satellite sensors have been developed these 
last years (Casi, Hyperion, Hymap, Aviris…). Hyperspectral imagery can help to assess within-
field yield variability thanks to vegetation indices (Zarco-Tejada et al. (2005)) or chlorophyll 
content by combining an indice-based approach and a radiative transfer model inversion 
(Haboudane et al. (2002)). (Inoue (2003)) reviewed different ways of combining methods to 
access agronomic data from remote sensing. 
Due to their elevation, satellite or airborne sensors have a wide swath and are well-suited to 
studies on a large area. Unfortunately, due to their poor spatial resolution, they conduct to mixed 
pixels and to difficulties to estimate quantitatively and very accurately agronomical parameters 

Author-produced version
AgEng 2010, Clermont-Ferrand, 6-8 septembre 2010



2

like nitrogen content. At the contrary field spectroscopy can provide “pure” spectra, i.e. 
concerning vegetation only, but for a smaller area and with a lesser representativeness of the 
study area. 
Sometimes, it is required to have both pure spectra and good area representativeness. It is the 
case for crop genetical selection for example. Geneticists need accurate estimation of 
agronomical parameters for a small homogeneous area (micro-plot). A new technology can be 
tested for this kind of study: close-range hyperspectral sensing. Its representativeness is good 
because it provides an image of the whole plot. However, it provides pure spectra because 
spatial resolution is very high. The study presented here evaluates the potential of such a 
technology to obtain agronomical information on wheat. 
The aim of this article was to study the feasibility and the difficulties involved in using of ground 
hyperspectral imagery for crop characterisation. For that purpose, several chemometrical 
models between reflectance spectra and leaf nitrogen content were build. Subsequently, their 
application was tested on field images of durum wheat in order to see whether leaf nitrogen 
content could be predicted at several phenological stages.  

2. Material and method 

2.1. Hyperspectral image acquisition system 

All hyperspectral images were acquired with a pushbroom CCD camera (HySpex VNIR 1600 - 
160, Norsk Elektro Optikk, Norway) fitted on a tractor-mounted motorised rail (see Figure 1). The 
camera spectral range was from 400 nm to 1000 nm divided in 160 bands (3.7 nm spectral 
resolution). The first image spatial dimension was determined by the 1600 across-track pixels of 
the CCD matrix and the second one came from the camera forward movement on the ramp. At 
1 m above the vegetation and with a nadir sighting, the ground track was about 30 cm and the 
spatial resolution across track was 0.2 mm (the lens and the view angle were fixed). The spatial 
resolution along track was set to 0.5 mm. The integration time, i.e. the time duration during 
which sensor is storing light energy was fixed manually by the user depending on meteorological 
conditions (cloudy or sunny weather). 

Figure 1: Prototype developed by Cemagref.
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2.2. Reflectance correction 

Images were first corrected in radiance using sensor characteristics (e.g. spectral sensitivity) 
provided by the manufacturer. Radiance is the product of the target reflectance, which is intrinsic 
information and the illumination during image acquisition, i.e. in our case solar lighting. 

ERL ⋅= (1) 

Radiance can not be used directly because illumination depends on date and meteorological 
conditions. To obtain the variable of interest R, it is thus necessary to know the illumination. For 
that purpose, spectralon® (Labsphere, Inc., New Hampshire, USA) placed in the field of view of 
the sensor is commonly used because it is a perfect Lambertian diffuser. Another alternative is 
to use a reference whose spectral characteristics are known. 
Indeed, in given lighting conditions: 

ERL ettett ⋅= argarg
(2) 

ERL refref ⋅= (3) 

ref
ref

ett
ett R

L

L
R ⋅= arg

arg

(4) 

where R designs the reflectance, L the radiance, and ref the reference. 
In this study, we used a ceramic plate appropriate for an every day field use. refR was obtained 

from laboratory measurements.  

