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Time Reversed Absorbing Condition in the Partial Aperture Case

F. Assous∗, M. Kray†, F. Nataf†

Abstract

The time-reversed absorbing conditions (TRAC) method introduced in [AKNT10, AKNT]
enables one to “recreate the past” without knowing the source which has emitted the signals
that are back-propagated. It has been applied to inverse problems for the reduction of the
computational domain size and for the determination, from boundary measurements, of the
location and volume of an unknown inclusion. The method does not rely on any a priori
knowledge of the physical properties of the inclusion. The aim of this paper is to extend the
TRAC method to the partial aperture configuration and to discrete receivers with various
spacing. In particular the TRAC method is applied to the differentiation between a single
inclusion and a two close inclusion case. The results are fairly insensitive to noise in the
data.
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1 Introduction

Time reversal is a subject of very active research. The principle is to take advantage of the
reversibility of wave propagation phenomena, for example in acoustics or electromagnetism in
a non-dissipative but unknown medium, to back-propagate signals to the sources that emitted
them. The initial experiment, see [FWCM91], was to refocus, very precisely, a recorded signal
after passing through a barrier consisting of randomly distributed metal rods. Since then, nu-
merous applications of this physical principle have been designed, see [Fin09] or for numerical
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experiments [LMF+06] and references therein. The first mathematical analysis can be found
in [BF02] for a homogeneous medium and in [CF97] and [BPZ02] for a random medium. In this
study we do not consider random or inhomogenous media.

This paper is a follow up of [AKNT10, AKNT] in which the TRAC (Time-Reversed Ab-
sorbing Conditions) method was introduced. This method enables one to “recreate the past”
without knowing the location and the properties of the inclusion which diffracted the signals
that are back-propagated. This was made possible by removing a small region surrounding the
scattering inclusion. This has two applications in inverse problems: the reduction of the size
of the computational domain and the determination of the location of an unknown inclusion
from boundary measurements. The first application is reminiscent of the redatuming method
introduced in [Ber79]. In our case, we use the wave equation and not a paraxial or parabolic
approximation. This extends the domain of validity of the redatuming approach. Concern-
ing the second application there is a huge literature that deals with this inverse problem. We
mention the MUSIC algorithm [The92] and its application to imaging [LD03], the sampling
methods first introduced in [CK96], see the review paper [CCM00] and references therein, and
the DORT method [PMSF96]. Mathematical analysis of this kind of approach can be found
in [CK98]. These methods were developed in the time-harmonic domain except for the re-
cent work [CHLM10] whereas the TRAC method is designed in both the time-dependent and
harmonic domains. In the time domain, a well-known technique developed initially for earth
imaging, is the reverse time migration RTM, [Cla85]. It consists in cross-correlating the incident
field with the time reverse scattered field, see right part of figures (6–9).

In this paper we extend the TRAC method by considering partial or full aperture for discrete
receivers with various spacing. This requires the introduction of two new cost-like functions.
Notice that one of them combines the original TRAC method with RTM, see § 4.1.3. In particular
we apply the TRAC method to the differentiation between a single inclusion and a two close
inclusion case. We stress that in contrast to many inverse problem methods, our method does
not rely on any a priori knowledge of the physical properties of the inclusion. Hard, soft and
penetrable inclusions are treated in the same way. The outline of the paper is as follows. In
section 2 we recall the principle of the TRAC method for the time dependent wave equation.
In section 3, we demonstrate the capacity of the method to recreate the past from boundary
measurements in the full or partial aperture case. In section 4, we introduce two new criteria for
applying our method to inverse problems. As an illustration, we investigate the ability of the
method to differentiate between one inclusion and two close ones. In these numerical examples,
the physical parameters are related to iron or plastic mines. We notice that in all our tests, the
method has proved to be quite insensitive with respect to noise in the data.

2 Principle of the TRAC method

In previous papers [AKNT10, AKNT], we introduced a new method that enables one to “recreate
the past” without knowing the source which has emitted the signals that will be back-propagated.
This was made possible by blending time reversal techniques and absorbing boundary condi-
tions. After removing a small region enclosing the source, we introduced time reversed absorbing
conditions (TRAC). Let us describe this approach now.

We consider an incident wave uI impinging on an inclusion D characterized by a different
propagation speed c which is constant outside the inclusion D. The total field uT can be
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decomposed into the incident and scattered field, so uT := uI +uS . We consider the problem in
d dimensions d = 1, 2, 3 and assume that the total field satisfies the wave equation

∂2uT

∂t2
− c2∆uT = 0 in Rd

(uT − uI)(t, ~x) satisfies a Sommerfeld condition at ∞

homogeneous initial conditions.

(1)

Let Ω denote a bounded domain that surrounds D with ΓR as its boundary. We assume that
the incident wave uI is generated by a point source such that after a time Tf the total field
uT is negligible in the bounded domain Ω. Let v be a field that satisfies the wave equation.

