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Modeling of polycrystals with gradient crystal plasticity - A

comparison of strategies

Swantje Bargmanna ∗, Magnus Ekhb, Kenneth Runessonb, Bob Svendsena

aDortmund University of Technology, Chair of Mechanics, Department of Mechanical

Engineering, Leonhard-Euler-Str. 5, 44221 Dortmund, Germany ;
bChalmers University of Technology, Dept. of Applied Mechanics, Division of Material

and Computational Mechanics, 41296 Gothenburg, Sweden

(v4.4 released November 2008)

This paper treats the computational modeling of size dependence in microstructure models
of metals. Different gradient crystal plasticity strategies are analyzed and compared. For
the numerical implementation, a dual-mixed finite element formulation which is suitable for
parallelization is suggested. The paper ends with a representative numerical example for
polycrystals.

Keywords: crystal plasticity; gradient hardening; grain modeling; dual mixed finite
element; polycrystalline material; constitutive behavior

1. Introduction

It is well-known that the macroscopic behavior of a polycrystalline material
is influenced by the size and morphology of the grains, the volume fraction of
different phases, and the subgrain processes, for example. In order to include
micro-effects in a macroscopic model, a complete scale separation is often assumed.
With the help of a computational homogenization method the response of a Repre-
sentative Volume Element (RVE), subjected to suitable boundary conditions that
represent the macroscopic deformation (prolongation conditions), is coupled to
the macroscopic level. However, conventional models of crystal plasticity, that are
often used to model grain behavior, do not contain intrinsic material length-scales
and are, therefore, not capable of capturing macroscopic size dependent effects.
Thus, models including plastic strain gradients have been introduced in order to
overcome this drawback of ordinary crystal plasticity theories. This contribution
discusses different approaches to microstructure polycrystal models which include
size dependence.

One size effect in metals is known as the Hall–Petch effect, i.e. the influence of the
grain size on the macroscopic stress-strain characteristics. It is one of the important
unresolved issues in computational material modeling. Hall [15] and Petch [20]
independently studied different behaviors of steel, but eventually obtained the same
result. While Hall [15] focused on factors influencing the mechanical properties of
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mild steels, Petch [20] studied brittle failure of steels. Nevertheless, Petch’s results
from 1953 are in excellent agreement with the ones of Hall which had been published
two years earlier. The fact that the (current) flow stress σ (ǫ) depends on the mean
grain size d became known as the Hall–Petch effect:

σy (ǫ) = σy,0 (ǫ) +
k (ǫ)√

d
. (1)

Both parameters, σy,0 and k, may depend on the strain level ǫ due to hardening
of the material.

In the literature, different models have been developed in order to capture
size dependence effects in crystals. These include thermodynamic approaches
like [7, 13, 14, 17–19, 22, 24, 25, 27] as well as dislocation-field-theory-based
approaches like [4] and [9]. Despite the large amount of models, there only exist
few classifications or analyses of the common features and major differences.
Examples which discuss similarities between Cosserat, strain gradient crystal
plasticity and the statistical theory of dislocations in the case of single slip are the
works of Forest and Sedláček [10, 11]. A nonlocal plasticity theory is compared
with a discrete dislocation model in [3] and [5]. Numerical results are presented
for single slip in a two-dimensional composite material subject to plane strain
simple shear. A boundary value problem for a single crystal undergoing small
deformations is discussed for a phase field dislocation theory and Gurtin’s theory
(cf. [13]) in [16]. This contribution aims at comparing the three models presented
in [7], [9] and a combination of [7] and [17].

The first model to be investigated in this contribution is the one introduced by
Evers et al. [9] and continued by Bayley et al. [4]. As opposed to the two models
mentioned below, it does not originate from a thermodynamic setting.1 Rather, it
is based on physical considerations involving dislocation densities. An extended
slip law, which also accounts for statistically stored dislocation densities, is
introduced as well. Besides the mechanical displacements, the model of Geers and
co-workers is based on the fields of geometrically necessary and statistically stored
dislocation densities, which are used to affect crystallographic slip resistance in an
extended slip law.

The second model is the one introduced in Ekh et al. [7], which is an extension
of the model for isotropic plasticity proposed by Svedberg and Runesson [22].
In [7], a formulation is proposed which models the size effect by assuming
that the hardening stress in the yield function depends on both the associated
hardening strain (equal to the accumulated plastic slip) and its Hessian along
the slip direction similarly to models for isotropic plasticity originally proposed
by Aifantis [1]. Similar formulations can be found in Gurtin [13] and Liebe and
Steinmann [19]. The thermodynamic setting of Liebe and Steinmann [19] and Ekh
et al. [7] is identical. However, in contrast to [19], where the gradient hardening is
isotropic, Ekh et al. [7] obtain anisotropic hardening by restricting the gradient
effect to each slip direction. Note that a similar strategy, also thermodynamically
based, is followed by Vrech and Etse [27] for small strains. Gurtin’s formulation
[13] is motivated from a so-called microforce balance instead of introducing the

1One of the reviewer pointed out that there will be an upcoming paper showing that this model can be
recasted in a true work-conjugated formulation.
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gradient hardening in the free energy.

As a third model, the model of Ekh et al. [7] is in this paper extended by an
idea of Lele and Anand [17]. The approach of Lele and Anand [17] is formulated
for small strains and isotropic materials, with a similar approach to the one of
Ekh et al. [7]. Their idea is to introduce a slip rate with a similar structure to the
one of [7]; however, including an additional higher-order dissipative term. Thus,
as a third model, we investigate the model of [7] extended by this particular term.

Since we discuss large deformation theories and the field equations are highly
coupled, a numerically efficient solution algorithm is needed. A dual mixed
finite element algorithm based on [23] is applied to all three models, rendering
a coupled two-field problem. The coupling effect is fully taken into account as
the system of equations is solved monolithically. The implicit backward Euler
scheme is used for the time integration. The resulting system of equations is
then solved using a three-level iteration strategy based on a generalized form
of domain decomposition, whereby each grain constitutes a subdomain, as
suggested in [7]. Due to the fact that each grain can be considered independently
(with prescribed boundary conditions), this algorithm is suitable for parallelization.

The main issue of this paper is the comparison of the three models using this
algorithm. For all investigated models, it has been shown in previous publications
that they are all capable of handling advanced modeling of the hardening.
However, no direct comparison has been possible so far, since the discretization
approaches and examples presented differ strongly. Such a comparison is desirable
in order to further develop micromechanical models capturing size effects in
polycrystals. We therefore choose to investigate all three models in the context of
anisotropic polycrystals undergoing large deformations.

The paper is organized as follows. In Section 2, the general underlying mathe-
matical framework is introduced. The basic kinematic and constitutive issues and
relations of crystal plasticity relevant for all three models are revised. In a second
step, in Section 3 the three different models are presented. Having then all consti-
tutive and governing equations at hand, we outline the dual mixed finite element
algorithm in Section 4. Subsequently, a two-dimensional polycrystal is investigated
as a numerical example in Section 5. The paper ends with a discussion of the
different models.

