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Abstract: In this paper, methods that aim to simulate spatial distributions of 
Land Management Practices (LMP) at high spatial resolution and over large 
extents as required by spatially distributed environmental modelling are 
presented. The principle of theses methods, in the scope of geostatistical 
conditional simulation methods, is to simulate a set of equally probable 
spatial patterns that all respect the knowledge that have been collected on 
the landscape features, i.e;  spatial laws and data (descriptive approach); 
and/or the driven factors of the studied LMP (factorial approach). The 
differences between the simulated spatial patterns can be seen as a 
representation of the spatial uncertainties. To illustrate these methods, two 
examples of simulations of spatial patterns of LMP are presented. They 
involved specific methodological developments and can be considered as 
representative of descriptive and factorial mapping approaches 
respectively: i) the simulation of ditch networks reconstructed from an 
incomplete set of reaches observed by remote sensing and ii) the spatial 
simulation of weed control practices at plot scale from a set of driven and 
correlated factors. 

Keywords: Spatial conditional simulation; uncertainties; drainage network; 
weed control 

Introduction 
Land Management practices (LMP) in cultivated landscapes result from the constant efforts 
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of farmers to adapt landscapes to the constraints of agricultural production. These practices 
include both landscape objects creation or cancellation (ditch creation or cancellation for 
instance) as well as landscape object properties management (weed control by tilllage on 
vine alleys for instance). LMP have a strong impact on many processes occuring in 
landscapes. Evidences of these impacts have been observed e.g. for run-off (Leonard and 
Andrieux, 1998; Hébrard et al., 2006), soil erosion (Fryirs et al., 2007), biodiversity 
dynamics (Burel and Baudry, 2006) , and micrometeorology (Courault et al., 2007). 
These impacts are often observed as the local level, e.g. the increase of soil infiltration after 
a tillage that diminish run off at the field level or the presence of a hedge that maintain local 
biodiversity. However for a landscape management point of view, it seems more important 
to understand the impact that spatial patterns of land management practices may have on 
environmental resources at the territory level since this level is relevant to undertake and 
assess environmental policies. In several domains, spatially distributed environmental 
models have been proposed to address this problem, e.g. MHYDAS in hydrology 
(Tiemeyer et al, 2007) or ecology (Allen et al., 2001). However the use of such models is 
often hampered by the lack of available maps of LMP. It is therefore important to develop 
methods to map these practices at suitable spatial resolution and extents. 
When spatially distributed environmental models aim to explore landscape behaviour 
regarding future LMP spatial distribution scenarii, the use LMP spatial dynamics based on 
spatio-temporal laws and dynamic interactions, are required. Systemic landscape modelling 
frameworks can achieve this goal (Bousquet and Lepage, 2005; Jacewicz P. and Pausas, 
2003). But, when spatially distributed environmental model use is more dedicated to assess 
the impacts of a landscape configuration at a given and present time on a real catchment or 
territory, which is the framework of the this paper, the aim of LMP mapping is more an 
interpolation problem, without interaction consideration, i.e. to be as accurate as possible in 
reference to the “true” spatial distribution. 
For this latter case, available mapping methods of LMP can be descriptive, i.e. based only 
on LMP or correlated variables observations, or based on factors driving the LMP spatial 
distribution (Verburg et al. 1999). The descriptive mapping methods use observation tools, 
mainly remote sensing ones. Example of such methods are frequent in the literature (e.g. 
Briclemeyer et al., 2006). They suppose that the studied practice can be associated with an 
observable landscape feature such as bare soil fields after tillage that can be mapped with a 
vegetation index derived from a remote sensing image (South et al., 2004) or ditches 
corresponding to a surface discontinuity mapped from high resolution DEM (Bailly et al., 
2008). Factorial methods are based on a prior analysis of the factors that may influence the 
farmer’s land management decisions or that are correlated to them. Here again, mapping is 
only possible if these factors can be associated with observable landscape features or with 
any other available spatial information (such as farm characteristics for example). 
However, in both cases, the uncertainty and the incompleteness of the available spatial 
information that is used for mapping the landscape features or the decisions factors are 
strongly limiting and must therefore be taken into account since it could impact confidence 
in environmental models outputs. A way to proceed is to decrease the spatial resolution of 
the delivered map which the risk of removing the short range spatial variability that have a 
strong impact on the studied landscape process.  
In this paper we propose an alternative inspired from the stochastic conditional spatial 
simulations methods that “attempts to simulate the real conditions rather than simulate their 
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measured variabilities” (Lantuejoul 2002). The principle is to simulate a set of equally 
possible spatial patterns that all respect the knowledge that have been collected on the 
location of the landscape features and/or the driven/correlated factors of the studied LMP. 
The differences between the simulated spatial patterns can be seen as a representation of the 
uncertainty. Assessing uncertainty about LMP mapping is “not a goal per se, rather it is a 
preliminary step to evaluate the risk involved in any decision-making process or to 
investigate how mapping errors propagate through complex functions” in environmental 
models (Goovaerts 2001). In essence, these simulated spatial patterns can be defined as 
“semi-virtual”, i.e. simulations conditioned by data (data assimilation) or driven factors to 
re-enforce the proximity between simulated spatial patterns and real conditions. In the 
following, we illustrate the semi virtual simulations of spatial patterns of LMP with two 
already published examples that can be considered as representative of descriptive and 
factorial mapping approaches respectively, i) the mapping of a ditches network from an 
incomplete set of reaches observed by remote sensing and ii) the mapping of weed control 
practices from a set of predicting factors. 