Ω

D

Bρ

O

ΓR

Figure 1: Geometry

We denote by vR the corresponding time-reversed field that also satisfies the same physical
equation, vR := v(Tf − t, ~x). We assume that we have recorded the value of the total field uT on
the boundary ΓR that encloses domain Ω. Our goal is to derive a boundary value problem (BVP)
whose solution is the time-reversed field. The physical properties of the inclusion or the exact
location of the body are not known. The only things we know are the physical properties of the
surrounding medium, in other words the propagation speed c outside D. There c is assumed to
be a constant denoted c0. Thus, uTR satisfies the following equation

∂2uTR
∂t2

− c2
0∆uTR = 0 in (0, Tf )× Ω\D. (2)

We impose Dirichlet boundary conditions on ΓR equal to the time-reversal of the recorded fields
and zero initial conditions. The key point is that we lack a boundary condition on the boundary
of the inclusion in order to define a well-posed BVP on the time-reversed field uTR in Ω\D. For
inverse problems, the shape and/or location of the inclusion D is not known and sometimes the
type of boundary condition (hard or soft inclusion) on the body is not known either.

To overcome these difficulties, the classical approach for example solves the problem (2) in
the entire domain Ω, assuming that there is no inclusion D, see [LMF+06] and references therein.
Denote by wT

R this “approximate” time-reversed solution, we have in the entire domain Ω:

∂2wT
R

∂t2
− c2

0∆wT
R = 0 in (0, Tf )× Ω (3)
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with Dirichlet boundary conditions on ΓR equal to the time reversal of the recorded fields and
zero initial conditions. One can easily verify that this approximate time-reversed solution wT

R

differs from uTR.
In [AKNT10, AKNT], we derived a boundary value problem (BVP) whose solution is the

time-reverse of the scattered field uSR. To derive a boundary value problem satisfied by uSR
without knowing the physical properties of the inclusion D or its exact location, we introduce
B a subdomain enclosing the inclusion D, see Figure 1. Then, we have to determine a specific
boundary condition for uSR on the boundary ∂B so that the solution to this problem will coincide
with uSR in the restricted domain Ω\B. In the three space dimension, we introduced the boundary
condition named TRAC by

TRAC(uSR) :=
∂

∂t
(uSR(t, ·)) + c

∂

∂n
(uSR(t, ·))− cu

S
R(t, ·)
r

. (4)

Note, that due to the minus sign before the term uSR/r, the TRAC (4) is not the BT 1 [BT80]
absorbing boundary condition. The time-reversed scattered field uSR satisfies

∂2uSR
∂t2

− c2
0∆uSR = 0 in (0, Tf )× Ω\B

TRAC(uSR) = 0 on ∂B

uSR(t, ~x) = uS(Tf − t, ~x) on ΓR

zero initial conditions.

(5)

The TRAC is not only not the standard BT 1 ABC but also has an “anti absorbing” term
(−cuSR/r). A natural concern arises about the well-posedness of BVP (5). Although we have not
developed a general theory, we prove an energy estimate for this problem in a special geometry,
see [AKNT10]. After many computations we have never encountered stability problems. In
[AKNT10, AKNT] a numerical procedure for inclusion identification was deduced from this
formulation:

When the subdomain B encloses the inclusion D then, the solution in the restricted domain
Ω \ B must be equal to the time reversed solution. Conversely, if the computed solution differs
notably from the time reversed solution, it shows that the ball B does not enclose the inclusion D.

The formulation of (4) in two space dimensions is straightforward, see [BT80, BGT82]. In
the above formula, it is sufficient to replace r by

√
r and 1/r by 1/(2r) and (4) reads:

∂uSR
∂t

+ c
∂uSR
∂n
− cu

S
R

2r
= 0 . (6)

We have assumed so far, for sake of simplicity, that the surface B is a sphere or a circle.
Since we are finding an approximate location of the inclusion this is usually sufficient. For an
elongated body a ball can be replaced by an ellipse or spheroidal surface, see § 4.2. Absorbing
boundary conditions for these cases have been developed in [MTH08, MT09, BDSG09]. For more
general surfaces several absorbing conditions have been developed, for example [ABB99, KTU87].
Comparison between many options are presented in [MTH08, MT09]. As shown above, a first
order TRAC method simply reverses the sign of the non-differentiated term of the corresponding
first order absorbing boundary condition. Thus, a first order TRAC for a general bounding
surface in two dimensions is given by:

TRAC(uSR) :=
∂

∂t
(uSR(t, ·)) + c

∂

∂n
(uSR(t, ·))− cκ

2
uSR(t, ·) (7)
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where κ is the curvature of the bounding surface B.

