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Abstract 

 

The classical transition state theory for calculating complex dissociation rates requires 

separation of time scales.  It is shown here that this condition is satisfied for complexes with 

long-range interaction, such as of an edge dislocation and a cluster of self-interstitial atoms in 

metallic materials, and, hence, one can apply the equations for first-order reactions with a 

rescaled mean dissociation time and the cross-section of complex formation.  The rescaling 

coefficient is the Eyring transmission coefficient.  A general expression for this coefficient 

through the first two moments of the distribution function of dissociation times is derived.  It 

is shown that it is equal to unity if the dividing surface between ‘bound’ and ‘free’ states is 

defined as that where the interaction energy is equal to the thermal energy. 

 

Key words: transition state theory, dissociation reactions, complexes, edge dislocations, 

metals. 
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1. Introduction 

 

Neutron irradiation of metallic materials initiates cascades of atomic displacements, which 

produce the primary damage in the form of point defects, vacancies and self-interstitial atoms 

(SIAs), and their clusters [1-5].  The SIA clusters are highly mobile small dislocation loops, 

which migrate one-dimensionally along the close-packed directions of their Burgers vectors 

[2,6-9].  They are observed to decorate edge dislocations in metals such as Ni and Mo 

[10,11].  As a result, the dislocations become pinned and the materials brittle.  The decoration 

is thus one of the key processes in the microstructure evolution in metallic materials under 

cascade irradiation, but is still understood poorly.  One of the obstacles is the lack of 

understanding of the kinetics of the interaction between the interstitial clusters and 

dislocations.  A complexity originates from the long interaction range: e.g. at 600K, the 

distance from the core of an edge dislocation, at which the interaction energy is of the order 

of the thermal energy, is ~50 nm (for a cluster of 10 SIAs), that is ~200 Burgers vector 

lengths.  This results in a significantly non-exponential distribution of dissociation times, 

which may destroy applicability of the reaction rate and transition state theories, which 

generally have broad applications in chemistry and physics [12].   

In the mean-field approach of the chemical-reaction theory [13-15], the evolution of 

the concentration of bi-molecular A-B complexes, N(t) , is described by an equation which 

includes reaction rates for complex formation, F(t) , and dissociation, D(t) : 

 

 
&N(t) = F(t) − D(t) .        (1) 

 

It is usually coupled with equations for the concentrations of unpaired particles, CA(t)  and 

CB(t) , which define the formation rate: F(t) = αCA(t)CB(t) .  The rate coefficient α  is found 

using available methods [14]; e.g. for diffusion-controlled coagulation α ∝ 4πrDAB , where r  

and DAB  are the total radius and diffusion coefficient of A and B species, which is the 

classical result of Smoluchowski [16].  Determining the dissociation rate requires utilising 

ideas of the seminal transition-state theory [13,15] and the principle of microscopic 

reversibility (detailed balance) for chemical equilibrium [17].  The result depends on the 

probability function of dissociation times, P(t) , i.e. the probability that an event occurs 

before time t .  For a random process without memory, P(t) = 1− exp(−t / τ )  with the mean 
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time 〈t 〉 = τ  and the variance σ t

2 = 〈t 2 〉 − 〈t〉2 = τ 2  and D(t)  assumes the familiar form for a 

first order reaction as a reciprocal of the mean time 

 

D(t) = N(t) / τ .        (2) 

 

Equation (2) is valid only for the exponential distribution, hence for localized complexes with 

single binding energy.  For non-exponential decay laws, the conventional rate equations 

cannot be applied [15].  

 We show in this paper that for complexes with long-range interaction, such as of an 

edge dislocation and an SIA cluster, the time scales separate and one can apply the equations 

for first-order reactions with a rescaled mean dissociation time and the cross-section of 

complex formation.  The rescaling coefficient is the Eyring transmission coefficient.  Here we 

derive a general expression for this coefficient through the first two moments of the 

distribution function of dissociation times and show that it is equal to unity if the dividing 

surface between ‘bound’ and ‘free’ states is defined by equality of the interaction and the 

thermal energies. 

