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Introduction

In this paper we investigate the propagation of singularities in a nonlinear parabolic equation with strong absorption when the absorption potential is strongly degenerate following some curve in the (x, t) space. As a very simplified model, we assume that the heat conduction is constant but the absorption of the media depends stronly of the characteristic of the media. More precisely we suppose that the temperature u is governed by the following equation ∂ t u -∆u + h(x, t)u p = 0 in Q T := R N × (0, T ) (

where p > 1 and h ∈ C(Q T ). We suppose that h(x, t) > 0 except when (x, t) belongs to some space-time curve Γ given by Γ = {γ(τ ) := (x(τ ), t(τ

)) : τ ∈ [0, T ]} , (1.2) 
where γ ∈ C 0,1 ([0, 1]) with γ(0) = 0 and t(τ ) > 0 for τ ∈ (0, T ]. If there holds

T 0 B R h(x, t)E q (x, t)dxdt < ∞ (1.3)
we first show that, for any k ≥ 0, there exists a unique solution u k of (1.1) such that u k (., 0) = kδ 0 . Furthermore the mapping k → u k is increasing. Because h is continuous and positive outside Γ, we shall show that the set of solutions {u k } remains locally bounded in Q T \ Γ. Therefore u k ↑ u ∞ and u ∞ is a solution of (1.1) in Q T \ Γ. Then either the singularity of the solution issued from the point (0, 0) can propagate along Γ (at least partially), or it remains localized at (0, 0). More precisely we show Theorem A. Assume γ is C 1 and t ′ (τ ) > 0 for any τ ∈ (0, T ]. The following dichotomy of phenomena occurs (i) either u ∞ (x, t) < ∞ for all (x, t) ∈ Q T , (ii) or there exists τ 0 ∈ (0, T ] such that lim sup (x,t)→(y,s)

u ∞ (x, t) = ∞ ∀(y, s) ∈ Γ, 0 ≤ s ≤ τ 0 .

(1.4)

We first prove that the singularity does not propagate from a point where t(τ ) is decreasing. We prove Theorem B. Assume that γ is C 1 and t ′ (τ ) < 0 for all τ ∈ (τ 0 , T ] for some τ 0 > 0. Then u ∞ remains locally bounded in Q T \ γ((τ 0 , T ]).

Due to this fact we shall assume first that the t variable is increasing along Γ, in such a case we can assume that τ is a function of t and, up to a change of parameter, that τ = t and Γ = {(x(t), t)

: t ∈ [0, T ]} , (1.5) 
where γ ∈ C 0,1 (0, T ] satisfies γ(0) = 0. In order the singularity to propagate along Γ, h must be very flat near this curve Γ. If we define the parabolic distance between (x, t) and Γ by

d P (x, t); Γ) = inf{d P (x, t); (y, s)) : (y, s) ∈ Γ, s ≤ t} where d P (x, t); (y, s) = |x -y| + √ t -s, for t ≥ s and write h(x, t) = e -ℓ(d P (x,t);Γ)) ,
where ℓ is a positive nonincreasing function. In the next result we shows that propagation of singularity along Γ occurs

Theorem C. Assume t → x(t) belongs to W 2,∞ loc [0, ∞) and lim inf t→0 t 2 ℓ(t) > 0. (1.6) Then lim (x,t)→(y,s)) u ∞ (x, t) = ∞ for all (y, s) ∈ Γ.
The last section is devoted to the case where the curve of degeneracy Γ is a straight line contained in the initial plan. We set

d ∞ ((x, t), Γ) = max{ √ t, x ′ } if dist (x, Γ) = x ′ and we write h(x, t) = e -ℓ(d∞(x,t);Γ))
Up to a rotation, we can suppose that Γ is the x 1 axis and denote

x = (x 1 , x ′ ) the component in R × R N -1 .
Then we prove the following

Theorem D. Assume lim inf t→0 t 2 ℓ(t) > 0. (1.7) Then lim (x,t)→(y 1 ,0)) u ∞ (x, t) = ∞ for all y 1 ∈ R.
Even if this model is a very simplified version of the heat propagation in a fissured absorbing media, it gives interesting insight of the propagation phenomenon which can occur. It is also a starting point for studying other type of propagation of singularities in nonlinear diffusion equations. In a forthcoming article we shall consider the case where the degeneracy line is a surface in R N × [0, ∞) with only one contact point with t = 0 at (0, 0).

Preliminaries and basic estimates

Through out this section we assume that

h ∈ C(R N × [0, ∞)) is nonnegative. Since E(x, t)
is a supersolution for (1.1), the following result holds [10, Theorem 6.12] Proposition 2.1 Assume q > 1 and (1.3) holds. Then for any k > 0 there exists a unique

u = u k ∈ C(Q T \ {(0, 0)}) ∩ L 1 (Q T ), such that h|u| q ∈ L 1 (Q T ), satisfying Q T (-u∂ t ζ -∆ζ + h(x, t)|u| q-1 uζ)dx dt = kζ(0, 0) (2.1) for all ζ ∈ C 2,1 (Q T ) which vanishes at t = T . More generaly, if µ ∈ M(R N ) and ν ∈ M(R N × (0, T )) are two positive bounded measures, the solution v = v µ,ν of ∂ t v -∆v = ν in R N × [0, T ) v(., 0) = µ in R N , (2.2) 
is expressed by

v µ,ν (x, t) = 1 (4πt) N/2 R N e -4|x-y| 2 /4t dµ(y) + t 0 1 (4π(t -s)) N/2 R N
e -4|x-y| 2 /4(t-s) dν(y)ds.