3 Recreate the past

Source

SRA

full aperture

Source

SRA

D

partial aperture

D ΓR

ΓR

Figure 2: Configurations of the source-receiver array (SRA)

In the proof of concept paper [AKNT10, AKNT], we had already demonstrated the capacity
of the TRAC method to recreate the past when the line of receivers ΓR is continuous and encloses
the bounded domain Ω as in the geometry shown in figure 1. For a domain B arbitrary located
in Ω, we solve the following problem

∂2vSR
∂t2

− c2
0∆vSR = 0 in (0, Tf )× Ω\B

TRAC(vSR) = 0 on ∂B

vSR(t, ~x) = uS(Tf − t, ~x) on ΓR

zero initial conditions ,

(8)

with an adhoc artificial boundary condition on the remaining part of the external boundary.
When B encloses inclusion D, we know from the previous section that vSR coincides with the
restriction of uSR to the domain Ω\B. Moreover the method proved to be quite insensitive to the
level of noise in the data. Indeed, we added a Gaussian noise by replacing on ΓR the recorded
scattered field uS with

uS := (1 + Coeff ∗ randn) ∗ uS , (9)

where randn satisfies a centered reduced normal law and Coeff is the level of noise.

In this paper, in order to be closer to what happens in many real cases as in medical imaging,
geophysics, mine detection, . . ., we relax these assumptions in two ways:

• we consider a finite number of receivers spaced by a fraction of the central wavelength λ;

• the aperture is reduced.
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In order to create synthetic data, equation (1) is approximated by the FreeFem++ pack-
age [Hec10] which implements a finite element method in space. In this study we use a standard
P1 finite element method. The advancement in time is given by a second order central finite
difference scheme so that it is time reversible also on the numerical level. The computational do-
main is a disk and we use an absorbing boundary condition on its external boundary in order to
simulate an otherwise infinite domain. We report the results for receivers spaced by λ/4 and for
both a full aperture and a 90◦ aperture, see figure 2. In both cases, we consider a soft inclusion
in a homogeneous medium with a diameter λ. We first consider a full aperture case. In Fig. 3,
we have several lines and five columns. Each column corresponds to a numerical time-reversed
experiment and each line corresponds to a snapshot of the solution at a given time, in the domain
shaded in figure 2. The top line corresponds to the initial time for the time-reversed problem,
equivalent to t = Tf for the forward problem. The last line is the solution at the final time of
the reversed simulation which corresponds to the initial time t = 0 for the forward problem. In
column one (namely the left column), we display for reference the perfect time reverse solution
which is the reverse of the forward problem.

In columns two and three, we display the solution of the reversed problem (8) with a ball B
which encloses the inclusion. In column two there is no noise in the recorded data on the source-
receiver array (SRA) whereas in column three we have 30% noise. As expected, the sequences of
snapshots are the restrictions to the domain Ω \B of column one. At the expense of removing a
domain enclosing the inclusion, we are able to recreate the past even with a high level of noise.
This exemplifies an application of the TRAC method: when the ball B encloses the inclusion
we are able to reconstruct the signal in a region that is closer to the inclusion than the line of
receivers ΓR. This allows the reduction of the size of the computational domain. In this respect,
the method is related to the redatuming method, see [Ber79]. In columns four and five, we show
the solutions of the reversed problem (8) with a ball B smaller than the soft inclusion with no
noise and 30% noise respectively. In contrast to the previous cases, the sequence of snapshots
differs significantly from column one after the reversed scattered field reached the inclusion. In
figure 3, it corresponds to the three last lines.
In the second example we consider a partial aperture problem as depicted in figure 2. Figure 4
is organized the same as the previous one and can be read in the same way. Here again, when
the domain B encloses inclusion D (columns two and three), we are able to recreate the past but
this time only in the cone corresponding to the 90◦ aperture of the SRA. When the domain B
does not enclose inclusion D (columns four and five), as in the full aperture case, the sequence
of snapshots differs significantly from column one after the reversed scattered field reached the
inclusion. Observe that the numerical simulations are quite insensitive to the level of noise.

4 Inverse problem

We have seen in the previous section that when the domain B encloses inclusion D, the TRAC
method is able to recreate the past. But when the domain B does not enclose inclusion D,
the solution of equation (8) does not coincide with the time reversed scattered field uSR. This
property was used in a previous paper [AKNT10, AKNT] to locate the inclusion with a trial
and error procedure based on moving the domain B. Indeed, by playing with the location and
size of the subdomain B, it was possible to determine the location and volume of inclusion D.
The method basically depended on designing a mathematical criterion that tests the computed
solution of equation (8) to determine if it corresponds to the time reversed scattered field uSR or
not of course without knowing uSR. In the next section, we introduce several criteria to solve the
inverse problem.
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Figure 3: Snapshots for the TRAC method in the case of full aperture. Column 1: reverse of
the forward problem, columns 2 (no noise) and 3 (30% noise): TRAC method when D ⊂ B,
columns 4 (no noise) and 5 (30% noise): TRAC method when D * B.
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Figure 4: Snapshots for the TRAC method in the case of partial aperture. Column 1: reverse
of the forward problem, columns 2 (no noise) and 3 (30% noise): TRAC method when D ⊂ B,
columns 4 (no noise) and 5 (30% noise): TRAC method when D * B.
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4.1 Criteria

We define three different criteria to assert that the domain B does not enclose inclusion D. The
first criterion see § 4.1.1 was already introduced in [AKNT10, AKNT]. As we shall see, it works
only for the full aperture case. The second and third criteria are effective for partial aperture.