 

 

2. Analysis 

 

Consider a system under what may be non-equilibrium conditions.  There are two kinds of 

such conditions: accumulation of complexes with a nonzero formation rate and annealing 

from some initial state with nonzero concentration of complexes.  The former process is more 

general, since it involves an extra process of complex formation and is considered below.  It 

will be shown, though, that to a first approximation the final expression for the dissociation 

rate can be written in general, independent of the process, form, which is applicable to the 

annealing problem as well.  Then, N(t)  is given by an integral accounting for all complexes 

formed and survived by a time t , and D(t)  by a similar integral for complexes dissociating at 

this instant of time: 

 

N(t) = ds F(t − s) 1− P(s)[ ]
0

∞

∫ ,      (3) 

Page 3 of 19

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 4 

D(t) = ds F(t − s) ′P (s)
0

∞

∫ .       (4) 

 

For an exponential distribution, ′P (t) = τ −1 1− P(t)[ ] and equation (2) follows from equations 

(3) and (4) immediately.  In general, one can obtain an equation for D(t)  as a series of 

progressively higher order n  time derivatives of N(t)  by representing F(t)  as a Taylor 

series around time t : 

 

F(t − s) = (−1)n s
n
F

(n )(t)

n!n=0

∞

∑ .       (5) 

 

Then, from equations (3) and (4), one obtains that  

 

N(t) = (−1)n
t

n+1
F

(n )(t)

(n +1)!n=0

∞

∑ ,       (6) 

 

D(t) = (−1)n
t

n
F

(n )(t)

n!n=0

∞

∑ .       (7) 

 

By differentiation of equation (6) n  times one can obtain the following expressions for the 

derivatives of F(t) : 

 

τF
(n)(t) = N

(n)(t) − (−1)k
t

k+1
F

(n+k )(t)

(k +1)!k=1

∞

∑ .     (8) 

 

By substituting equation (8) with increasing n  into equation (7) and by treating the deviation 

from an exponential distribution as a perturbation, hence neglecting high order time 

derivatives of F(t) , one obtains the dissociation rate as a series of progressively higher order, 

n , time derivatives of N(t) .  For n=0, one reproduces equation (2) and, for n=1, the first 

order time derivative enters the equation: 

 

 
D(t) = N(t) / τ + γ &N (t) ,        (9) 
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where γ = σ t

2 − τ 2( )/ 2τ 2 .  Note that the formation rate does not enter explicitly the final 

equation (9), which seems thus applicable to the annealing problem as well.  The correction 

term disappears at steady state, when 
 
&N(t) = 0 , and/or for an exponential distribution of 

dissociation times, when γ = 0 .  Otherwise, the dissociation rate depends on 
 
&N(t) . This is a 

memory effect and can be understood as discussed below. 

Consider traps with a wider distribution of dissociation times than the exponential (i.e. 

γ > 0 ), such as spatially-distributed potential wells for particles diffusing on a lattice (some 

examples are considered below).  In this case, the distribution consists of a rapidly decreasing 

part at short times and an exponential tail.  The tail is defined by the lowest (negative) 

interaction energy (i.e. the deepest site of the well), while the short-lived part is due to 

existence of higher energy sites.  So, ‘young’ complexes have shorter lifetime than the ‘older’ 

ones and the physical significance of equation (9) can be described in terms of the complex 

‘age’.  If 
 
&N(t) > 0 , complexes are on average ‘younger’ than under stationary conditions.  

Hence, the mean dissociation time is shorter and the dissociation rate higher; the opposite 

condition exists if 
 
&N(t) < 0 .  When 

 
&N(t) = 0 , the ‘age’ distribution of complexes coincides 

with 1− P(t) .  As a result, the mean dissociation time is equal to that of the distribution, i.e. 