(2.3) Actually, by direct adaptation to the parabolic case of [START_REF] Véron | Singularities of Second Order Quasilinear Equations[END_REF]Theorem 4.2], combined with [START_REF] Véron | Singularities of Second Order Quasilinear Equations[END_REF]Theorem 6.12], one can proves that, for any bounded Radon measures µ on R N ×(0, ∞) and ν on R N which satisfy

Q T v q µs,νs h(x, t)dxdt < ∞ (2.4)
where µ s and ν s are the singular parts (with respect to respective Lebesgue measures) µ and ν respectively, there exists a unique weak solution u to problem

∂ t u -∆u + h(t, x)|u| q-1 u = ν in R N × [0, T ) u(., 0) = µ in R N , (2.5) 
The next result is an adaptation of Brezis-Friedman a priori estimate [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial coinditions[END_REF].

Proposition 2.2 Let Q = Q r,a t 0 ,t 1 := B r (a) × (t 0 , t 1 ) for some a ∈ R N , t 1 > t 0 ≥ 0 and r > 0 and assume β = min{h(x, t) : (x, t) ∈ Q} > 0. Then any solution of (1.1) 

in Q satisfies |u(x, t)| ≤ C β 1/(q-1) 1 t -t 0 + 1 (r -|x -a|) 2 1/(q-1) ∀(x, t) ∈ Q, (2.6) 
for some C = C(N, q) > 0.

Proof. The maximal solution of the parabolic equation y ′ + βy q = 0 on 0, ∞) is expressed by

y M (t) = 1 β(q -1)t 1/(q-1)
.

(2.7)

By Keller-Osserman estimate, the maximal solution v M of -∆v + β|u| q-1 u = 0 in B r , satisfies

v M (x) ≤ C 1 β(r -|x|) 2 1/(q-1) (2.8) in B r . Since y M (t -t 0 ) + v M (x -a
) is a supersolution of (1.1) in Q which blows up on the parabolic boundary, an easy approxition argument (just replacing r by {r n } ↑ r and t 0 by {t n } ↓ t 0 ) leads us to (2.6).

Proposition 2.3 Let 0 < r 0 < r 1 , 0 < t 0 < t 1 and Θ := Θ r 0 ,r 1 ,a t 0 ,t 1 := Q r 1 ,a t 0 ,t 1 \ Q r 0 ,
a t 0 ,t 1 for some a ∈ R N and assume β = min{h(x, t) : (x, t) ∈ Θ} > 0. Then any solution of (1.1 ) 

in Q r 1 ,a t 0 ,t 1 such that |u(x, t 0 )| ≤ µ for x ∈ B r 1 (a) satisfies |u(x, t 1 )| ≤ µ + C (β(r 1 -r 0 ) 2 ) 1/(q-1)
∀x ∈ B r 0 (a), (2.9)

for some C = C(N, q) > 0.

Proof. Let b ∈ R N such that |b -a| = r 0 +r 1 2 and v M the maximal solution of -∆v

+ β|u| q-1 u = 0 in B r 1 -r 0 2 (b). Then v M (x) ≤ C β r 1 -r 0 2 -|x -b| 2/(q-1) ∀x ∈ B r 1 -r 0 2 (b). Since v M + µ is a super solution of (1.1 ) in Q r 1 -r 0 2
,b t 0 ,t 1 which dominates u at t = t 0 and for

|x -b| = r 1 -r 0 2 , it follows that u(x, t) ≤ v M (x, t) + µ in Q r 1 -r 0 2 ,b t 0 ,t 1 . In particular, if x = b, we get u(b, t) ≤ µ + C β r 1 -r 0 2 2/(q-1)
This estimate is valid for any b ∈ R N with |b -a| = r 0 +r 1 2 . Since u is a subsolution of the heat equation in Q r 0 ,a t 0 ,t 1 , (2.9) follows by the maximum principle.

The previous estimates are based upon constructions of supersolutions in cylinders. In the next result we construct estimates in tubular neighborhood of Γ. If t(τ ) is increasing, we can take τ = t and

Γ = γ([0, T ]) := {(x(t), t) : t ∈ [0, T ]} (2.10)
Proposition 2.4 Assume Γ is C 1 and parametrized by t as in (2.10), and for ǫ > 0 denote

T Γ T 0 s := {(x, t) : 0 ≤ t ≤ T, |x -x(t)| < s}. For 1 ≥ r 1 > r 0 > 0 we set η = min h(x, t) : (x, t) ∈ T Γ T 0 r 1 \ T Γ T 0 r 0 . Then there exists a constant C depending on c := max{|x ′ (t)| : 0 ≤ t ≤ T } such that if u(x, 0) ≤ m + C 2 (r 1 -r 0 ) 2 q-1 ∀x ∈ B r 1 +r 0 2 (x(0)), (2.11) then u(x, t) ≤ m q-1 1 + η(q -1)m q-1 t 1 q-1 + C 2 (r 1 -r 0 ) 2 q-1 ∀t ∈ [0, T ] and x ∈ B r 1 +r 0 2 (x(t)) (2.12) Proof. Consider the change of space variable x = y + x(t) and u(x, t) = v(y, t). Then v satisfies ∂ t v -∆v + x ′ (t), ∇v + h(y + x(t), t)v q = 0 in Q r 0 ,r 1 0,t(T ) .
(2.13)