2.3. Experimental protocol 

2.3.1. Flat leaves 

During the 2009 growing season, many wheat leaves of four genotypes (ixos, primadur, neodur 
and lloyd) were cut, oven-dried and conserved in a cold room. Dried wheat leaves were then flat 
imaged (see Figure 2). In order to have an homogeneous background, we used the leaf-clip disc 
of a field spectrometer (FieldSpec®, Analytical Spectral Devices, Inc. (ASD), Boulder, Colorado, 
USA) designed to be totally black. Leaf nitrogen content was measured in laboratory (Dumas 
method). Hyperspectral images were corrected in reflectance. Then, a mean reflectance 
spectrum was calculated for each leaf. Thus we had for each leaf a reflectance spectrum and an 
actual nitrogen content value. The dataset contained 146 couples spectrum/nitrogen content. 
The nitrogen content range was 0.40 – 3.78 N % DM. 
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Figure 2: Experimental protocol: flat leaves 

2.3.2.Standing plants 

In winter 2009 - 2010, some plants were grown in greenhouse with two nitrogen treatments: with 
or without nitrogen supply.  Four genotypes (lloyd, neodur, primadur and ixos) were imaged at 
five phenological stages (tillering, 2 nodes, flowering, 450 degree days after flowering and 
maturity) with three repetitions. For each image, two genotypes and three repetitions at one 
stage were imaged in order to have several pots in the same image and thus to try to simulate 
field conditions (see Figure 3). On each plant the two upper leaves were marked with coloured 
plastic collar and thereby located on the images. After each image acquisition, leaves were cut 
and sent to the laboratory for destructive nitrogen content measurement. For each image, we 
drew regions of interest on marked leaves and obtained therefore their mean reflectance 
spectrum. Consequently, we had for each plant two couples (one for each of the two cut leaves) 
leaf reflectance spectrum / actual nitrogen content. The dataset contained 180 couples 
spectrum/nitrogen content. The nitrogen content range was 0.81 – 5.52 N % DM. 

Figure 3: Experimental protocol: standing plants 

reference ceramic 

calibrated background 
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2.3.3. Field images 

During the whole growing season, several micro-plots were imaged at six key phenological 
stages: 3 leaves (24/02/2009), tillering (10/03/2009), 1-cm ear (06/04/2009), stem elongation 
(10/04/2009), heading (30/04/2009), and maturity (12/06/2009). 

2.4. Chemometrical model calibration 

As we will see below, several models were calibrated, using either flat leaf data (cf. § 2.3.1) or 
standing plant leaf data (cf. § 2.3.2). Model calibrations were computed with partial least square 
regression (PLS) using Matlab software (TheMathWorks, Natick, MA, USA) and our own 
functions. For each experiment, we split the dataset in a calibration set of two third of the 
samples and a test set of one third of the samples, having both the same distribution. We 
calibrated the model by cross-validation leave-one-out on the calibration set. The best 
calibration equation was selected on the basis of a large coefficient of multiple determinations 
(R²) and a low standard error of cross-validation (SECV). SECV is a measure of the difference 
between the actual and predicted values calculated over all cross-validation calibrations. Next 
the model was tested on the independent test set. 

3. Results and discussion 

3.1. Reflectance correction 

Reflectance theoretically depends on both illumination and viewing configurations, this 
phenomenon being formalised by a bidirectional reflectance distribution function (BRDF). 
However, to a first approximation, a leaf can be considered as a Lambertian surface (Chelle 
(2006); Grant (1987)), i.e. its BRDF is a constant. So flat leaves and inclinated leaves have the 
same reflectance at a nadir viewing. Nevertheless, due to their dissimilar orientation toward the 
sun, all leaves do not receive the same level of illumination. They do not receive either the same 
level than the reference ceramic. Each illumination level is linked to the cosine of the angle 
between the surface and the light incidence. Because this difference is independent of the 
wavelength, it can be introduced as a multiplicative factor. 
The reflectance for field leaves obtained with the correction described above (see § 2.2) is thus 
their actual reflectance up to a scalar factor. Such a multiplicative effect can be removed by 
spectrum normalisation. Therefore, in order to be applied on field leaves, model must use 
normalised spectra. 

3.2. Flat leaf model  

3.2.1. Model prediction quality 

On Figure 4, we can see the results of calibration and test steps. The best model was obtained 
for normalised spectra and with 5 latent variables (LV). Model was considered as satisfactory 
even if error seems to slightly increase with nitrogen content. 
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Figure 4:  Prediction quality of flat leaf chemometrical model for calibration set (blue stars) and test set (red 
circle). SEP means standard error of prediction. 