τ . 

By substituting equation (9) into equation (1), one obtains the rate equation for the 

concentration of complexes in its conventional form as for the exponential distribution but 

with a rescaled mean dissociation time,  %τ , and a cross section for complex formation,  %α  

( F ∝α , hence  
%F = F %α /α ): 

 

 
&N(t) = %F(t) − N(t) / %τ ,       (10) 

 %τ = τκ
−1 ,  %α = ακ ,        (11) 

κ = (1+ γ )−1 = 2τ 2 / t
2 .       (12) 

 

Hence, the evolution of complex concentration with a non-exponential distribution of 

dissociation times is characterised by the same equilibrium state as for an exponential 

distribution with the same mean value but with a different characteristic time for approaching 

this state.  
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The applicability limits of equations (9) and (10) can be estimated as those when the 

absolute value of the term for n =2, which is 
 
τ 1+ γ( )2 − δ




&&N (t) , where δ = t

3 / 6τ 3 , is 

much smaller than that of the term with the first order time derivative, 
 
γ &N (t) : 

 

δκ 2 −1 << κ −1Θ(t) ,       (13) 

 

where 
 
Θ(t) = &N / %τ &&N , which is equal to unity for the exponential decay. 

Equation (10) describes the exponential decay law.  Hence, the rescaling can be 

viewed as a redefinition of the complex concentration that eliminates particles that do not 

follow the exponential distribution.  Generally, the lowest energy must define the rescaled 

dissociation time, since the slowest process must govern the transient processes.  Therefore, 

the new definition should limit complex formation events to those which occur when a 

migrating particle visits a site of the lowest interaction (highest binding) energy.  Such a 

scenario is exactly that of the transition state theory.  Hence, the factor κ in equation (12) has 

the meaning of the Eyring transmission coefficient [13,15] for complex formation rate and 

must be equal to the fraction of particles that reach the deep regions of a well and correct for 

reactive trajectories that re-cross the transition state and return without ‘decomposition’ (of a 

‘free’ state) and formation of a ‘bound’ state. (Evidently, for the diffusion-controlled 

reactions, the transmission factor for the dissociation rate is equal to ατ j , where τ j  is the 

mean time between jumps in perfect crystal.  Hence κα  is a common factor for both the 

formation and dissociation rates.) 

To verify the validity of this analysis, we performed Monte Carlo (MC) simulations of 

particle diffusion in a system containing a 1-D triangular potential well of depth E , defined 

on an interval 
  
x ∈[−x

max
,x

max
] :  

 

 
  
U (x) = −E 1− x / x

max( ).       (14) 

 

In these calculations, the particle diffused in the system 
  
x ∈[0, x

max
]  with ‘mirror’ boundary 

conditions.  The uphill and downhill jump frequencies, ν +  and ν − , were calculated as 

 
ν ± = exp mβEa j / 2xmax( )/ τ j , where β −1 = kBT , kB  being the Boltzmann constant and T the 
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temperature, and a j  is the jump distance.  The value < t >= ν + + ν +( )−1

 is the mean waiting 

time before a jump.  The calculations were performed for wells of different width (50, 100 

and 200 a j ) and depth (βE =3.87 and 7.74, which correspond to E =0.1 and 0.2 eV, 

respectively, at T =300K) and for statistics of ~500,000 dissociation events in each case.  