Thus ∂ t v -∆v -c|∇v| + ηv q ≤ 0 in Q r 0 ,r 1 0,t(T ) .
In the ball B r 1 -r 0 2 (z) where |z| = r 1 +r 0 2

It is standard easy to construct a radial function

ψ satisfying -∆ψ -c|∇ψ| + ηψ q ≥ 0 in B r 1 -r 0 2 (z) (2.14)
under the form

ψ(y) = C ρ 2 q-1 (ρ 2 -|y -z| 2 ) 2 q-1 where ρ = r 1 -r 0 2 and C = C(N, q, c, η). Therefore ψ(z) = C 1 ρ 2 q-1 = C 2 (r 1 -r 0 ) 2 q-1 The solution φ m = φ of φ ′ + ηφ q = 0 on (0, T ) φ(0) = m > 0 (2.15)
is expressed by

φ m (t) = m q-1 1 + η(q -1)m q-1 t 1 q-1 .
Consequently, the function φ m (t) + ψ(y) is a supersolution for (2.13) in Q r 0 ,r 1 0,t(T ) which domintates v at t = 0 and on the lateral boundary. Therefore it is larger than v and in particular v(z, t) ≤ φ m (t) + ψ(z).

(2.16)

Consequently

u(x, t) ≤ φ m (t) + ψ(z) ∀t ∈ (0, T ) and |x -x(t)| = r 1 + r 0 2 .
(2.17)

We derive (2.12) by the maximum principle.

Geometric obstruction to propagation

We assume that h vanishes on a continuous curve

Γ ⊂ R N × [0, T ) defined by parametri- sation Γ = {γ(t) := (x(τ ), t(τ ) : τ ∈ [0, T ]} (3.1)
issued from (0, 0) (i.e. x(0), t(0) = (0, 0) with t(τ ) > 0 if τ ∈ (0, T ). and τ → γ(τ ) is Lipschitz with no self intersection, which means that τ → γ(τ ) is one to one.

Proof of Theorem A. Since t ′ is continuous and increasing, we apply Proposition 2.4 with 0 replaced by τ 0 , we set t 0 = t(τ 0 ) and write Γ under the form (2.10). If we assume that lim sup

(x,t)→(x(t 0 ),t 0 ) u(x, t) < ∞,
there exists r 1 > 0 and µ > 0 such that u(x, t 0 ) ≤ µ if x ∈ B r 1 (x(t 0 )). Then, for 0 < r 0 < r 1 there exists m > 0 such that (2.10) is verified. Thus (2.13) holds. This implies that the blow-up set of u along Γ is empty if t ≥ t 0 .

Proof of Theorem B. The proof is based upon the same ideas than in Theorem A above except that we only study the part of Γ between τ 0 and T , where t ′ (τ ) < 0. Let t 0 = t(τ 0 ) and t * = t(T ). We parametrized Γ by t between t * and t 0 , thus

γ([τ 0 , T ]) = {(t, x(t)) : t * ≤ t ≤ t 0 }.
For s > 0 and t * < t ′ ≤ t 0 , we set T

Γ t ′ t * s := {(x, t) : t * ≤ t ≤ t 0 , |x-x(t)| < s}, then, for t * < t 1 < t 0 , there exists r 1 > 0 and τ 1 ∈ (τ 0 , T ) such that t 1 = t(τ 1 ) and Γ ∩ T Γ t 1 t * r 1 = γ([τ 1 , T ]). If t * = 0, then u(x, t * ) = 0 for |x -x(t * )| ≤ r 1 . If t * > 0, then h(x, t) > 0 in the cylinder Q r 1 ,x(t * ) 0,t * , thus there exists β > 0 such that inf h(x, t) : (x, t) ∈ Q r 1 ,x(t * ) 0, t * 2 = β. Up to replacing r 1 by some r ′ 1 > r 1 such that Γ ∩ Q r 1 ,x(t * ) 0, t * all x ∈ B r 1 (x(t * )) from Proposition 2.2. In both cases u ∞ (x, t * ) is bounded in B r 1 (x(t * )).
Replacing (0, T ) by (t * , t 1 )) in Proposition 2.4, it follows that u ∞ remains bounded in

T Γ t 1 t * r 1 +r 0 2
for some 0 < r 0 < r 1 . Since t 1 < t 0 is arbitrary and u ∞ is locally bounded in Q T \ Γ, the proof follows.

In the next case the monotonicity of τ → t(τ ) is replaced by a box-assumption.

Proposition 3.1 Assume that γ is continuous and there exists a ∈ R N , r 0 > 0 and

τ 0 ∈ (0, T ) such that t(T ) ≤ t(τ 0 ) and γ([τ 0 , T ]) ⊂ B r 0 (a) × [t(T ), t(τ 0 )]. Then u ∞ is bounded in B r 0 (a) × [t(T ), t(τ 0 )].
Proof. There exist r ′ 0 < r 0 and β > 0 such that γ([τ 0 , T ]) ⊂ B r ′ 0 (a) × [t(T ), t(τ 0 )] and min h(x, t) : (x, t) ∈ Θ r ′ 0 ,r 0 t(T ),t(τ 0 ) = β. Therefore the conclusion follows from Proposition 2.3.