2. Basic deformation and stress measures

In this section we reiterate the basic kinematics needed in the following in order
to introduce the notation used in this contribution. In large strain plasticity, the
main assumption is the classical multiplicative split of the deformation gradient F

into an elastic F e and a plastic part F p:

F = F e · F p. (2)

This leads to the following relations for the deformation measures

C̄
e

:= [F e]t · F e, Ē
e

:=
1

2
(C̄

e − Ī), (3)
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4 Bargmann et al.

where the right Cauchy–Green tensor in the intermediate configuration B̄ is
denoted by C̄

e
and Ē

e
is the Green–Lagrange strain.

Next, we recall the stress measures of interest. The 1st Piola–Kirchhoff stress,
P , and the 2nd Piola–Kirchhoff stress, S̄

e
on the intermediate configuration B̄, are

defined as:

P := τ · f t = F e · S̄e · [fp]t, S̄
e

:= f e · τ · [f e]t, (4)

with the notation fx := [F x]−1 and τ being the Kirchhoff stress. Moreover, the
Mandel stress, M̄

e
, on the intermediate configuration B̄, is introduced

M̄
e

:= [F e]t · τ · [f e]t = C̄
e · S̄e

. (5)

As usual, the model formulation in the context of crystal plasticity is based on
the slip-system geometry for each slip-system α: the slip direction sα and the slip
plane normal nα which are two orthonormal vectors in the reference configuration
B0. For the sake of simplicity, it is assumed that the intermediate configuration is
isoclinic such that all slip-systems (s̄α, n̄α) are fixed in B̄ and known a priori from
the given crystal structure. Therefore, the bars are omitted from now on. Then,
following Rice [21], the evolution of the plastic deformation is given by the form

Lp = Ḟ
p · fp =

∑

α

γ̇α[sα ⊗ nα], (6)

with Lp denoting the plastic velocity gradient tensor. The resolved shear (Schmid)
stress τα, associated with the slip-system (sα, nα), is defined as

τα := sα · M̄ e · nα = M̄
e

: [sα ⊗ nα] . (7)

If γα is interpreted as the slip-system shear, it can be positive or negative and
increase or decrease, in which case γ̇α sα = |γ̇α| sign(γ̇α) sα = ± |γ̇α| sα. This mo-
tivates to consider both sα and −sα as different slip directions. Henceforth, we
follow this idea. γα > 0 can then be interpreted as the accumulated slip-system
shear and it is always positive and monotonically-increasing, i.e., γ̇α > 0 for all
α = 1, . . . , n. Of course, from the computational point of view, we have to deal
with the expense of doubling the number of slip directions/systems.

3. Constitutive models

We assume the St. Venant–Kirchhoff law for the elastic behavior is assumed for
all three models. Thus the second Piola–Kirchhoff stress S̄

e
on the intermediate

configuration is given by

S̄
e

= λĪ : Ē
e
+ 2µĒ

e
, (8)

where λ and µ are the Lamé parameters pertinent to small elastic deformations.

3.1. Model I

As a first model, we summarize the one developed by Evers et al. [9], see also [4],
which is motivated from physical dislocation densities and evolution equations
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for these. Evers et al. [9] present a model which quantifies for the densities of
geometrically necessary dislocations (GNDs) and statistically stored dislocations
(SSDs). Only edge dislocation densities are considered as done in [4]1. In addition,
they assume that all dislocations of interest lie in the slip planes.

The density of GNDs ρGND
α reads

ρGND
α = ρGND0

α − 1

b
∇Xγα · sα, (9)

where b is magnitude of the Burger’s vector and ρGND0

α denotes the initial GND
density.

For SSD densities ρSSD
α , Evers et al. apply a generalization of the rate equation

proposed by Essmann and Mughrabi [8]:

ρ̇SSD
α =

1

b

[

1

Lα
− 2ycρ

SSD
α

]

|γ̇α|. (10)

The SSD density is initialized by ρSSD
α (t = 0) = ρSSD0 > 0 and stays positive.

The constant yc denotes the critical annihilation length. The average dislocation
segment length of statistically stored dislocations Lα can be expressed as

Lα =
K

√

∑

β Hαβ |ρSSD
α | +

∑

β Hαβ |ρGND
α |

. (11)

Following the way of Evers et al. [9], we choose the interaction coefficients Hαβ =
h0 ∀α, β with h0 being the constant immobilization coefficient. The evolution
relation for the slip-system shear γα is given by a power law

γ̇α = γ̇0

[

|τ eff
α |
sα

]m

, (12)

relating the slip rates γ̇α to the effective shear stress τ eff
α and the slip-system

strength sα. The plastic shear rate γ̇0 and the rate sensitivity parameter m are
constant material parameters. The effective shear stress τ eff

α is defined as

τ eff
α = τα − τ̄ b : [sα ⊗ nα] . (13)

where τ̄ b is the global back-stress tensor

τ̄ b =
∑

α

τ e
α

[

[sα ⊗ nα] + [sα ⊗ nα]t
]

. (14)

The resulting shear stress τ e
α

τ e
α =

µbR2

8 [1 − ν]
∇XρGND

α · sα (15)

1The model introduced in [9] is formulated for edge and screw dislocation densities. However, the numerical
example presented in [9] is restricted to self-hardening and double slip where only edge dislocations are
considered.
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develops independently. The circular region around a material point X with radius
R accounts for the geometrically necessary dislocations contributing to the shear
stress on slip-system α. Moreover, µ is the shear modulus and ν is Poisson’s ratio.
The slip-system strength sα reads

sα = cµb

√

∑

β

a0|ρSSD
β | +

∑

β

a0|ρGND
β |, (16)

where c is a constant material parameter. In particular, it is a function of the SSD
and GND densities.

3.2. Model II

As a second model, we investigate the approach introduced by Ekh et al. [7] which
is summarized below. In contrast to model I, it is embedded in a thermodynamic
framework. Moreover, it is simpler with respect to hardening, but still showed
realistic simulation results in [7]. The free energy Ψ̄0 per unit intermediate volume
is introduced as a function of the intermediate Green–Lagrange strain Ē

e
, the

slip-system shears γα and its gradient ∇Xγα:

Ψ̄0(Ē
e
, {γα}, {∇Xγα}) =

λ

2

[

trĒ
e]2

+ µtr
(

(

Ē
e)2

)

+
1

2

∑

α

H l
αγ2

α +
1

2

∑

α

l2α∇Xγα · [Hg
αsα ⊗ sα] · ∇Xγα.(17)

It is additively decomposed in a hyperelastic contribution following the St. Venant
model and a hardening contribution. The hardening contribution to the free energy
can be decomposed further into contributions from local and gradient hardening,
respectively. The corresponding hardening moduli, H l

α and Hg
α, are chosen as con-

stant and positive semi-definite measures associated with each slip-system α.
This leads to the following hardening stresses κα which are defined in such a way

that they can be derived from the free energy via

κα :=
∂Ψ̄0

∂γα
− Div

(

∂Ψ̄0

∂(∇Xγα)

)

in B0, grain, α = 1, 2, ..., nslip

κ(b)
α := N · ∂Ψ̄0

∂(∇Xγα)
on ∂B0, grain, α = 1, 2, ..., nslip (18)

see Appendix for further details. Here, N is the outward unit normal to the bound-
ary ∂B0, grain and the superscript “b” denotes “boundary”.