4.1.1 Final time criterion

The first criterion named final time criterion uses the fact that at the final time the solution
should be zero. Conversely, when the final solution is not zero (see columns four and five of
figure 3), it proves that D is not included in domain B. This observation leads to an easy-to-
compute criterion which is independent of the size of the domain:

JFT (B) :=
‖vSR(Tf , ·)‖L∞(Ω\B)

supt∈[0,Tf ] ‖uI(t, ·)‖|L∞(Ω)
(10)

which vanishes when the artificial domain encloses the inclusion. One could hope that when the
criterion is zero, domain B encloses inclusion D. Criterion JFT is normalized w.r.t. the strength
of the incident field uI . However, the computed reverse time scattered field vSR basically depends
on the aperture of the SRA. A full aperture will give a stronger signal than a partial aperture.
In order to get comparable figures, for a trial domain B instead of JFT (B) defined in (10), we
introduce a relative criterion, in the same spirit as the signal-to-noise ratio (SNR),

Jrel
FT (B) :=

JFT (∅)
JFT (B)

,

where JFT (∅) is the final time criterion computed in absence of any trial domain B, the same
way as in the classical approach in time reversal techniques. Note that in this case, criterion
JFT (∅) should be large. Consequently, when Jrel

FT (B) is close to one, we infer that the domain
B does not enclose the inclusion. In the opposite case, we can reasonably assume that when
Jrel
FT (B) is large, trial domain B encloses inclusion D. As we will see in section 4.2, this is true

in practice only for a full aperture case. This motivates the design of two other criteria.

4.1.2 Absorbing boundary condition criterion

The second criterion is derived from the use of absorbing boundary conditions. Indeed, the basis
of the method is that the time reversed scattered field uSR satisfies

TRAC(uSR) = 0 (11)

at any point outside the inclusion. In equation (8), this relation is used on the boundary of the
artificial domain B in order to compute vSR. If the domain B encloses inclusion D, uSR and vSR
coincide and thus we have, up to approximation errors both in the absorbing condition and in
the numerical scheme,

TRAC(vSR) = 0 (12)

at any point outside the inclusion. Thus, we introduce a new criterion

JABC(B) :=

∥∥∥∥( ∂

∂t
− c0

∂

∂r

)
vSR

∥∥∥∥
L∞((0,Tf )×Ω\B)∥∥∥∥( ∂

∂t
− c0

∂

∂r

)
uI
∥∥∥∥
L∞((0,Tf )×Ω)

, (13)
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where r is a radial coordinate with the origin at the center of trial domain B. Since this center
is somewhat arbitrary, we have dropped the curvature term which could be too large when the
domain B is small. When trial domain B encloses inclusion D, the criterion JABC(B) should
be small. At the opposite, when part of inclusion D is outside B, JABC should be significantly
larger. As for the previous criterion, we rather define a relative criterion

Jrel
ABC(B) :=

JABC(∅)
JABC(B)

,

where JABC(∅) still denotes the case where there is no trial domain B. Results are shown in
section 4.2.

4.1.3 Cross correlation criterion

This criterion is inspired from reverse time migration techniques, [Cla85]. It consists in cross-
correlating the incident field uI with the time reversed scattered field vSR. In classical applications
of earth imaging, the following integral is computed as a function of ~x ∈ Ω

f(~x) :=

∫ t=Tf

t=0
vSR(Tf − t, ~x)× uI(t, ~x) dt . (14)

The function f images the discontinuities of the propagation speed c(~x), see [Cla85]. In this
paper, we introduce the following related criterion

JCC(B) :=

∥∥∥∫ t=Tf

t=0 vSR(Tf − t, .)× uI(t, .) dt
∥∥∥
L∞(Ω\B)∥∥∥∫ t=Tf

t=0 |uI(t, .)|2 dt
∥∥∥
L∞(Ω)

, (15)

where vSR is the solution to problem. When trial domain B encloses inclusion D, there is no
discontinuity to be imaged in Ω \B and the criterion JCC(B) should be small. At the opposite,
when part of inclusion D is outside B, we note that the function f images this part. So that
JCC should be significantly larger. As for the two previous criteria, we rather define a relative
criterion

Jrel
CC(B) :=

JCC(∅)
JCC(B)

, (16)

where JCC(∅) still denotes the case where there is no trial domain B. Results shown in section 4.2
will prove the robustness and effectiveness of this criterion.