In the next case we show that non-propagation of singularities may occur even if τ → t(τ ) is increasing after some τ 0 , provided there is a local maximum in (0, τ 0 ). We put

Γ τ 0 = γ([0, τ 0 ]) Theorem 3.2 Let γ be C 1 and γ ′ (τ ) = 0 on [0, T ]. Assume there exist τ 0 > 0, a ∈ R N and r > 0 such that t(τ ) ≤ t(τ 0 ) on [0, τ 0 ], τ → t(τ ) is decreasing on (τ 0 , τ 0 + δ) for some δ > 0, γ((τ 0 , T ]) ⊂ Q 0,∞ r,a , Γ τ 0 ∩ Q 0,∞ r,a = {γ(τ 0 )} and for any τ ∈ (τ 0 , T ], |x(τ ) -a| < r. Then u ∞ is locally bounded in Q \ Γ τ 0 , where Γ τ 0 := γ([0, τ 0 ]).
Proof. Since t(τ ) is decreasing on (τ 0 , τ 0 + δ), for any τ 1 ∈ (τ 0 , τ 0 + δ), the set of τ ∈ (τ 1 , T ] such that t(σ) < t(τ 1 ) for all σ ∈ (τ 1 , τ ) is not empty. Its upper bound τ * 1 is less or equal to T and t(τ * 1 ) = min{t(τ 1 ), t(T )}. If lim τ 1 →τ 0 t(τ * 1 ) = t(T ), then t(τ 0 ) = t(T ), the box-assumption holds and the conclusion follows from Proposition 3.1. If t(T ) > t(τ 0 ), then t(τ 1 ) = t(τ * 1 ) < t(T ) for any τ 1 ∈ (τ 0 , τ 0 + δ). Since lim τ 1 →τ 0 t(τ 1 ) = t(τ 0 ) and γ is continuous with γ((τ 0 , T ]) ⊂ Q 0,∞ r,a , there some fixed constants λ > 0 and ρ > 0 such that x(τ ) ∈ B ρ (x(τ 1 )), for any τ ∈ [τ 1 , T ] verifying t(τ ) ≤ t(τ 1 ) + λ. This means that the part of Γ starting from γ(τ 1 ) for which t(τ ) belongs to (t(τ 1 ), t(τ 1 ) + λ) remains in B ρ (x(τ 1 )). Moreover we can assume that t(τ 1 )+λ > t(τ 0 ). By restricting ρ, we can assume that B ρ (x(τ 1 )) ⊂ B r ′ (a). Since u k (x, t(τ 1 ) is uniformly bounded when x ∈ B ρ (x(τ 1 )), it follows from Proposition 2.3 that for any ρ ′ ∈ (0, ρ), u k remains uniformly bounded in

Q t(τ 1 ),t(τ 1 )+λ ρ ′ ,x(τ 1 )
. Moreover, for any compact subset K ∈ B c ρ ′ (x τ 1 ), there holds

u k (x, t(τ 1 ) + λ) ≤ C (λβ) 1/(q-1)
, where β = min{h(x, t) : (x, t) ∈ K × [t(τ 1 ), t(τ 1 ) + λ]}. Iterating this construction, we can construct a finite number of cylinders Q t(τ 1 )+jλ,t(τ 1 )+(j+1)λ ρ ′ ,a j containing Γ and in which u k remains uniformly bounded. Since local uniform boundedness holds also outside such cylinders, the proof follows.

Remark. In full generality we conjecture that if γ is C 1 with γ ′ (τ ) = 0 and there exists τ 0 ∈ (0, T ) such that t(τ ) admits a local strict maximum on the right at τ 0 ∈ (0, T ), then u ∞ is locally bounded Q T \ Γ τ 0 .

Propagation of singularities in the space

In this section, we assume that the degeneracy curve Γ is parametrized by the variable t ∈ [0, T ] and defined by (2.10) with |x(t)| > 0 if t > 0. We denote by

d P [(x, t), (y, s)] := |x -y| + √ t -s if t ≥ s
the parabolic distance and we assume that h(x, t) depends on d P [(x, t), Γ] under the following form h(x, t) = e -ℓ(d P [(x,t),Γ]) (4.1)

where ℓ ∈ C([0, ∞)) is positive, nonincreasing and lim r→0 ℓ(r) = ∞. For ǫ > 0, we recall

T Γ T 0 ǫ
denotes the ǫ -spherical tubular neighborhood of Γ between t = 0 and t = T defined by T

Γ T 0 ǫ := {(x, t) ∈ Q T : |x -x(t)| < ǫ}. (4.2) 
The basis of T

Γ T 0 ǫ , in R N ×{0}, is the ball B ǫ . Since d P [(x, t), Γ] ≤ |x-x(t)|, d P [(x, t), Γ] ≤ ǫ in T Γ T 0 ǫ and ℓ(ǫ) ≤ ℓ(d P [(x, t), Γ]). Then, u ∞ is bounded from below in Γ ǫ by the solution v ǫ of          ∂ t v ǫ -∆v ǫ + e -ℓ(ǫ) v p ǫ = 0 in T Γ T 0 ǫ v ǫ = 0 in ∂ P T Γ T 0 ǫ v ǫ = ∞δ 0 in B ǫ , (4.3) 
where

∂ P T Γ T 0 ǫ := {(x, t) : |x -x(t)| = ǫ}
is the lateral parabolic boundary of T Γ T 0 ǫ . The formal aspect comes from the fact that the existence of v ǫ has to be proved.