The evolution of the plastic slip γα is assumed to follow a viscoplastic power law

γ̇α =
1

t∗

[

< τα − Yα − κα >

C0

]m

, (19)

with < x >:= 1/2[x+|x|] denoting the Macaulay brackets. The material parameter
C0 is constant and the same for all slip-systems and Yα and t∗ denote the initial
yield stress and the relaxation time, respectively.
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3.3. Model III

Following Gurtin [14], Lele and Anand [17] propose a thermodynamic-consistent
small-deformation strain-gradient theory for isotropic viscoplastic materials similar
to the large-deformation model II (which is formulated for anisotropic materials).
As in the case of model II, the free energy is split additively into an elastic and a
plastic contribution and the latter depends on the slip-system shear gradient ∇Xγα.
Moreover, the free energy Ψ̄0 acts an potential for what they call the energetic
microstress ξen

α - in a similar way to the gradient hardening stress κα of Ekh et al.
[7]. In addition to the approach of Ekh et al. [7], they introduce a further length
scale, the constant dissipative lengthscale ld, corresponding to dissipative effects
associated with the slip rate gradient ∇Xγ̇α. Since promising results are presented
in [17] for the case of small deformation and isotropy, we extend the flow rule of
the large deformation, anisotropic model II in the spirit of Anand, Gurtin and Lele
and propose the following expression as the flow rule of model III

γ̇α =
1

t∗

[

< τα − Yα − κα >

C0

]m

+ l2d
0sαDiv

([

dα

0d

]q
∇Xγ̇α · sα

dα
sα

)

. (20)

Hence, the last term in Eq. (20) is nonstandard. Interest in such a higher-order
dissipative term has arisen only recently, see e.g. the works of [12], [14], and the
very recent [17]. Here, the scalar 0sα = sα(t = 0) > 0 represents the initial flow
resistance, see also Eq. (16). Furthermore, 0d is a reference rate and dα denotes
the scalar non-negative effective flow-rate

dα :=
√

|γ̇α|2 + l2d|∇Xγ̇α|2 . (21)

3.4. Model comparison

Here it is appropriate to point out the similarities of the three models. Taking
another look at the rate equations of the slip-system shear of model I and II, i.e.,
Eqs. (12) and (19), highlights the differences of those two approaches. We rewrite
the rate equation of model I by inserting the effective shear stress relations (13)-
(15) into the flow rule of model I (Eq. (12)) first. Subsequently, the GND density
ρGND

α is substituted by relation (9). Consequently, we obtain:

γ̇α = γ̇0





|τα + µR2

8[1−ν]

[

∑

β ∇X [∇Xγβ · sβ] · sβPβα

]

|
sα





m

= γ̇0





|τα + µR2

8[1−ν]

[

∑

β Pβα [sβ ⊗ sβ ] : [∇X ⊗ ∇X]γβ

]

|
sα





m

, (22)

where we define the scalar quantity Pβα =
[

[sβ ⊗ nβ ] + [sβ ⊗ nβ ]t
]

: [sα ⊗ nα]
which accounts for cross-gradient hardening. Analogously, inserting the hardening
stress relation (18) into the flow rule of model II, i.e., Eq. (19), yields

γ̇α =
1

t∗

[

< τα − Yα − H l
αγα + l2αHg

α [sα ⊗ sα] : [∇X ⊗ ∇X]γα >

C0

]m

. (23)

Page 7 of 26

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

8 Bargmann et al.

Clearly, in both cases, the rate equations contain terms depending on the second
spatial derivatives of the slips, i.e., [∇X ⊗ ∇X]γα. These terms influence the
effective resolved stress driving the glide-system dislocation motion.1

Evers et al. [9] use the absolute signs in the numerator whereas Ekh et al. [7]
employ the Macaulay brackets. Therefore, the rate of the plastic slip can be equal
to zero in case of model II as opposed to model I where it is always positive. Thus,
in case of model I the slip systems are activated viscously at the stress of sα. On
the other hand, model II discretely activates the slip systems at the yield stress Yα.

One can easily identify what is called the reference plastic strain rate γ̇0 in
[9] with the inverse of the relaxation time t∗ in [7]. Moreover, the material
parameter C0 of model II has the unit of a stress and plays the same role
the slip-system strength sα does in the slip-system rate equation of model I.
However, C0 is chosen to be constant and the same for all slip-systems α. On the
contrary, the slip-system strength differs for slip-systems and depends on the SSD
and GND densities and consequently is an implicit function of the slip-system
shear as well, i.e., sα = sα(ρSSD, ρGND; γ). Anticipating the material parameters
stated in Table 1 reveals that in the simplest case possible, i.e., no slip and no
GND density at initial time t = 0, both are of approximately the same mag-

nitude (1 [MPa] vs. 3.7 [MPa] for C0 respectively 0sα = sα(t = 0) = cµb

√

a0ρ
SSD0
α ).

While model I accounts for local hardening via the fact that the denominator,
the slip-system strength sα, depends a.o. on the square root of the SSD densities
ρSSD, Ekh et al. [7] include a local hardening contribution in the free energy
function Ψ̄0 and therefore in the hardening stresses κα - which is part of the
numerator. Furthermore, both approaches account for gradient hardening in a
similar, but not the same way, via directional gradients of the slip-system shear
along the given slip directions via ∇Xγα · sα.