4.2 Test cases : numerical results

In section 4.2.1, we validate and compare the three criteria in the case of one inclusion with
full or partial aperture with noise in the data. We will see that Jrel

FT and Jrel
ABC are the criteria

of choice for the full aperture case. For a partial aperture, the two other criteria Jrel
ABC and

Jrel
CC are effective. We investigate in § 4.2.2 a more realistic test case with a partial aperture

and an unknown number of scatterers. For different geometries of trial domain B, hard, soft or
penetrable inclusions will be studied.
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4.2.1 One inclusion

We consider a soft inclusion D and trial domains B that either enclose or are contained in D
with full or partial aperture as described in section 3. We have four levels of noise from 0% to
30% and various spacings of the receivers from 0 (i.e. a continuous line of receivers) to λ/2,
λ denoting the wavelength of the central frequency of the incident signal. The snapshots are
depicted in figures 3 and 4 and the values of the criteria are given in tables 1 and 2.

For a full aperture case, we give in table 1 the values of the three different criteria first when
trial domain B does not enclose inclusion D (columns three, four and five), then when B encloses
D (columns six, seven and eight). We recall that the relative criteria close to one aims to indicate
that trial domain B does not enclose inclusion D. At the opposite, a significant value of the
relative criteria should indicate that trial domain B encloses inclusion D. In the latter case, the
criterion is large but not infinite. This is due to numerical errors and the fact that the TRAC
is not an exact absorbing boundary condition. In the left part of Table 1 which corresponds to
D * B, all criteria are close to one and are quite insensitive to the spacing of the SRA or to
the level of noise, even for 30% noise. In the right part of Table 1 which corresponds to D ⊂ B,
the third criteria Jrel

CC is not sufficiently discriminating. This is due to the fact that the reverse
time migration method which is the basis of the Jrel

CC is not a good imaging method in the case
of full aperture (contrary to the partial aperture case below). We notice that criteria Jrel

FT and
Jrel
ABC deteriorate with the noise level and the spacing of the SRA. They are discriminating in

all cases even for 30% noise.
The corresponding results for a partial aperture case are given in Table 2. Now, the criterion

Jrel
FT does not work in the sense that in both cases (D * B and D ⊂ B) the criterion is close

to one. As we see in Figure 4, at the final time of the reverse time simulation, the signal is
zero even when domain B does not enclose inclusion D. This is due to the use of an artificial
boundary condition on the external boundary of the domain not equipped with receivers, see
problem (8). This does not occur in the full aperture case where a Dirichlet boundary condition
is imposed on this external boundary due to the presence of receivers. Therefore, we will not
use the criterion Jrel

FT in what follows when we consider only partial aperture examples. The two
other criteria Jrel

ABC and Jrel
CC enable the discriminate between the cases D * B and D ⊂ B. They

are both nearly insensitive to the spacing between the receivers. In addition, the criterion Jrel
CC

is very effective in this partial aperture case since it is particularly insensitive to noise in the data.

4.2.2 One inclusion vs. two inclusions

The aim of this second part is to investigate the ability of the TRAC method to discriminate
a unique inclusion from two distinct close inclusions. This test is inspired by a more realistic
setting. Our intent is to detect one or two iron or plastic mines in a background medium made
of sand. The physical equation we use is a scalar wave equation derived from the Maxwell
equations, as proposed in [AIL05]

ε
∂2u

∂t2
− ∇ ·

(
1

µ
∇u
)

= 0 , (17)

where ε denotes the electric permittivity and µ the magnetic permeability so that εµc2 = 1.
Both of these parameters can be expressed with an absolute value multiplied by a relative value

ε = ε0εr
µ = µ0µr ,
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SRA D * B D ⊂ B
Spacing Noise level F.T. A.B.C. C.C. F.T. A.B.C. C.C.

λ

2

0% 2.24 1.77 1.27 34.94 10.51 1.75
10% 2.23 1.79 1.27 21.04 7.72 1.74
20% 2.24 1.80 1.26 14.73 5.25 1.68
30% 2.17 1.83 1.26 9.12 3.85 1.63

λ

3

0% 1.95 1.62 1.42 18.00 10.11 2.67
10% 1.95 1.60 1.42 16.97 6.55 2.66
20% 1.95 1.62 1.42 14.34 5.29 2.67
30% 1.95 1.64 1.41 10.87 3.63 2.52

λ

4

0% 1.97 1.67 1.46 51.77 9.67 2.94
10% 1.93 1.64 1.46 40.05 8.30 2.95
20% 1.98 1.70 1.45 13.50 4.69 2.91
30% 1.93 1.61 1.42 6.79 4.76 2.95

0

0% 1.84 1.67 1.58 68.25 9.31 3.09
10% 1.85 1.66 1.58 29.67 7.43 3.09
20% 1.90 1.77 1.59 13.75 5.75 3.11
30% 1.75 1.62 1.59 5.06 3.71 3.06

Table 1: Comparison of the three relative criteria for a SRA with a full aperture, in the case of
D * B and D ⊂ B, for different level of noise and different spacing between the receivers in the
SRA.