For the sake of simplicity we assume that 1 < p < 1 + 2 N , the case p ≥ 1 + 2 N needing a simple adaptation of the type which is developed in the proof of Theorem D-Case 2.

We consider the following change of variable x = y + x(t) and v ǫ (x, t) = ṽǫ (y, t). Then ṽǫ satisfies in

Q Bǫ τ := B ǫ × (0, τ )        ∂ t ṽǫ -∆ṽ ǫ + x ′ (t)|∇ṽ ǫ + e -ℓ(ǫ) ṽp ǫ = 0 in Q Bǫ τ ṽǫ = 0 in ∂ P Q Bǫ τ ṽǫ = ∞δ 0 in B ǫ . (4.4) 
In particular u(x(α), α) ≥ v ǫ (x(α), α) = ṽǫ (0, α). We set ω ǫ (x, t) = ǫ 2/(p-1) e -ℓ(ǫ)/(p-1) ṽǫ (ǫx, ǫ 2 t), and x ǫ (t) = ǫ -1 x(ǫ 2 t). Then ω ǫ satisfies

       ∂ t ω ǫ -∆ω ǫ + x ′ ǫ (t)|∇ω ǫ + ω p ǫ = 0 in Q B 1 ǫ -2 τ ω ǫ = 0 in ∂ P Q B 1 ǫ -2 τ ω ǫ = ∞δ 0 in B 1 , (4.5) 
and for any α > 0

u ∞ (x(α), α) ≥ ǫ -2/(p-1) e ℓ(ǫ)/(p-1) ω ǫ (0, ǫ -2 α). (4.6)
Therefore, the problem is reduced to showing that

lim ǫ→0 ǫ -2/(p-1) e ℓ(ǫ)/(p-1) ω ǫ (0, ǫ -2 α) = ∞. (4.7)
We associate the following parabolic equation [START_REF] Friedman | Partial differential equations of parabolic type[END_REF], [START_REF] Ladyshenskaya | Linear and quasilinear equations of parabolic type[END_REF]).

       ∂ t v -∆v + β(t)|∇v + v p = 0 in Q B 1 ∞ v = 0 in ∂ P Q B 1 ∞ v(y, 0) = v 0 in B 1 . (4.8) Existence of solution is classical when β ∈ L ∞ loc ([0, ∞)) (see
Proposition 4.1 Let β ∈ L ∞ loc ([0, ∞)).
Then the following estimates holds v(., t) L 2 ≤ e -λ 0 t v(., 0) L 2 (4.9)

where λ 0 is the first eigenvalue of -∆ in B 1 , and, for some

C = C(N ) > 0, v(., t) L ∞ ≤ C min{t -N/4 , e -λ 0 t } v(., 0) L 2 . (4.10)
Proof. Since for any continuous function r → g(r) = G ′ (r), we have

B 1 β(t)|∇v g(v)dx = B 1 β(t)|∇G(v) dx = - B 1 G(v) divβ(t)dx = 0, we have 2 -1 d dt B 1 v 2 dx + B 1 |∇v| 2 dx ≤ 0 =⇒ d dt B 1 v 2 dx ≤ -2λ 0 B 1 v 2 dx.
Thus (4.9) follows. Furthermore, for any q > 1,

1 q + 1 d dt B 1 |v| q+1 dx + 4q (q + 1) 2 B 1 |∇v (q+1)/2 |dx ≤ 0,
it follows that t → v(., t) L q+1 is decaying. Therefore, using Gagliardo-Nirenberg estimate,

d dt v q+1 L q+1 + 4qC q + 1 v q+1 L (q+1)N/(N-2) ≤ 0.
We assume N ≥ 3, the cases N = 1, 2 needing a simple modification. Thus, for any

t > s > 0, 4qC(t -s) q + 1 v(., t) q+1 L (q+1)N/(N-2) ≤ v(., s) q+1 L q+1 .
By a standard use of Moser iterative scheeme, we derive

v(., t) L ∞ ≤ Ct -N/4 v(., 0) L 2 . (4.11)
Consequently, for any 0 < s < t, we have

v(., t) L ∞ ≤ C(t -s) -N/4 v(., s) L 2 ≤ C(t -s) -N/4 e -λ 0 s v(., 0) L 2 .
Noting that, if t > N/4λ 0 , min{(ts) -N/4 e -λ 0 s 0 < s < t} = e N/4 (4λ 0 /N ) N/4 e -λ 0 t , we derive (4.10). and the proof follows.