Naturally, an event of complex formation is defined by the jump of a particle into the well 

and a dissociation event by a reverse jump.  In this case, the calculations of the mean 

dissociation time for wide wells (
  
x

max
>> a

j
βE ) reproduce well the following equation 

derived by considering the partition function of the canonical ensemble [18]: 

 

  
τ

1-D tri
≈ 2τ

j
x

max
/ a

j
βE( ) exp βE( )−1  .     (15) 

 

The calculation results for 1− P(t) , the so-called survival function, are shown in Figure 1 for 

wells of different width and depth.  The range of well width was chosen to represent 1-D 

migration of an interstitial loop in the stress-field of an edge dislocation [11].  The error bars 

are small and not visible on the graph.  The function 1− P(t)  is shown to decrease steeply at 

short times, while an exponential dependence evolves at long times.  The deviations from the 

exponential distribution are quite large.  For example, consider the curve calculated for 

 βE =3.87 and xmax =100
  
a

j
.  At t = τ , the number of complexes is reduced by ~25 times, 

almost an order of magnitude higher than e  for the exponential distribution.  The variance of 

this distribution, σ t , is about seven times larger than for the corresponding exponential one.  

One calculation for a square well (labelled ‘Square’) is also shown in Figure 1 and it 

demonstrates a dependence that is close to exponential decay.  This is because any square 

well is characterised by single energy, in contrast to triangular well, in which depth of the 

well is not constant.  In other words the square wells do not contain high-energy states 

(shallow regions) inside the well, from where a particle can dissociate without visiting deep 

regions.  (Square wells may also demonstrate deviations from the exponential decay for 

sufficiently wide wells, such that the diffusion time of a particle over distances of the order of 

well width are comparable with the mean dissociation time from the well.) 

 

[Insert Figure 1 about here] 
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The curve for  βE =3.87 and xmax =50
  
a

j
, which is labelled ‘ x =0’, is the distribution 

of dissociation times from the bottom of the well, that is, when all trajectories of diffusing 

particles started from x = 0 , the deepest position in the well.  In this calculation, the mean 

dissociation time was ~15000τ j , more than an order of magnitude longer than 1200τ j , which 

is obtained from equation (15) and the corresponding MC calculation.  This compares well 

with an equation for wide wells derived by the flux-over-population method pioneered by 

Farkas [19] (see Appendix A): 

 

   
%τ

1-D tri
≈ 2τ

j
x

max
/ a

j
βE( )2 exp βE( )−1− βE  .    (16) 

 

In addition, this calculation demonstrates an exponential decay, which indicates that the 

deviation from the exponential function is due to trajectories which do not reach the bottom 

of the well.  Thus, by redefining the complex formation event as that occurring when a 

particle passes through the deepest point of the well, one restores the exponential distribution.  

This is because the work required to remove a particle from this point is unique.   

According to our interpretation of rescaling, the factor κ −1  should be equal to the ratio 

of mean dissociation times given by the two definitions of complex creation events: (1) as a 

jump through x =0, the deepest point of the well, and (2) as a jump over the edge of the well, 

x = xmax .  A comparison of κ −1  with this ratio calculated by MC is given in Figure 2.  As 

seen, κ −1  is high for wide wells, but the redefinition of complex formation makes it close to 

unity.  Before the redefinition, it compares well with the ratio of times, which confirms the 

interpretation.  Note that the calculations suggest the following equation, which satisfies the 

limiting case of a nil effect for a single-site trap (at 
  
x

max
= a

j
) and is equal to the ratio of 

equations (15) and (16) for wide wells: 

 

  
κ

1-D tri

-1 ≈ 1+ x
max

/ a
j
−1( )βE( )−1

1− βE exp −βE( )  ,    (17) 

 

where the factor in square brackets is close to unity.  As seen from Figure 2, equation (17) is 

in agreement with the MC calculations over the entire range of the potential well width used.  