3.2.2. Application to field images 

The model was applied on field images. Figure 5 presents the results for the genotype primadur 
at the stem elongation stage. NDVI (Normalised Difference Vegetation Index (Tucker (1979))) 
was computed on the hyperspectral image. A mask was created by thresholding this NDVI value 
and was applied on image to select vegetation pixels. 

a. b. 

Figure 5: a. Colour image of plot at stem elongation stage (ceramic reference is visible on the left),
 b. Cartography of predicted nitrogen content obtained with the model calibrated on flat leaves. 
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Although we do not have ground truth for each pixel of the image, the model seems to 
overestimate the nitrogen content on field leaves, which is not in agreement with expert 
expectations. Moreover, in April (at stem elongation), nitrogen content obtained by other 
measurements (leaf-clip spectrometer for example) is around 3.5 – 4 %. We can put forth some 
hypotheses to explain that. Firstly, the model has been calibrated on dried leaves. Normally 
water content does not influence reflectance spectra in the 400 – 900 nm spectral range but 
drying leaves can generate polyphenols, disrupting model calibration. Secondly, the model was 
calibrated on flat leaves and did not take into account field scene effects like specular or multiple 
reflexions. That is why we decided to calibrate a model directly on leaves on standing plants. For 
practical reasons (notably growing season was ended), the new model was calibrated on leaves 
of plants grown in pots in a greenhouse. 

3.3.Standing plant leaf model  

3.3.1.Model prediction quality 

On Figure 6, we can see the results of calibration and test steps. The best model was obtained 
for normalised spectra and with 8 latent variables. The model is not totally satisfactory because 
the set contains three big groups and not a continuous range. Nevertheless this figure shows 
that it is possible to calibrate a model directly on standing plant leaves.  

Figure 6: Prediction quality of standing leaf chemometrical model for calibration set (blue stars) and test set 
(red circle). SEP means standard error of prediction. 

3.3.2.Application to field images 
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In order to see if a model calibrated on leaf of standing plant (and thus taking into account field 
scene effects) was better than a model calibrated on flat leaves, we applied this new model on 
field images. Once again, nitrogen content for leaf was overestimated (see Figure 7). 

a. b. 
Figure 7: a. Colour image of plot at stem elongation stage (ceramic reference is visible on the left), b. 
Cartography of predicted nitrogen content obtained with the model calibrated on standing plants.

An in-depth study of the model coefficients showed that the model was calibrated principally on 
the visible domain and on the ratio between visible and near infra-red domains. Figure 8 shows 
that these spectral characteristics are precisely the ones where greenhouse standing plant 
leaves spectra and field leaves spectra differ. That is why model calibrated on standing plant 
leaves do not give good results with field leaves. 

This difference can probably be explained biologically. Plants in greenhouse grow faster than 
field plants and often the plants are delicate and their leaves are thinner, that could lead to these 
differences in the reflectance spectra.  

Figure 8: Normalised spectra comparison between field leaf spectrum (blue dash) and greenhouse leaf 
spectrum (solid red). 
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4.Conclusion 

In this article, we studied a new kind of hyperspectral technology: a close-range field imaging 
system. We took images at 1 m above the canopy of wheat plots. We used a ceramic plate as a 
reference to correct images in reflectance, conducting to a reflectance up to a scalar factor for 
inclinated leaves.  
We calibrated chemometrical models on flat isolated leaves and on pot plant leaves. These 
experiments demonstrated that it is possible to calibrate a chemometrical model between 
reflectance spectra and nitrogen content with a close-range imagery system and that it could be 
applied to various genotypes. However, it has been shown that a model calibrated on flat leaves 
or even on standing greenhouse plant leaves can not be applied directly to field leaves. 
As a conclusion, close-range hyperspectral imagery still seems a suitable tool for nitrogen 
content monitoring of field leaves, but it requires imperatively that the model is calibrated on field 
leaves also. The next step will be to acquire such a calibration data set. 
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