In the sequel we denote by λ β the first eigenvalue of L β , thus

λ β = λ 0 + |β| 2 4 . If ψ β is a corresponding positive eigenfunction, then ψ β (x) = e 1 2 β|x ψ 0 (x)
where ψ 0 is a positive first eigenfunction of -∆ in H 1,0 (Ω) Proposition 4.3 Under the assumptions of Proposition 4.2 and for p > 1, we denote by v be the solution of

       ∂ t v -∆v + β|∇v + v p = 0 in Q B 1 ∞ v = 0 in ∂ P Q B 1 ∞ v(y, 0) = v 0 in B 1 .
(4.14)

where v 0 ∈ L 2 (B 1 ) is nonnegative. Then there exists some c = c(v 0 ) > 0 such that lim t→∞ e λ β t v(., t) = cψ (4.15)
uniformly in B 1 .

Proof. We write v(x, t) = e 1 2 β|x w(x, t), thus (4.14) turns into

∂ t w -∆w + |β| 2 4 w + e p-1 2 
β|x w p = 0. (4.16)

The proof of [3, Th 3.1] applies easily and the result follows.

Proposition 4.4 Assume β ∈ W 1,∞ loc ([0, ∞)). For τ > 1, we set sup 1≤t≤τ |β(t)| = β τ and sup 1≤t≤τ |β ′ (t)| = δ τ . If v is the solution of (4.8) where v 0 ∈ L 2 (B 1 ) is nonnegative, we denote σ(τ ) = sup e p-1 2 |β(t)| w p-1 (x, t) : (x, t) ∈ B 1 × [1, τ ] . Then if v(., 1) satisfies c 1 ψ 0 ≤ v(., 1), there holds v(x, t) ≥ c 1 e -(λ 0 + β 2 τ 4 + δτ 2 +στ )(t-1) ψ 0 (x) ∀(x, t) ∈ B 1 × [1, τ ] (4.17) Proof. Let w(x, t) = e -1 2 β(t)|x v(x, t). Then ∂ t w -∆w + |β| 2 4 + 1 2 β ′ |x + e p-1 2 
β(t)|x w p-1 w = 0. (4.18) Since |x| ≤ 1 there holds in B 1 × [1, τ ] |β(t)| 2 4 + 1 2 β ′ (t)|x + e p-1 2 
β(t)|x w p-1 ≤ β 2 τ 4 + δ τ 2 + σ τ . (4.19) 
Therefore

∂ t w -∆w + β 2 τ 4 + δ τ 2 + σ τ w ≥ 0 in B 1 × [1, τ ]. (4.20) Since (x, t) → e -(λ 0 + β 2 τ 4 + δτ 2 
+στ )(t-1) ψ 0 (x) satisfies the equation associated to (4.20), (4.17) follows.

Proof of Theorem C. Step 1: Initialization of the blow-up. With our previous notations,

β(t) = β ǫ (t) = x ′ ǫ (t) = ǫx ′ (ǫ 2 t) and β ′ ǫ (t) = ǫ 3 x ′′ (ǫ 2 t). Since x ′ ǫ is locally bounded, it follows
by Hopf lemma that there exists c 1 > 0 such that ω ǫ (., 1) ≥ c 1 ψ 0 . We take τ = ǫ -2 α where α > 0 is fixed. Then

β τ = sup{|ǫx ′ (ǫ 2 t)| : 1 ≤ t ≤ ǫ -2 α} = ǫ sup{|x ′ (t)| : ǫ 2 ≤ t ≤ α}, δ τ = sup{|ǫ 3 x ′′ (ǫ 2 t)| : 1 ≤ t ≤ ǫ -2 α} = ǫ 3 sup{|x ′′ (t)| : ǫ 2 ≤ t ≤ α}.
Therefore ǫ

-2 p-1 e ℓ(ǫ) p-1 ω ǫ (0, ǫ -2 α) ≥ c ′ 1 e A(ǫ) ψ 0 (0) (4.21)
where

A(ǫ) := - 2 p -1 ln ǫ + ℓ(ǫ) p -1 -λ 0 + β 2 τ 4 + δ τ 2 + σ τ α ǫ 2 (4.22)
Since lim inf ǫ→0 ǫ 2 ℓ(ǫ) > 0 there exists α 0 > 0 such that for any 0 < α < α 0 , there holds lim ǫ→0 A(ǫ) = ∞. This implies

u ∞ (x(α), α) = ∞ ∀ 0 < α < α 0 . (4.23)
Step 2: Propagation. In order to prove that the blow-up propagates along Γ we have replace t = 0 by t = α < α 0 . We claim that

Bσ(x(α)) u ∞ (x, α)dx = ∞ ∀σ > 0. (4.24)
Actually, it is sufficient to prove the result with σ = ǫ and with u ∞ replaced by v ǫ . Then

Bǫ(x(α) v ǫ (x, α)dx = Bǫ ṽǫ (x, α)dx = ǫ N -2 p-1 e ℓ(ǫ) p-1 B 1 ω ǫ (x, ǫ -2 α)dx (4.25)
Using (4.17), (4.21) we have

ǫ N -2 p-1 e ℓ(ǫ) p-1 B 1 ω ǫ (x, ǫ -2 α)dx ≥ c ′ 1 e A ′ (ǫ) B 1 ψ 0 (x)dx
where

A ′ (ǫ) := (N - 2 p -1 ) ln ǫ + ℓ(ǫ) p -1 -λ 0 + β 2 τ 4 + δ τ 2 + σ τ α ǫ 2 (4.26)
Thus lim ǫ→0 A ′ (ǫ) = ∞ for any α < α 0 . This implies the claim.