SRA D * B D ⊂ B
Spacing Noise level F.T. A.B.C. C.C. F.T. A.B.C. C.C.

λ

2

0% 0.76 2.97 1.07 1.26 5.66 4.99
10% 1.01 2.89 1.07 1.85 5.20 4.97
20% 1.15 2.61 1.06 0.90 3.36 4.94
30% 1.30 2.02 1.06 1.71 2.66 5.44

λ

3

0% 0.99 2.89 1.01 1.73 11.06 6.88
10% 1.08 2.73 1.02 1.01 7.21 7.03
20% 1.78 2.76 1.03 1.55 5.70 7.11
30% 1.58 2.34 1.02 1.38 4.14 6.71

λ

4

0% 1.14 2.96 0.98 2.02 13.13 7.40
10% 1.52 2.62 0.97 1.26 8.38 7.29
20% 1.77 2.73 0.97 2.09 5.50 7.35
30% 1.38 2.36 0.99 1.17 4.28 7.62

0

0% 1.16 3.13 0.97 1.90 13.42 7.53
10% 0.94 2.78 0.98 1.05 10.65 7.50
20% 0.97 2.98 0.97 1.66 4.92 7.47
30% 2.62 1.92 0.95 2.95 3.98 7.34

Table 2: Comparison of the three relative criteria for a SRA with a partial aperture, in the case
of D * B and D ⊂ B, for different level of noise and different spacing between the receivers in
the SRA.
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Figure 5: Geometric configuration for two distinct inclusions (left) and a unique inclusion (right).
The electromagnetic constants of the inclusion are εir and µir.

where ε0 and µ0 are the electromagnetic constants of the vacuum

ε0 =
1

36π
10−9 F/m ' 8.85 10−12 F/m

µ0 = 4π10−7 kg.m/(A.s)2 ' 12.57 10−7 kg.m/(A.s)2 .

As for the background and the mines, we consider parameters chosen as follows

sand iron mine plastic mine

εr 3 1 1.5

µr 1 10, 000 1

Globally the iron mine acts like a “hard” inclusion, with a velocity ratio

ciron

csand
=

1√
10000

1√
3

=

√
3

10000
∼ 0.017 << 1 ,

whereas the plastic mines are penetrable inclusions with a ratio velocity close to 1

cplastic

csand
=

1√
1.5
1√
3

=

√
3

1.5
=
√

2 ∼ 1.41 .

The geometric configuration is depicted on Figure 5. The source is located at about 10λ from
the center of the inclusions. Following [FW02], the frequency of the signal is 5 GHz. The
length of the SRA is 5.65λ and the spacing between the receivers is λ/4, i.e. we have 23
receivers. We study the case of quite far apart inclusions corresponding to d = 3λ/2 and close
inclusions corresponding to d = λ/2, where d is the distance between the inclusions. For both
iron and plastic mines, we aim to distinguish two inclusions (D := D1 ∪D2) from one inclusion
(D := D1 ∪ D2 ∪ D3), see Figure 5. In the following paragraphs, we first consider iron mines
and then plastic mines.
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Figure 6: Imaging function (14) for distant iron mines, d = 3λ/2. Left column: B made of two
connected components. Right column: B = ∅.

Figure 7: Imaging function (14) for close iron mines, d = λ/2. Left column: B made of two
connected components. Right column: B = ∅.
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Iron mines On Figure 6, we plot the values of the function f defined in equation (14) for
d = 3λ/2. The first row corresponds to two distinct inclusions whereas the second row deals
with a unique inclusion. The right column corresponds to the classical case where B = ∅. In the
left column, we use a trial domain B made of two connected components. When there is no trial
domain, the cross-correlation function f images decently the illuminated edges of the inclusions.
Pictures on the left column illustrate the principle of the TRAC method. As expected, when
trial domain B encloses the inclusions (top left picture), there is nearly no image. Otherwise,
the illuminated edge of the part of the inclusion which is not embedded in B is correctly imaged
(bottom left picture). Thus we are able to distinguish between one inclusion and two close ones,
see below a quantitative analysis.

Figure 7 represents the same configuration but for a smaller d equals to λ/2. When there is
no trial domain (right column), the imaging function f is not able to distinguish two inclusions
(top right) from one inclusion (bottom right), due to the proximity of the inclusions. On the
contrary when trial domain B encloses the inclusions (top left), the function f is significantly
smaller than in the case where B leaves part of the inclusion (part of D3) on the outside (bottom
left picture). Note that due to the proximity of the inclusions, we have used trial domains made
of two ellipses.