Lele and Anand’s approach [17] is based on the so-called microforce balance
representing a viscoplastic yield condition

τα + Div
(

ξen
α + ξdiss

α

)

= fα (γα, γ̇α) , (24)

see also Gurtin and Anand [14]. Here, ξen
α and ξdiss

α are referred to as the energetic
and the dissipative microstress, respectively, and they expend power over the slip-
rate gradient ∇Xγ̇α. What is here denoted by a function f is referred to as a scalar
microscopic stress in [17] which expends power over the slip-rate γ̇α. In case of
model III, the energetic and the dissipative microstress are given by the relations

ξen
α = l2αHg

αsα [sα · ∇Xγα]

ξdiss
α = l2d

0sα

[

dα

0d

]q
∇Xγ̇α · sα

dα
sα. (25)

Moreover,

fα (γα, γ̇α) = [t∗γ̇α]1/mC0 + Yα + H l
αγα. (26)

1Different stress terms and their relations are compared in [11] - with the main focus on linking the phe-
nomenological Cosserat theory, the statistical theory of dislocations and strain gradient crystal plasticity.
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Clearly, the energetic microstress ξen
α and the dissipative microstress ξdiss

α are tan-
gent to the corresponding slip plane α. If plastic loading is obtained in case of
model II, i.e., if τα − Yα − κα > 0, the microforce balance is obtained with

ξen
α = l2αHg

αsα [sα · ∇Xγα] ,

ξdiss
α = 0,

fα (γα, γ̇α) = [t∗γ̇α]1/mC0 + Yα + H l
αγα. (27)

1

In a similar way, in the case of plastic loading τ eff
α > 0, the rate equation (12) of

model I could be interpreted as a generalized microforce balance with the following
choices:

ξen
α =

µR2

8 [1 − ν]

∑

β

Pβαsβ [sβ · ∇Xγβ] ,

ξdiss
α = 0,

fα (γα, γ̇α, ∇Xγα) =

[

γ̇α

γ̇0

]1/m

sα. (28)

We choose a more generalized comparison at this point, because the slip strength
sα depends on the slip rate γ̇α as well as on the slip gradient ∇Xγα. Moreover, in
the thermodynamic setting of [17], the energetic microstresses ξen

α are determined
in terms of the free energy acting as a potential.

4. Numerical framework

4.1. Governing equations: strong and weak formulation

The mechanical problem is governed by the quasi-static balance of momentum

0 = DivP + bv, (29)

with bv representing the volume forces.

For the slip problem, we apply the following procedure for all three models: In
the spirit of Svedberg and Runesson [23], we introduce an auxiliary scalar field gα

for the directional gradient of the slip-system shear γα along the given slip direction
sα,

gα := ∇Xγα · sα. (30)

Moreover, following [23], we approximate the slip-system shear γα and the scalar
gα independently in B0, grain using a so-called dual mixed space-variational format
of the gradient equation gα − ∇Xγα · sα = 0, which is a global equation in space.

1As Macaulay brackets have been used in the formulation of the flow rule for model II and III, the micro-
forces are determinate because we assume microclamped respectively microfree grain boundary conditions
(cf. Eq. (31)). In case of an elastically deforming grain with a plastically deforming neighboring grain, the
microforces at its grain boundary might be indeterminate - e.g. if continuity conditions are assumed at the
grain boundary.
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In particular, a three-level Newton–Raphson iteration scheme will be applied, see
Section 4.2, in which it is possible to choose the FE-approximation of the gradient
gα as Pq (piecewise polynomial of order q), whereas the FE-approximation of the
slip γα is chosen as Pq−1.

We assume “microclamped” boundary conditions1, i.e.,

γα = 0 on ∂B0, grain. (31)

Remark: For a quite detailed description of the finite element discretization,
the reader is referred to [7], in which the exact FE-approximations, the matrix
formulation of the finite element problem, the algorithmic iteration matrices and
tool boxes describing the flow of the algorithm are given.

4.2. Three-level Newton–Raphson iteration strategy

The basic solution strategy is Newton–Raphson iterations on three levels. Global
FE–solutions of the balance of momentum and gradient equations will yield the
displacement field u(X) and the gradient field gα(X) at t = tn. There exist
different model assumptions on “geometric constraints” on the grain structure,
which infer restrictions on the displacement u. It is highly desirable to have a
displacement field as unconstrained as possible. Therefore, we only prescribe the
displacements at the grain-structure (RVE) boundary. As part of this strategy,
we solve for the displacements on the grain boundaries in an outer iteration
loop called “grain boundary iteration loop”. Then, in the “inner grain iteration
loop”, updated values of displacements u and gradients gα within each grain
are computed. During the “inner grain iteration loop”, the displacements on the
grain boundaries are kept fixed, given the updated values from the “grain bound-
ary iteration loop”. Therefore, the resulting algorithm is suitable for parallelization.

Furthermore, a third iteration loop is carried out. The purpose of this “local
iteration loop” is to find updated values for the slip γα (and in case of model I
also for the SSD density ρSSD

α ) in each Gauss point, given values of u and g (as
provided from the outer loop).

As mentioned above, see Section 4.1, the intergrain conditions are assumed to be
micro–clamped, i.e., there is no explicit coupling of slip gradients across the grain
boundaries. Consequently, we do not have to solve for the gradients gα during the
“grain boundary iteration loop”. In the grain iteration loop, the fully discretized
system of equations are coupled. Furthermore, in the inner iteration loop of model
I, the rate equations (12) and (10) are coupled. In both cases the coupled system
is solved monolithically.

1Both, microclamped and microfree boundary conditions, rule out the possibility of interaction of slip
systems across a grain boundary and is therefore quite restrictive. Nevertheless, it is quite popular and has
been used by e.g. [7, 13, 14, 17, 19, 26]. There also exist contributions introducing boundary conditions
that may account for grain interactions, see e.g. [12]. In this contribution we limit our analysis to the
particular case described above, as the influence of different grain boundary conditions is part of future
research and a topic of its own.
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4.3. Time integration

Although the governing equations (29) and (30) are not time-dependent, on the
“local iteration loop” level the model contains evolution equations which have to be
discretized in time. The state at t = tn−1 is assumed to be known for a given time
history of the pertinent loading. Thus, the fully implicit backward Euler scheme is
applied to Eqs. (6), (10), (12), (19) and (20). For example, in case of the velocity

gradient Lp = Ḟ
p · fp, i.e., Eq. (6), this leads to

I − n−1F p · nfp −
∑

α

∆tγ̇α[sα ⊗ mα] = 0. (32)

Here, ∆t = [tn − tn−1] denotes the current time step and we initialize 0fp = I and
0γα = 0.

Furthermore, the slip-system shear rate equations have to discretized in time for
all three models. For the sake of comprehensibility, we leave the spatial discretiza-
tion aside for this moment. Therefore, the semi-discrete formulations of Eqs. (12),
(19) and (20) read:

model I

0 =
1

γ̇0
∆γα − ∆t

[

|τ eff
α |
sα

]m

,

model II

0 = t∗∆γα − ∆t

[

< τα − Yα − κα >

C0

]m

, (33)

model III

0 = t∗∆γα − ∆t

[

< τα − Yα − κα >

C0

]m

− l2d
0sαDiv

([

dα

0d

]q ∆gα

dα
· sα

)

.

In case of the rate equation of model III, we used ∇Xγ̇α · sα = ġα.