1.Conditioning the spatial simulation of LMP by 
data: example of ditches networks 

1.1. Ditches network simulation algorithm 
In this first example (Bailly, 2007), we attempt to simulate LMP corresponding to artificial 
drainage network implementation within a given catchment, i.e. a known outlet. The 
simulation is constrained both by a spatial model representing the ditches network and data.  
The spatial model on networks is a combination of simple spatial laws considering that the 
network is 1)a directed tree graph with direction governed by topography and 2)a sub-graph 
of the plot boundaries lattice. Regarding constraints coming from data, simulations run 1) 
within the lattice of plot boundaries directed by elevation and 2) path through a set of 
known but unconnected reaches of the network (data assimilation). These data can be seen 
as data that condition the whole network simulation connecting the known reaches. 
To perform the conditional simulation of ditches network, we chose to develop a stochastic  
algorithm generating networks corresponding to directed tree structures as sub-graphs of 
the directed plot lattice. This algorithm is based on : 

• A network initialisation corresponding to the tree including the set of known 
reaches connected one to each other up to outlet. 

• An altimetrical noise parameter related to DTM1 noise determining which edges 
of the lattice are surely directed and those are not when altimetrical difference 
between terminal nodes of the edge is lower than the parameter. In that case, edges 
are duplicated in lattice with opposite directions. 

• A pruning or branching iterative random process connecting the known reaches 
within the directed plot boundaries lattice up to converge on a descriptive criteria 
(sources distribution criteria, drainage density criteria, or known reach connection 
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criteria) using Greedy algorithm (Cormen et al., 2009) or simulated annealing 
algorithm (Kirkpatrick et al., 1983). Branching process is realized through random 
upstream-downstream walks within the plot lattice starting from a randomly 
sampled edge. Pruning process is simply based on the pruning of the part of the 
network connected upstream a randomly sampled edge of the lattice. 

Uncertainties in networks mapping are simulated through a set of equi-probable generation 
of networks (Figure 2).  

1.2. Case study and results 
This algorithm was applied on a 2 km² vineyard catchment located in the Peyne catchment 
(Languedoc –France). On this catchment, ditches detected from a remote sensing process 
(Bailly et al., 2008) corresponding to about 60% of the cumulated length of the network  
were used to condition the simulation. The criteria used for simulation convergence was the 
respect of sources distribution in altitude and Greedy algorithm was used. 
When comparing simulated networks patterns to the actual network (Figure 1), simulated 
networks appear realistic with small biases on descriptive criteria of the networks (Figure 
2): geometrical (a) and topographical criteria (b) (Vannimenus and Viennot 2005). 
Results on that network example show that conditioning spatial simulation with data (here 
from remote sensing) allows to obtain quite realistic simulations even when spatial 
sampling rate of data is low. 

A  B  

C  D  
Figure 1. Three conditional simulations (B-C-D) of the extended Roujan Catchment 

drainage network compared to the actual drainage network (A). Networks are depicted 
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with line width proportional to an upstream-downstream order on a lighted 1 m DTM 

  

a b 
Figure 2. Histogram of cumulated lengths of 100 simulated networks (a) centered on the 

actual cumulated length (red line)  and boxplots of ramification matrix (matrix of Horton-
Strahler bi-orders w on junctions) of the same  100 simulated networks (b) centered on the 

actual ramification matrix length (blue lines)  

2. Conditioning the spatial simulation of LMP by 
spatially structured driving factors: examples of weed 
control practices on vine plots 
In this second example, we aimed to identify a set of spatially explicit factors for simulating 
the spatial distribution of weed control practices (WCP) in the Peyne vine growing 
catchment at the plot resolution (Biarnès et al., 2009). On the basis of interviews of 63 
winegrowers, a spatially explicit database was developed that included 1007 vine plots and 
information regarding practices and potential explanatory variables. In order to further 
extend the use of identified explanatory variables to simulate the spatial distribution of 
WCP throughout the whole Peyne catchment, we only collected variables that (1) we 
assumed to be potentially explanatory of the WCP and (2) which were directly (or assumed 
to be indirectly) available at plot scale from digital regional maps, very high spatial 
resolution images from French Geographic Mapping Agency (IGN) and national databases.  
Four practices were differentiated according to the methods used (chemical weed control, 
shallow tillage, grass cover or a combination) that determine the intensity of herbicide use 
and potential surface run-off. Three groups of explanatory variables corresponding to three 
assumed levels of spatial organisation of WCP (the plot, the farm and the local government 
area (LGA)) were tested and compared. In the first step, selection of factors within each 
group and various combination of these groups was performed using a self-developed and 
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robust extension of the aggregated classification and regression tree methods.  