From a more quantitative point of view, we give in Tables 3 and 4 the values of the criteria
Jrel
ABC and Jrel

CC for various levels of noise and trial domains B. In the first four rows of the tables,
trial domain B is an ellipse that encloses inclusion D. In the four middle rows of the tables, D2

is outside trial domain B. In the last four rows, the trial domain is made of two ellipses that
contain respectively the two inclusions D1 and D2 but not D3 in the case of a unique inclusion.
In the latter case, we cannot uniquely define an origin to the trial domain. Consequently we
cannot use the notion of radial derivative at any point in the computational domain and the
criterion JABC is not clearly defined. Then, we put crosses in the tables when trial domain B is
not simply connected. As in section 4.2.1, we give the values of the relative criteria Jrel

ABC and
Jrel
CC . Recall that a relative criterion close to one aims to indicate that trial domain B does not

enclose inclusion D. At the opposite, a significant value of the relative criterion should indicate
that trial domain B encloses inclusion D. For distant mines (see Table 3), both criteria work as
expected, the criterion Jrel

CC having the advantage to be reliable in all situations. It asserts that
the TRAC method is able to distinguish a simply connected inclusion from an inclusion made of
two connected components. When the distance d is smaller (d = λ/2, see Table 4), the results
are similar. Nevertheless when the trial domain leaves part of the inclusion outside, the values
in the bottom right of Table 4 indicate that it is more difficult but still possible to distinguish
one inclusion from two close inclusions.

Plastic mines We now consider plastic mines where the reflectivity of the inclusions is small.
Figures 8 and 9 are arranged as Figures 6 and 7 respectively. Let us first look at distant mines,
see Figure 8. When there is no trial domain, the cross-correlation function f images decently
the edges of the inclusions. The main difference with the iron mines is that the inclusions
being penetrable we also image the back part of the inclusions. Pictures on the left column
illustrate the principle of the TRAC method. When trial domain B encloses the inclusions (top
left picture), there is no significant image. Otherwise, the edges of the part of the inclusion
which is not embedded in B is correctly imaged (bottom left picture). Once again, we are able
to distinguish between one inclusion and two close ones. A quantitative analysis will be given
in what follows. We now consider the case of close plastic mines, see Figure 9. Due to the
proximity of the inclusions , it is difficult to distinguish two inclusions (top right) from one
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Jrel
ABC Jrel

CC

Trial Domain Noise level 2 inclusions 1 inclusion 2 inclusions 1 inclusion

D ⊂ Bellipse

0% 8.13 11.86 4.78 7.32
10% 5.89 7.41 4.69 7.35
20% 5.18 4.86 4.76 7.36
30% 3.69 3.72 4.62 7.21

D2 ! B

0% 1.32 1.50 0.96 0.91
10% 1.30 1.49 0.96 0.91
20% 1.35 1.46 0.96 0.90
30% 1.31 1.51 0.96 0.90

D3 ! B

0% × × 5.52 1.07
10% × × 5.48 1.07
20% × × 5.55 1.06
30% × × 5.22 1.06

Table 3: Results of two relative criteria in the case of distant iron mines, d = 3λ/2. Comparison
in distinguishing one inclusion from two inclusions.

Jrel
ABC Jrel

CC

Trial Domain Noise level 2 inclusions 1 inclusion 2 inclusions 1 inclusion

D ⊂ Bellipse

0% 12.88 13.67 8.13 9.49
10% 8.48 11.00 8.22 9.49
20% 6.24 7.88 8.43 9.56
30% 3.80 4.48 8.33 9.57

D2 ! B

0% 1.44 1.76 0.92 0.91
10% 1.41 1.74 0.92 0.91
20% 1.45 1.76 0.92 0.92
30% 1.49 1.77 0.91 0.92

D3 ! B

0% × × 3.36 1.55
10% × × 3.33 1.54
20% × × 3.32 1.55
30% × × 3.34 1.56

Table 4: Results of two relative criteria in the case of close iron mines, d = λ/2. Comparison in
distinguishing one inclusion from two inclusions.
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inclusion (bottom right) in the absence of a trial domain. When trial domain B encloses the
inclusions (top left), function f is visually smaller than in the case where B leaves part of the
inclusion (part of D3) on the outside (bottom left picture).

As for the values of the criteria, they are given in Tables 5 and 6 that are organized like
Tables 3 and 4 respectively. For distant mines (see Table 5), although the inclusions are pene-
trable, the values are very similar to the case of iron mines. Both criteria work as expected, the
criterion Jrel

CC still having the advantage of being reliable in all situations. The TRAC method
is able to distinguish a simply connected penetrable inclusion from one made of two connected
components. When the distance d is smaller (d = λ/2, see Table 6), like for the iron mines it is
more difficult but still possible to distinguish one inclusion from two close inclusions.