It also shows that κ −1  is higher than unity even for narrow wells, which may be important. 
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[Insert Figure 2 about here] 

 

 We verified how the rescaling operates for the accumulation of complexes of 

diffusing particles with a 1-D triangular well at a constant formation rate, F .  For this, we 

calculated P(t)  by MC and performed the integration indicated in equation (3).  The results 

are presented in Figure 3 (on the left) for xmax / a j = 20  and  βE =3.87, where the number of 

complexes is normalised by the steady-state value Nmax = τF .  The data on the right are for 

the annealing of the same complexes.  As seen in the figure, the characteristic time for 

approaching the steady-state concentration is higher by a factor of  κ
−1 ≈ 6  as compared with 

the exponential dependence for a single-site trap with the same mean dissociation time, 

p(t,τ ) = 1− exp(−t / τ ) .  The solution of equation (10) p(t,κτ )  coincides with the MC 

calculations everywhere but at short times.  The deviation is due to particles that reach only 

shallow regions of the well, of the order of thermal energy: 
 
U(xmax − %x) ≈ −kBT , 

 
%x = xmax / βE , before dissociation with the mean time 

 
τ th ≈ τ j

%x / a j .  Indeed, as seen from 

Figure 3, the function p(t,κτ ) + p(t,τ th )τ th / τ , which is a superposition of the two processes, 

is close to the MC calculations.  

 

[Insert Figure 3 about here] 

 

 The same conclusion can be reached by considering diffusion in a potential field with 

a sink at x =0.  It can be shown that the same rate of particle absorption is achieved in the 

absence of the interaction field but for a sink at  x = %x , where the interaction energy is −kBT  

(see Appendix B).  Hence, particles passing beyond this energy level have a high probability 

of reaching the bottom of the well.  Since we know from our calculations that dissociation of 

particles from the bottom of the well obeys exponential distribution, the condition  x = %x  

should define a point of no return, hence such new well boundary, for which the distribution 

of dissociation times is exponential.  The result is almost trivial.  Indeed, the condition for the 

interaction energy between a migrating point defect (vacancy or interstitial atom) and an edge 

dislocation to be less than kBT  is commonly used as absorbing boundary conditions (see, e.g. 

[20]).  And the assumption of point of no return is a prerequisite for the validity of the 

classical transition-state theory (see, e.g. [15], p.261). 
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To understand why the rescaling works, consider a simplified representation of the 

distributions in Figure 1 as a superposition of two random processes with the mean times 

τ 2 << τ1 : ′P (t) = exp(−t / τ1) / τ1 + Aexp(−t / τ 2 ) / τ 2[ ]/ (1+ A) , where A  is a constant.  Then, 

equation (13) reads Aτ 2 << τ1 , i.e. it requires the number of complexes to be defined by 

particles passing through the deepest site of the well.  In other words, the time-scales for 

escaping from deep and shallow regions must be well separated.   The calculations in Figures 

2 and 3 imply that this is valid despite the fact that such particles constitute only a small 

fraction of all particles visiting the trap region, i.e. A >>1 .  This is why N(t)  is defined by 

τ1 , which is higher than the mean time by a factor of 1+ A : τ1 ≈ t (1+ A) .  This factor can 

be obtained through the parameters of the distribution as κ −1 ≈ 1+ A , which explains the 

rescaling. 

 

 

3. Conclusions 

 

1. The dissociation of non-localised complexes can be described by the first-order 

kinetics as for random processes without memory.  (The memory is transferred to the 

complex definition.  Now the mere existence of a particle within the trap region is not 

enough to define a complex; for this, one should remember in addition whether it has 

visited a site of the maximum binding energy.)  An amazing fact is that this remains 

valid even for very low values of κ , i.e. for large ratios of the rescaled and initial 

dissociation times, hence for such complexes as of an edge dislocation with an SIA 

cluster.  This is due to the Arrhenius dependence of thermally-activated jumps, which 

makes the time-scales of escaping events from deep and shallow regions well 

separated. 

2. A dividing surface between ‘bound’ and ‘unbound’ states defined as that where the 

interaction energy is equal to the thermal energy corresponds to the transmission 

factor equal to unity.  Hence, particles that pass beyond this energy level with high 

probability reach the bottom of the well.  This fact may be used in simulations to 

separate the timescales, e.g. of the fast diffusion of an SIA cluster in the matrix and 

slow dissociation from the region of strong interaction with edge dislocations.  We 

note that, although this result has been obtained for triangular wells and thus needs 
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verification for other well shapes, it is independent of the parameters defining well 

shape and, hence, should be general. 