5. Numerical example: macro-scale simple shear

5.1. Set-up of the model

The grain-structure, occupying the square domain B� in 2D with boundary ∂B�, as
shown in Figure 1, is considered. Dirichlet boundary conditions on ∂B�,D are chosen
that correspond to a prescribed macro-scale deformation gradient F m = I + Hm

(where the subscript “m” indicates a macro–scale quantity). Hence, the boundary
conditions for the mechanical problem are

u(X) = Hm · X, X ∈ ∂B�. (34)

As a consequence, the appropriate spaces of displacements for the sub–scale are
defined as

U(Hm) = {u| u = Hm · X for X ∈ ∂B�}. (35)

The grain-structure consists of 4 grains, see Figure 1, and is discretized by 1990
elements (1384 nodes).
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So far, nothing has been said about the number of slip-systems. Henceforth, we
limit the numerical study to double slip in order reduce computation time. From
the modeling point of view this means α = 4, as explained at the end of Section
2. The directions sα of the slips are randomly distributed, see Figure 1. Values of
the material parameters are listed in Table 1.

Plane strain is assumed. In particular, we consider the standard representative
example of simple shear on the macro-scale in order to highlight the major
characteristics of the different models. Simple shear is defined by F̄ = I + γ̄e1⊗e2,
where γ̄ is the macroscopic shear deformation. Computations are carried out in
monotonic loading with γ̄max = 0.15 with the constant loading rate of 0.03 [1/s].

Remark (Material parameters): The slip rate equation of model I, i.e.,
Eq. (12), is defined in terms of the reference plastic strain rate γ̇0 and the slip resis-
tance sα. In contrast, the slip rate equations of model II and III, i.e., Eqs. (19) and
(20), are expressed in terms of the relaxation time t∗ and the constant C0. In order
to derive comparable results, one has to take care that 1/[t∗C

m
0 ] ≈ γ̇0/sm

α (t = 0).
In addition, the fraction µR/ [8 [1 − ν]] in Eq. (22) (model I) plays a similar role
as l2αHg

α in Eq. (23) (model II).
As to the choice of the yield stress, a constant value of Yα is chosen in model
II, whereas the yield stress of model I is strain-rate dependent and incorporated
indirectly via sα.

5.2. Discussion of results

First, model I is examined. Figure 2 shows a size effect for fixed material
parameters but for increasing side length L of the grain-structure. The plot shows
a representation of the plastic strain field in terms of “effective” effective shear

strain γeff
def
=

√

γ2
1 + γ2

2 + γ2
3 + γ2

4 . Since the (absolute) size of the boundary layers
with large gradient effects should be approximately the same regardless of the
actual size of the grains, the boundary layers will appear thinner when the grain
size increases (see Figure 2).

The macroscopic stress-strain response in terms of the nominal shear stress
component P̄12 versus the macroscopic shear γ̄ is shown in Figure 3. As expected,
stiffer response in the hardening regime can be seen for smaller grain size.
This observation is in agreement with the findings of Bayley et al. [4] and
Evers et al. [9]. The size-dependence of the stress-strain response is due the
existence of the slip gradient in the numerator of Eq. (22). As already reported
by Evers et al. [9], a size dependence for both densities can be found. Figure
4 exemplarily shows the distribution of the GND density ρGND for two sample
lengths. On the left L = 4 µm is depicted and on the right the distribution
for a grain-structure with length L = 16 µm is plotted. In agreement with
the results of [9, 17], the GND density ρGND mainly develops near the grain
boundaries. Moreover, we also observe the significant difference between the
results for the two lengths. This is due to the fact that the distance between
the grain middle and the boundary is much smaller in the case of L = 4 µm
- the boundary being the place where the plastic slip is blocked and therefore
GNDs develop. On the contrary, the SSD density ρSSD remains small near the
grain boundaries, see Figure 5. Furthermore, the order of magnitude of the GND
and the SSD denisties are roughly the same. For the sake of brevity and as we
mainly aim at comparing different approaches, we omit figures of this finding for
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the other examples simulated with model I and instead refer to the discussion in [9].

One of the differences between model I and II is the use of the absolute
signs respectively Macauley brackets. We ran simulations in which we applied
Macauley brackets to Eq. (12). Due to the fact that load is applied only in
one direction, there is no difference for this particular numerical example. How-
ever, if loading directions change during the simulation, there should be an impact.

In order to examine the effect of cross-hardening only, simulations are carried
out with a constant slip resistance sα = C0 = 1 [MPa]. In other words, local
hardening is omitted. The results are depicted in Figures 6 and 7. Due to the gra-
dient contribution, the stress-strain response still depends on the grain-structure
side length L. However, the material response is significantly softer than in Figure 3.

In [9], the rate sensitivity parameter m = 20 is used, which is significantly lower
than our choice. Therefore, simulations with a rate sensitivity parameter of m = 5
are run as well in order to investigate its influence, see Figure 8. The higher the
rate sensitivy parameter m, the softer responds the material.

Now, model II is studied. In all simulations of model II, the rate sensitivity
parameter m = 1 is used. Figure 9 presents the distribution of the effective plastic
slip γeff according to Eq. (19) with an initial yield stress Yα = 103 [MPa] for
different grain-structure side lengths. The macroscopic stress-strain response is
shown in Figure 10. The results are qualitatively similar to those reported in [7].

As in the case of model I, the size-dependent stress-strain response is due to
the gradient effect. Although both models reach a similar macroscopic stress P̄12

at 15 % shear, the effective slip-system shear of model I is smaller (cf. Figures 2
and 9). For the chosen parameter values less plastic strain develops. Thus, model
I accommodates more shear elastically than model II.

In order to investigate the influence of the initial yield stress Yα and the local
hardening module H l

α (which contributes to the hardening stresses κα) in model
II, those parameters are neglected one after the other. Figures 11 and 12 illustrate
the solution with initial yield stress Yα = 0 [MPa] and the local hardening module
H l

α = 104 [MPa] for all slip-systems α = 1, . . . , 4. As expected, the plots of
the effective hardening strain γeff (Figure 11) and the macroscopic stress-strain
response (Figure 12) reveal that the initial yield stress Yα = 103 [MPa] leads to
plastic yielding from the beginning of the deformation.

Subsequently, the local hardening module is additionally chosen to be zero,
i.e., H l

α = 0 [MPa] for all slip-systems α = 1, . . . , 4 and Yα = 0 [MPa]. It is
observed that a material with a vanishing local hardening module H l

α still shows
a size-dependent stiffness response, see Figures 13 and 14. The general stiffness of
the material decreases considerably, though. As already mentioned in Section 3.4,
model II includes the local hardening contribution in the hardening stress κα and,
thus, in the numerator, whereas model I takes it into account via the slip-system
strength sα and, therefore, in the denominator. The comparison of Figures 3 and
7 versus 12 and 14 underlines that, nevertheless, both models have a similar local
hardening response. Figures 3 and 12 include local hardening, whereas Figures 7
and 14 neglect this contribution - leading to a significant decrease of the material’s
stiffness. Moreover, the cases studied in Figures 6 and 7 respectively 13 and 14
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show the influence of cross-hardening and no cross-hardening. In this special
case, the only difference between the two slip laws of model I and II is that
cross-hardening is included in the gradient hardening of model I.