2.1. Factor analysis method and simulation algorithm 
The developed method is a classification method based on classification tree CART method 
(Breiman 1984), extended in a way to avoid spatial sampling effects and to limit over-
fitting. For that purpose, it uses randomisation within the set of samples for calibration and 
pruning sets building several tree within a forest. The specificity of the proposed method is 
to perform a frequency analysis of splitting rules for each node of the tree in a hierarchical  
manner starting from the root. For each node, the more frequent rule is kept. At the end of 
the process, it leads to a single frequent tree which provides a single and easily interpretable 
model between factors and WCP. In the second step, the performance of the selected 
factors for reproducing the spatial observed repartition of practices at long range was 
evaluated by a stochastic use of the frequent tree allowed by the probability distributions of 
practices that are the output of the tree. The stochastic use of the frequent tree leads to a set 
of equi-probable spatial distributions of practices at the plot resolution (figure 3) and 
provide an explicit view of the uncertainty associated with the discrimination of the 
practices and the simulation of their spatial distribution test.  

2.2. Case study and results 
Concerning the case study, the test of the significance in the difference of dissimilarities 
(dissimilarity between the simulated and the observed WCP distributions) obtained with the 
three sets of explanatory variables indicate that the combination of the three groups of 
variables leads to the highest-performing simulations of the spatial distribution of WCP. 
Nevertheless, the farm holding variables provided little additional spatial information, 
which supports the idea that they may be omitted without significantly impacting the final 
results.  
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Figure 3. 2 simulations of 
vines plot weed control 

practices spatial 
distribution over the Peyne 
Catchment (34) compared 
to the actual distribution.
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Conclusion 
The two above-presented semi virtual simulations of spatial patterns of LMP illustrate how 
it is possible to conciliate the two apparently contradictory objectives that are required to 
relate LMP and their impact on environmental resources: i) describing spatial patterns with 
spatial resolutions that are fine enough to explicitly represent the landscape features that are 
locally impacted by a given technical action of the farmer while ii) covering spatial extents 
large enough for observing the cumulative impacts of these actions and for taking into 
account any collective strategies for enhancing/ limiting these impacts. For these 
objectives, a realistic and explicit representation of the uncertainty due to data limitations is 
a key problem for which we proposed an approach based on conditional simulations. 
Beyond the two examples that were presented in this paper, the method can be extended to 
many others landscape management practices for which observations of these 
corresponding features or knowledge of causal factors can be available. As shown with the 
two presented examples, the mapping algorithms can differ strongly from a LMP to another 
while producing the same outputs. Furthermore some methodological points will need to be 
addressed in the future researches: 

(1) Validation strategies of semi-virtual simulations outputs need to be refined. 
Ponctual validations that are of current use in classical tests of mapping 
procedures are no longer valid when the goal is to adequately represent spatial 
patterns and not local evidences. This is all the more true when addressing non 
continuous geographical support like tree structures or lattice data for which 
pattern comparisons metrics are to be found. Beside, validations should not only 
measure the accuracy of the semi-virtual simulations per se, but also the added 
value on environmental models outputs. This means to develop error propagation 
studies and sensibility analyses of environmental models. For the latter, methods 
for models using maps as input is still an open question. 

(2) Although the two examples presented are both descriptive and factorial mapping 
approaches, they use different constraints, data or factors, for simulation. These 
two ways should be associated in the future to improve the accuracy of 
simulations. The latter could also include expert-knowledge based rules that might 
not necessarily derived from local observations as in the presented examples. This 
would require adequate representations of the uncertainty associated with expert 
judgements, bridging gaps with fuzzy logic approaches classically used to perform 
this (e.g. Cazemier et al, 2001) and probabilistic techniques as the one presented in 
this paper. 

(3) The presented examples produce simulations that have no time dimension which 
limits their use to environmental assessment at a given time (e.g.  the impact of a 
Mediterranean storm event). Although temporal processes introduction could 
already be of interest for landscape simulation at a given time, time dimension, 
using similar conditional approaches, must be introduced in the simulations to deal 
with medium and long term evolution of environmental resources in relation with 
changes in land management practices. 
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