Step 3: End of the proof. For k > 0, we denote by u α,kδ the solution of

∂ t u -∆u + h(x, t)u p = 0 in R N × (α, ∞) u(., α) = kδ x(α) in R N . (4.27) We claim that u ∞ (x, t)) ≥ u α,kδ (x, t) ∀(x, t) ∈ R N × [α, ∞). (4.28)
We fix k > 0, then for any σ > 0, there exists m = m(σ) > 0 such that

Bσ(x(α)) min{m, u ∞ (x, α)}dx = k.
Furthermore lim σ→0 m(σ) = ∞. Let u α,k,σ be the solution of

∂ t u -∆u + h(x, t)u p = 0 in R N × (α, ∞) u(., α) = min{m, u ∞ (., α)}χ Bσ (x(α)) in R N . (4.29)
By the maximum principle u ∞ ≥ u α,k,σ in R N × (α, ∞). But min{m, u ∞ (., α)}χ Bσ (x(α)) converges to kδ x(α) in the weak sense of measure when σ → 0. By stability, since we have assumed p < 1 + 2 N , u α,k,σ → u α,kδ locally uniformly in R N × (α, ∞) (see [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF] e.g.). Therefore (4.28) follows. Since k is arbitrary, it follows

u ∞ (x, t)) ≥ u α,∞δ (x, t) ∀(x, t) ∈ R N × [α, ∞). (4.30)
By

Step 1, u α,∞δ (x(α + β), α + β) is infinite for 0 < β < α 0 . This implies that (4.23) holds for any 0 < α < 2α 0 . Iterating this process we conclude that u ∞ blows-up on whole Γ and (4.24) holds for any α ∈ (0, T ].

Propagation of singularities in the initial plane

In this section, we consider

∂ t u -∆u + h(x, t)u p = 0 in Q ∞ := R N × (0, ∞) (5.1) 
where h ∈ C(Q ∞ ). We set x = (x 1 , ..., x N ) = (x 1 , x ′ ) and we suppose that h(x, t) > 0 except when (x, t) belongs to some straight line Γ that we can assume to be the x 1 axis in the plane t = 0. We set d ∞ ((x, t), Γ) = max{ √ t, |x ′ |} and write h under the form h(x, t) = e -ℓ(d∞(x,t);Γ) (5.2)

where ℓ : (0, ∞) → (0, ∞) is continuous and nonincreasing with limit ∞ at 0.

Proof of Theorem D. Case 1: 1 < p < 1 + 2 N . For ǫ > 0, we consider the "tunnel" with axis Γ defined by

T ǫ := {(x, t) : x 1 ∈ R, (x ′ , t) ∈ B ′ ǫ × (0, ǫ 2 )} where B ′
ǫ is the ball in R N -1 with center 0 and radius ǫ. Since ℓ is decreasing, there holds

∂ t u -∆u + e -ℓ(ǫ) u p ≥ 0 in T ǫ . Thus u ∞δ 0 ≥ v ∞δ 0 in T ǫ ,
where v ∞δ 0 = lim k→∞ v kδ 0 and v kδ is the solution of

   ∂ t v -∆v + e -ℓ(ǫ) v p = 0 in T ǫ v = kδ 0 in R × B ′ ǫ v = 0 in R × ∂B ′ ǫ .
(5.3)

We put v ∞δ (x, t) = ǫ -2/(p-1) e ℓ(ǫ)/(q-1) w(x/ǫ, t/ǫ 2 )

Then w = w ǫ satisfies    ∂ t w -∆w + w p = 0 in R × B ′ 1 × (0, 1) w = ∞δ 0 in R × B ′ 1 w = 0 in R × ∂B ′ 1 .
(5.4)

We denote by W the solution of

   ∂ τ W -∆W + W = 0 in R × B ′ 1 × (0, 1) W (ξ 1 , ξ ′ , 0) = ψ(ξ 1 )φ(ξ ′ ) in R × B ′ 1 W = 0 in R × ∂B ′ 1 × (0, 1). (5.5)
where φ is the first eigenfunction of -∆ ξ ′ in W 1,2 0 (B ′ 1 ) with maximum 1 and corresponding eigenvalue λ and ψ(ξ

1 ) = cos(ξ 1 )χ [-π 2 , π 2 ] (ξ 1 ). Then W (ξ 1 , ξ ′ , τ ) = e -(λ+1)τ φ(ξ ′ ) √ 4πτ π/2 -π/2 e -|ξ 1 -ζ| 2 /4τ ψ(ζ)dζ.
Since 0 ≤ W ≤ 1, W is a subsolution for the equation satisfied by w and there exists a > 0 and c > 0 such that

w ǫ (ξ, τ + a) ≥ cW (ξ, τ ) ∀(x, t) ∈ R × B ′ 1 × (0, 1).
Returning to v ∞ δ 0 , we derive v ∞δ 0 (x, t + aǫ 2 ) ≥ cǫ -2/(p-1) e ℓ(ǫ)/(q-1) W (x/ǫ, t/ǫ 2 )