In all three cases, the macroscopic stress–strain response is grain-structure size
dependent. However, there is no size-dependence in the initial yield limit, see
Figures 10, 12 and 14. This contradicts the well-known Hall-Petch relation which
states that the yield limit is in fact size dependent.

Model II corresponds to what Anand, Lele and Gurtin [14, 17] call the case of
gradient energetics respectively energetic hardening. Combining model II with
what they refer to as “dissipative strengthening” leads to model III. The results
for model III are pointed out in Figures 15 - 17. As stated by Lele and Anand
[17], the divergence term in the flow rule (20) leads to a size-dependent initial
yield limit, see Figure 17. However, for the parameters chosen in this example of
large deformations, Figure 17 shows that the effect unfortunately is not strong
as in the example of [17]. However, in [17] in all the simulations in which the
nonstandard higher-order dissipative term was considered, the energetic hardening
and standard isotropic hardening were set at zero. In our example, a higher value
for the dissipative lengthscale ld would have been desirable in order to receive a
considerable side-length dependent yield stress for the case that local hardening is
admitted (Figure 16).

As stated in [17], the model “possesses a mathematically attractive structure,
our experience with numerical experiments which use these constitutive equations
is that they are too tightly coupled”. A completely different numerical approach
was applied in this contribution1

, nevertheless and unfortunately, for larger ld the code did not converge.

6. Conclusion

Three different frameworks for including gradient hardening into crystal plasticity
models were studied. Model I is physically based and has already proven to be
capable of handling advanced modeling of hardening. As compared to this model,
the purpose of model II is to be simple, e.g. with respect to the hardening, but still
able to show realistic simulation results. Moreover, it is formulated in a thermody-
namic setting - as is model III. In both cases, the inelastic part of the free energy
was assumed to include contributions from the gradient of hardening along each
slip direction.

One can clearly see the different behavior depending on the model assumptions.
Model I is capable of mapping more effects than model II, such as cross-hardening.
However, it is also much more complex which leads to higher computation time.
Model III is a first step towards mapping the Hall–Petch relation, i.e. the square-
root dependence of the yield strength on the grain-size. Unfortunately, numerical
convergence problems so far limit the advantage of the mathematically attractive
structure. By investigating the meaning and the influence of some of the parameters
of the strain gradient crystal plasticity models discussed above, this contribution
presents a step towards the enhancement of such theories.

1Lele and Anand implemented the theory by writing a nine-node quadratic user-element subroutine for
the commercial finite element package ABAQUS/Standard.
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Moreover, an efficient discretization scheme suitable for parallelization has been
suggested. The arising coupled boundary value problems were discretized with fi-
nite elements in space and the backward Euler in time. A dual mixed approach with
displacements and gradient hardening variables as degrees of freedom is used. Such
an approach is attractive since any crystal plasticity code (for the local problem)
can be used by simply modifying the current yield stress due to the given gradient
hardening variables in the nodes. The dual mixed finite element algorithm renders
a coupled two-field problem which is solved monolithically. In particular, an algo-
rithm suitable for parallelization was presented, where each grain is treated as a
subproblem. A fast solution algorithm opens up for a variety of applications, since
the resulting finite element problems tend to be rather large. Possible applications
are concurrent multiscale modeling, or three dimensional models, for example.

In conclusion, the presented models and the numerical strategy are all suitable
for handling, e.g., more advanced modeling of the hardening. Nevertheless, work
remains to be done with respect to both, the modeling (e.g. an accurate prediction
of the Hall–Petch effect) and the numerical implementation (regarding e.g. the
nonstandard higher order dissipative term).

Appendix: Thermodynamic considerations

As mentioned above, there exists a thermodynamic setting for model II and III.
First, the ideas of Ekh et al. [7] (model II) are presented and a short derivation
for the definition of the hardening stresses κα, i.e., Eq. (18), is given. Second,
the considerations of Lele and Anand [17], see also Gurtin and Anand [14], are
summarized.

In rational thermodynamics the second law imposes restrictions on constitutive
equations. Whereas there exists a unified opinion about the balance laws, this is
not the case for the second law of thermodynamics. Exploitations of the entropy
inequality are based on distinctive mathematical procedures with the help of which
conditions for a given class of constitutive material behaviors are derived in order
to be compatible with the entropy inequality. Probably the best-known principle
is that of Clausius and Duhem in the framework established by Coleman and Noll
[6].

The thermodynamic formulation of field and constitutive relations are ultimately
formulated in the context of the total energy balance. Isothermal and quasi-static
conditions are considered. In this case, the total energy balance reads

Dt

∫

B0

Ψ0 dV +

∫

B0

D0 dV +

∫

B0

Wint dV = 0 (36)

Here, Ψ0 is the free energy per unit undeformed volume, D0 the dissipation power
and Wint stems from the rate of mechanical work supply. Although the balance
equation is stated with respect to integrals over the entire material domain B0

respectively its entire boundary, it also has to hold for arbitrary bounded and
connected parts of the body.

Considerations of Ekh et al. [7, 23]

The free energy Ψ0 (per unit undeformed volume), in the material configuration
B0, is proposed as a function of the deformation gradient F and a set of internal
variables, which are here taken as F p and the set of slip-system shears {γα}nslip

α=1. In
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addition, the free energy Ψ0 is assumed to depend on the set {∇Xγα}nslip

α=1, where
∇X is the gradient in the reference configuration B0. Thus, gradient effects (under
isothermal conditions) are included and the scalar variables γα represent isotropic
hardening on the nslip slip-systems. From the principle of (spatial) objectivity, we
may conclude that a possible parametrization of the free energy Ψ0 is given by

Ψ0(F , F p, {γα}, {∇Xγα}) = Ψ̄0(Ē
e
, {γα}, {∇Xγα}). (37)

Moreover, the the rate of mechanical work supply reads Wint
def
=

∫

B0

P : Ḟ dV . For

thermodynamical consistency, it is indispensable that the dissipation is strictly non-
negative, corresponding to the second law of thermodynamics. Thus, the fulfilment
of the (reduced) dissipation inequality

∫

B0

D0 dV =

∫

B0

[

M̄
e

: Lp −
∑

α

∂Ψ̄0

∂γα
γ̇α −

∑

α

∂Ψ̄0

∂(∇Xγα)
· ∇Xγ̇α

]

dV ≥ 0 (38)

is an absolutely essential modeling-feature. Upon integrating the last term by parts
and using Gauss’ theorem, we rewrite Eq. (38) as

∫

B0

[

M̄
e

: Lp −
∑

α

καγ̇α

]

dV −
∫

∂B0

∑

α

κ(b)
α γ̇α dA ≥ 0. (39)

This leads to the definition of the auxiliary dissipative hardening stresses as stated
in Eq. (18). It is noted that the hardening stresses κα may be composed of local as

well as gradient contributions, whereas the gradient tractions κ
(b)
α on the boundary

∂B0, grain represent the gradient effect only.
Note that a more restrictive formulation than Eq. (38) is obtained, if it is required

that the local dissipation contributions are non-negative pointwise, i.e., if D0 ≥ 0

for all X ∈ B0 and D(b)
0 ≥ 0 for all X ∈ ∂B0.