Note also that in all these numerical experiments, we have used exactly the same methodology
for both hard and penetrable inclusions. Moreover, from a quantitative point of view we observe
that the values of the criteria are very similar in both cases of iron mines and plastic mines.
This is due to our normalization based on the criteria obtained in the absence of a trial domain
B, see formula (16). If one is interested in differentiating iron mines from plastic mines, it is
sufficient to consider the non relative criterion JCC , equation (15). Indeed, the strength of the
field scattered by an iron mine is much larger than one scattered by a plastic mine. As an
example we report in Table 7 the values of the non relative criterion JCC in the case of close
iron and plastic mines (d = λ/2) for one or two inclusions. The first four rows correspond to
the classical approach B = ∅. One observes a factor of five between the iron and plastic mines
for the same geometric configuration.

Figure 8: Imaging function (14) for distant plastic mines, d = 3λ/2
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Jrel
ABC Jrel

CC

Trial Domain Noise level 2 inclusions 1 inclusion 2 inclusions 1 inclusion

D ⊂ Bellipse

0% 6.29 10.42 4.68 7.00
10% 5.58 7.70 4.68 7.04
20% 4.49 3.41 4.66 7.00
30% 3.28 3.15 4.77 7.33

D2 ! B

0% 1.32 1.46 0.94 0.88
10% 1.32 1.49 0.95 0.88
20% 1.32 1.45 0.93 0.88
30% 1.33 1.43 0.94 0.89

D3 ! B

0% × × 4.88 0.92
10% × × 4.89 0.92
20% × × 4.91 0.93
30% × × 4.54 0.92

Table 5: Results of two relative criteria in the case of distant plastic mines, d = 3λ/2. Compar-
ison in distinguishing one inclusion from two inclusions.

Jrel
ABC Jrel

CC

Trial Domain Noise level 2 inclusions 1 inclusion 2 inclusions 1 inclusion

D ⊂ Bellipse

0% 10.47 11.24 7.82 8.72
10% 8.61 8.16 7.88 8.63
20% 4.99 4.58 7.65 8.36
30% 3.28 3.39 8.09 8.81

D2 ! B

0% 1.46 1.72 0.98 0.99
10% 1.42 1.69 0.97 0.99
20% 1.46 1.73 0.98 0.99
30% 1.49 1.62 0.98 0.99

D3 ! B

0% × × 3.25 1.70
10% × × 3.20 1.71
20% × × 3.27 1.68
30% × × 3.25 1.69

Table 6: Results of two relative criteria in the case of close plastic mines, d = λ/2. Comparison
in distinguishing one inclusion from two inclusions.
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Figure 9: Imaging function (14) for close plastic mines, d = λ/2

Iron Mines Plastic Mines

Trial Domain Noise level 2 inclusions 1 inclusion 2 inclusions 1 inclusion

B = ∅

0% 31.67 33.24 5.70 6.85
10% 31.85 33.23 5.68 6.85
20% 31.70 33.46 5.69 6.83
30% 31.67 33.50 5.65 6.82

D ⊂ Bellipse

0% 3.89 3.50 0.73 0.79
10% 3.87 3.50 0.72 0.79
20% 3.76 3.50 0.74 0.82
30% 3.80 3.50 0.70 0.77

D2 ! B

0% 34.41 36.42 5.80 6.94
10% 34.50 36.42 5.83 6.90
20% 34.45 36.42 5.79 6.90
30% 34.88 36.42 5.76 6.89

D3 ! B

0% 9.44 21.49 1.75 4.03
10% 9.56 21.52 1.77 4.01
20% 9.55 21.55 1.74 4.07
30% 9.47 21.42 1.74 4.03

Table 7: Non relative criterion JCC (equation (15)) for close iron vs. plastic mines. Comparison
in distinguishing one inclusion from two inclusions for various trial domains.

5 Conclusion

This paper is a follow up of [AKNT10, AKNT] in which was introduced the TRAC (Time-
Reversed Absorbing Conditions) method. It enables one to “recreate the past” without knowing
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the location and the properties of the inclusion which diffracted the signals that are back-
propagated. This was made possible by removing a small region surrounding the scattering
inclusion. This has two applications in inverse problems: the reduction of the size of the compu-
tational domain and the determination of the location of an unknown inclusion from boundary
measurements. In this paper we extend the method by considering partial or full aperture for
discrete receivers with various spacing. This requires the introduction of two new criteria JABC

and JCC . In particular we apply the TRAC method to the differentiation between one inclusion
and two close ones. We stress that in contrast to many methods in inverse problems, our method
does not rely on any a priori knowledge of the physical properties of the inclusion. Hard, soft
and penetrable inclusions are treated in the same way. Moreover, the method has proved to be
quite insensitive with respect to noise in the data.
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