∀(x 1 , x ′ , t) ∈ R × B ′ ǫ × (0, ǫ 2 ], (5.6) 
which implies, with t = ǫ 2 and x ′ = 0, v ∞ (x 1 , 0, (a + 1)ǫ 2 ) ≥ cǫ -2/(p-1) e ℓ(ǫ)/(q-1) e -λ-1 φ(0)

√ 4π π/2 -π/2 e -|x 1 /ǫ-ζ| 2 /4 ψ(ζ)dζ. (5.7) But π/2 -π/2 e -|x 1 /ǫ-ζ| 2 /4 ψ(ζ)dζ ≥ e -x 2 1 /2ǫ 2 π/2 -π/2 e -|ζ| 2 /2 ψ(ζ)dζ (5.8) 
If we fix in particular |x 1 | ≤ δ where

|x 1 | < δ = 2ǫ 2 ℓ(ǫ) q -1 , we derive lim ǫ→0 v ∞ (x 1 , 0, (a + 1)ǫ 2 ) = ∞.
(5.9) Furthermore this limit is uniform for x 1 ∈ [-δ ′ , δ ′ ], where δ ′ < δ. Furthermore the interval [-δ ′ , δ ′ ] does not shrink to {0} when ǫ → 0, since it is assumed that lim inf ǫ→0 ǫ 2 ℓ(ǫ) > 0.

(5.10)

Replacing [-δ ′ , δ ′ ] by [δ ′ , 3δ ′ ] and [-3δ ′ , -δ ′ ] and iterating, we conclude that lim t→0 u ∞δ 0 (x 1 , 0, t) ≥ lim t→0 v ∞ (x 1 , 0, t) = ∞.

(5.11)

From this, it is easy to obtain that u ∞δ 0 (x, t) = u ∞δ 0 (0, x ′ , t) is independent of x 1 and coincide with U (x ′ , t) where U is the solution of (5.13) where l(s) = ℓ(s)γ ln s and γ > N (p -1) -2. Then γ > 0, (1.3) is satisfied and for any k > 0 there exists a unique solution v = v kδ to

     ∂ t U -∆U + e -ℓ(max{ √ t,|x ′ |}) U p = 0 in (0, ∞) × R N -1 U = ∞δ 0 in R N -
     ∂ t v -∆v + e -l(ǫ) max{ √ t, |x ′ |} γ v p = 0 in T ǫ v = kδ 0 in R × B ′ ǫ v = 0 in R × ∂B ′ ǫ .
(5.14) Furthermore u ∞ (x, t) ≥ v ∞δ in T ǫ . We set v ∞δ (x, t) = ǫ -(2+γ)/(p-1) e ℓ(ǫ)/(q-1) w(x/ǫ, t/ǫ 2 ), and w = w ǫ satisfies

   ∂ τ w -∆w + (max{ √ τ , |ξ ′ |}) γ w p = 0 in R × B ′ 1 × (0, 1) w = ∞δ 0 in R × B ′ 1 w = 0 in R × ∂B ′ 1 × (0, 1).
(5.15)

We denote by W the solution of

   ∂ τ W -∆W + (max{ √ τ , |ξ ′ |}) γ W = 0 in R × B ′ 1 × (0, 1) W (ξ 1 , ξ ′ , 0) = ψ(ξ 1 )φ(ξ ′ ) in R × B ′ 1 W = 0 in R × ∂B ′ 1 × (0, 1).
(5.16)

where ψ and φ are as in the first case. This equation admits a separable solution W (ξ, τ ) = W 1 (ξ 1 , τ )W ′ (ξ ′ , τ ) where

   ∂ τ W ′ -∆ ξ ′ W ′ + (max{ √ τ , |ξ ′ |}) γ W ′ = 0 in B ′ 1 × (0, 1) W ′ (ξ ′ , 0) = φ(ξ ′ ) in B ′ 1 W ′ = 0 in ∂B ′ 1 × (0, 1),
(5.17 The exact expression of W ′ is not simple but since (max{ √ τ , |ξ ′ |}) γ ≤ 1 in B ′ 1 × (0, 1), there holds

W (ξ 1 , ξ ′ , τ ) ≥ e -(λ+1)τ φ(ξ ′ ) √ 4πτ π/2 -π/2
e -|ξ 1 -ζ| 2 /4τ ψ(ζ)dζ.

From this point, and since (5.10) holds with ℓ replaced by l, the proof is the same as in Case 1.

Proposition 4 . 2 4 : 1 2

 4241 Let Ω be a bounded open domain in R N , β ∈ R N and L β the operator v → -∆v + β|∇v . Then the spectrum of L β in H 1,0 (Ω) is the given by σ(L β ) = λ + |β| 2 λ ∈ σ(L 0 ) . (4.12) Proof. Put v(x) = e β|x w(x). Then ∇v(x) = e

) and ∂ τ W 1 -∂ x 1 x 1 W 1 + 2 -π/ 2 e

 11122 W 1 = 0 in R × (0, 1) W 1 (ξ 1 , 0) = φ(ξ 1 ) in R (5.18) Thus W (ξ 1 , ξ ′ , τ ) = W ′ (ξ ′ , τ ) √ 4πτ π/-|ξ 1 -ζ| 2 /4τ ψ(ζ)dζ.

= ∅, we obtain that u ∞ (x, t * ) ≤ µ for