Considerations of Anand, Lele and Gurtin [14, 17]

Anand, Lele and Gurtin [14, 17] apply a special kind of virtual work principle in
conjunction with arguments of classical thermodynamics. Key idea is the assump-
tion that each evolution of the body is associated with macroscopic and microscopic
forces. The latter depends on a scalar microscopic force fα whose working accom-
panies slip on slip-system α and a vector microscopic stress ξα whose working
accompanies slip gradients on α. This leads to a different choice of an internal
energy

Wint
def
=

∫

B0

Se : Ė
e
+

∑

α

[fαγ̇α + ξα · ∇Xγ̇α] dV

=

∫

B0

P : Ḟ +
∑

α

[Div (ξα) γ̇α + ξα · ∇Xγ̇α] dV, (40)

with Se expanding power over the Green–Lagrange strain Ė
e
. It is worth noting

that, here, the work conjugacy of the scalar microscopic force fα and the slip
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rate γ̇α, respectively the microscopic stress ξα and the slip rate gradient ∇Xγ̇α, is
assumed first. Then the existence of a free energy function

Ψ0(F , F p, {γα}, {∇Xγα}) = Ψ̄0(Ē
e
, {∇Xγα}). (41)

is established. This is in contrast to the procedure described in Section 6, where first
a free energy function depending on the slip-system shear γα and its gradient ∇Xγα

is assigned which then, as a consequence, leads to the definition of microscopic
hardening stresses κα, i.e., Eq. (18). Moreover, the free energy function of Anand,
Lele and Gurtin [14, 17] does not depend on the slip-system shear γα, only on its
gradient.

Therefore, the counterpart of dissipation inequality (38) reads

∫

B0

[

M̄
e

: Lp +
∑

α

[Div (ξα) γ̇α + ξα · ∇Xγ̇α]

]

dV ≥ 0. (42)

The strategy of Anand, Lele and Gurtin leads to the microforce balance, i.e.,
Eq. (24), where an additive decomposition of the microstress ξα into an energetic
and a dissipative component is admitted

ξα = ξen
α + ξdiss

α . (43)

The energetic microscopic stress for slip-system α, i.e., ξen
α , is given by

ξen
α

def
=

∂Ψ̄0

∂(∇Xγα)
. (44)

Then, the dissipation takes the form

∑

α

[

fαγ̇α + ξdiss
α · ∇Xγ̇α

]

dV ≥ 0. (45)

Inequality (45) imposes restrictions on the constitutive equations for fα and ξdiss
α

for which a constitutive dependence on the slip rate γ̇α and the slip rate gradient
∇Xγ̇α is suggested, cf. [14, 17].

In addition, since the microscopic stress ξdiss
α characterizes dissipative microscopic

forces associated with the evolution of dislocations on the αth slip plane, and
because the motion of such dislocations is tangent to this plane, it sometimes is
required that dissipative microscopic stress ξdiss

α is tangential, cf. e.g. [14].
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Figure 1. Left: Discretization and grain geometry used during simulations. The square grain-structure
consists of 4 grains and the thick black lines represent the grain boundaries. The grains are discretized
with 726 (upper left grain), 620 (upper right), 630 (lower left), and 614 (lower right) elements, respectively.
The mesh is refined near the grain boundaries. The side length L of the grain-structure is varied during
simulations in order to capture the size effects.
Right: Schematic sketch of slip plane directions sα. Double slip is assumed and slip plane directions are
randomly distributed.
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Figure 2. Model I, Evers et al. [9]. Effective hardening strain γeff

def
=

√

γ2
1

+ γ2
2

+ γ2
3

+ γ2
4
. From left to

right the solutions for grain-structure side lengths L = 4 µm, L = 8 µm, and L = 16 µm are depicted. The
evolution of the slip-system shear is given in Eq. (12). Computations are carried out in monotonic loading
with a maximum macroscopic shear deformation γ̄max = 0.15. The displacement field inside the grain-
structure is unconstrained. The slip resistance sα is computed according to Eq. (16), the rate sensitivity
parameter reads m = 1.
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Figure 3. Model I, Evers et al. [9]. Macroscopic stress–strain response (P̄12 vs. γ̄) showing the size de-
pendence on the amount of hardening. Under the assumption of increasing slip resistance sα according to
Eq. (16) and m = 1.
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Figure 4. Model I, Evers et al. [9]. Slip-system 1 GND densities are plotted for two samples lengths after
applying 15% shear. One the left the distribution of the GND density ρGND for a grain structure with
L = 4 µm and on the right with L = 16 µm can be seen. A size-dependence is found for the density
distribution. Under the assumption of increasing slip resistance sα according to Eq. (16) and m = 1. The
sign of the ρGND is ignored in this plot. The results are in accordance to [9].
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Figure 5. Model I, Evers et al. [9]. Slip-system 1 SSD densities are illustrated for two samples lengths
after applying 15% shear. One the left the distribution of the SSD density ρSSD for a grain structure with
L = 4 µm and on the right with L = 16 µm can be seen. ρSSD decreases towards the boundary. Under the
assumption of increasing slip resistance sα according to Eq. (16) and m = 1. The results are in accordance
to [9].
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Figure 6. Model I, Evers et al. [9]. Effective hardening strain γeff

def
=

√

γ2
1

+ γ2
2

+ γ2
3

+ γ2
4
. From left

to right the accumulated plastic strain field for grain-structure side lengths L = 4 µm, L = 8 µm, and
L = 16 µm are depicted. The evolution of the slip-system shear is given in Eq. (12). Computations are
carried out in monotonic loading with a maximum macroscopic shear deformation γ̄max = 0.15. The
displacement field inside the grain-structure is unconstrained. The slip resistance sα is assumed to be
constant with sα = C0 = 1 [MPa] and m = 1.
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Figure 7. Model I, Evers et al. [9]. Macroscopic stress–strain response (P̄12 vs. γ̄) showing the size depen-
dence on the amount of hardening. m = 1. Constant slip resistance sα = C0 = 1 [MPa] presumed, i.e., no
local contribution to the hardening exists. The grain-structure still shows a size-dependent response.
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Figure 8. Model I, Evers et al. [9]. Macroscopic stress–strain response (P̄12 vs. γ̄) showing the size de-
pendence on the amount of hardening. Local hardening is admitted. The rate sensitivity parameter m is
raised to m = 5 (left) and m = 20 (right). The higher the rate sensitivy parameter m, the softer responds
the material.
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Figure 9. Model II, Ekh et al. [7]. Effective hardening strain γeff =
√

γ2
1

+ γ2
2

+ γ2
3

+ γ2
4
. From left to right

the accumulated plastic strain field for grain-structure side lengths L = 4 µm, L = 8 µm, and L = 16 µm
are depicted. The evolution of the slip-system shear γα is given in Eq. (19) - with an initial yield stress
Yα = 103 [MPa] and a local hardening module Hl

α = 104 [MPa] for all slip-systems α = 1, . . . , 4. The rate
sensitivity parameter is set at m = 1. The displacement field inside the grain-structure is unconstrained.
Since the (absolute) size of the boundary layers with large gradient effects is approximately the same
regardless of the actual size of the grains, the boundary layers appear thinner as the grain size increases.
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Figure 10. Model II, Ekh et al. [7]. Initial yield stress Yα = 103 [MPa], local hardening module Hl
α =

104 [MPa] for all slip-systems α = 1, . . . , 4, m = 1.. Macroscopic stress–strain response (P̄12 vs. γ̄) showing
the size dependence on the amount of hardening.

 

 

0.05 0.1 0.15 0.2 0.25

Figure 11. Model II, Ekh et al. [7]. Effective hardening strain γeff =
√

γ2
1

+ γ2
2

+ γ2
3

+ γ2
4
. The accumu-

lated plastic strain field for grain-structure side lengths L = 4 µm, L = 8 µm, and L = 16 µm (from
left to right) are depicted. The evolution of the slip-system shear γα is given in Eq. (19) - with an initial
yield stress Yα = 0 [MPa] and a local hardening module Hl

α = 104 [MPa] for all slip-systems α = 1, . . . , 4.
Rate sensitivity parameter m = 1. The displacement field inside the grain-structure is unconstrained. It is
observed that the non-existence of the initial yield stress Yα leads to plastic yielding from the beginning
of the deformation, see Figure 9 for comparison.
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Figure 12. Model II, Ekh et al. [7]. Initial yield stress Yα = 0 [MPa], local hardening module Hl
α =

104 [MPa] for all slip-systems α = 1, . . . , 4, m = 1. Macroscopic stress–strain response (P̄12 vs. γ̄) showing
the size dependence on the amount of hardening and the influence of the initial yield stress Yα, see Figure
10 for comparison.
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Figure 13. Model II, Ekh et al. [7]. Effective hardening strain γeff =
√

γ2
1

+ γ2
2

+ γ2
3

+ γ2
4
. From left to

right the solutions for RVE side lengths L = 4 µm, L = 8 µm, and L = 16 µm are depicted. The evolution
of the slip-system shear γα is given in Eq. (19) - with an initial yield stress Yα = 0 [MPa] and a local
hardening module Hl

α = 0 [MPa] for all slip-systems α = 1, . . . , 4. m = 1. The displacement field inside
the grain-structure is unconstrained. Neglecting the local hardening module Hl

α leads to significantly more
slip inside the grain-structure, see Figures 9 and 11 for comparison.

Page 24 of 26

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

REFERENCES 25

0 0.05 0.1 0.15
0

1000

2000

3000

4000

5000

6000

7000

8000

 

 

P̄
1
2

γ̄

L = 2µm
L = 4µm
L = 8µm
L = 16µm

Figure 14. Model II, Ekh et al. [7]. Initial yield stress Yα = 0 [MPa], local hardening moduli Hl
α = 0 [MPa]

for all slip-systems α = 1, . . . , 4. Macroscopic stress–strain response (P̄12 vs. γ̄) showing the size dependence
on the amount of hardening in case of vanishing local hardening moduli Hl

α. Again, it can be stated that
smaller the grain-structure size the stiffer is the material’s response. However, it can clearly be seen that
Hl

α = 0 [MPa] leads to a significant decrease in the stiffness for all lengths L. m = 1.

Figure 15. Model III. Effective hardening strain γeff =
√

γ2
1

+ γ2
2

+ γ2
3

+ γ2
4
. Left the accumulated plastic strain field

according to model III with ld = 0 µm for a grain-structure
side length 16 µm is depicted. On the right, the accumulated
plastic strain field according with ld = 0.06 µm is shown.
Computations are carried out in monotonic loading with a
maximum macroscopic shear deformation γ̄max = 0.15. The
evolution of the slip-system shear γα is given in Eq. (20) - with
an initial yield stress Yα = 103 [MPa] and a local hardening
module Hl

α = 104 [MPa] for all slip-systems α = 1, . . . , 4. The
influence of the divergence term is very small, compare Figures
16 and 17. The displacement field inside the grain-structure is
unconstrained and m = 1..
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Figure 16. Model III. Initial yield stress
Yα = 103 [MPa], local hardening module
Hl

α = 104 [MPa] for all slip-systems
α = 1, . . . , 4, m = 1. Macroscopic stress–
strain response (P̄12 vs. γ̄). The influence
of the divergence term can hardly been
seen in this example.
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Figure 17. Model III. Initial yield stress Yα = 0 [MPa], local hardening module Hl
α = 0 [MPa] for all

slip-systems α = 1, . . . , 4. Macroscopic stress–strain response (P̄12 vs. γ̄) showing the influence of the
divergence term. Since the influence is governed by the dissipative length scale ld, this material parameter
has been varied. m = 1. Note that strain is only plotted up to 0.05%.

Parameter Symbol Value
Young’s modulus E 2 · 105 [MPa]
Poisson’s ratio ν 0.3
local hardening modulus H l

α 104 [MPa] resp. 0 [MPa]
gradient hardening modulus Hg

α 4 · 107 [MPa]
internal length scale lα 10−2 [mm]
initial yield stress Yα 103 [MPa] resp. 0 [MPa]
relaxation time t∗ 104 [s]
material constant C0 1 [MPa]
material constant c 0.3
reference plastic strain rate γ̇0 0.0001 [s−1]
rate sensitivity parameter m 1 resp. 0.02
strain rate sensitivity parameter q 1
magnitude of Burger’s vector b 0.256 [nm]
immobilization coefficient h0 1
interaction coefficient a0 0.06
radius GND evaluation region R 10−1 [mm]
critical annihilation length yc 1.6 [nm]
initial SSD density ρSSD0 7 · 1012 [m−2]
initial GND density ρGND0 0 [m−2]
material constant K 25
initial slip resistance 0sα = sα(t = 0) 3.7 [MPa]
dissipative length scale ld 0.06 [µm] resp. 0 [µm]
reference rate 0d 0.0001 [s−1]

Table 1. Material parameters. The data is taken from [7], [8], [9] and [17]. Some of the values are adjusted in

such a way that comparison between the models is possible, see also the remark on this aspect. During simulations

some of the parameters are varied in order to study their influence in the material behavior.
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