 

 

Acknowledgments 

 

A.V.B. acknowledges a research grant from the UK Engineering and Physical Sciences 

Research Council.  Research at ORNL was sponsored by the Division on Materials Sciences 

and Engineering (R.E.S. and Y.N.O.) and the Office of Fusion Energy Sciences (S.I.G.), U. S. 

Department of Energy, under contract no. DE-AC05-00OR22725 with UT-Battelle, LLC. 

Page 11 of 19

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 12 

Appendix A. The dissociation time of a particle from the bottom of the well 

 

Consider a stationary 1-D diffusion problem for particles migrating in potential U(x) : 

 

  ′j (x) = 0 ,        (A1) 

j(x) = −D ′C (x) − βDC(x) ′U (x) ,     (A2) 

  C(xmax ) = 0 ,        (A3) 

   
 
j(0) = a j / %τ ,        (A4) 

 

where j(x)  is the flux, C(x)  is the concentration of particles and D = a j

2 / 2τ j  is the 

diffusion coefficient.  Equation (A3) defines an absorption boundary, thus providing only first 

passage particles through it.  Equation (A4) defines a constant source of particles at x =0 with 

 %τ  being the mean time between particle impingement.  According to the flux-over-population 

method [19],  %τ  is equal to the mean first passage time of particles from the bottom of the 

well through the well boundary, if on average only one particle is in the well region:  

 

  dx
well

∫ C(r) = a j ,       (A5) 

 

For a triangular potential well 
  
U (x) = −E 1− x / x

max( ) defined on an interval 
  
x ∈[0, x

max
] , the 

solution of equations (A1)-(A4) is given by 

 

C(x) = A exp B(xmax − x)[ ]−1{ },     (A6) 

 

where 
 
A = 2τ jxmax / %τa jβE  and B = βE / xmax .  By substituting equation (A6) into equation 

(A5) one obtains the mean dissociation time 
  
%τ

1-D tri
 as 

 

   

%τ
1-D tri

≈ 2τ
j

x
max

a
j
βE











2

exp(βE) −1− βE  ,    (A7) 
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Appendix B. Annihilation of diffusing particles at a sink with long-range interaction 

 

Consider the same diffusion problem as in Appendix A, equations (A1) and (A2), but with 

different boundary conditions, defining complete absorption of migrating particles at the 

bottom of the well at   x = 0 : 

 

   C(0) = 0 ,        (B1) 

  C(xmax ) = C0 .        (B2) 

 

For the triangular potential well, equation (14), the solution is given by   

 

C(x) = C0

1− exp −Eβx / xmax( )
1− exp −Eβ( )

.     (B3) 

 

The flux at   x = 0  is  

 

j(0) = −DC0βE / xmax 1− exp −Eβ( )  ≈ −DC0βE / xmax .  (B4) 

 

In the absence of interaction field and with a sink at distance 
 
xmax − %x  (in other words, with 

complete absorption at this distance), the flux is  

 

 
j(xmax − %x) = −DC0 / %x .      (B5) 

 

The two fluxes, equations (B4) and (B5), are equal to each other if   

 

 
%x = xmax / βE ,        (B6) 

 

for which  

 

  
 
U(xmax − %x) = −kBT .       (B7) 
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Thus, the same rate of particle absorption is achieved in the absence of the interaction field 

but with a sink at  x = %x , where the interaction energy is −kBT .  We note that, although this 

result has been obtained for triangular wells, it is independent of the parameters defining well 

shape and, hence, should be general. 
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Figure captions 

 

Figure 1. Probability that a dissociation event occurs after time t  for 1-D triangular wells of 

different width and depth, calculated by MC. 

 

Figure 2. The dependence of κ −1  and the ratio of mean dissociation times for two complex 

definitions on the interaction range calculated by MC results for 1-D triangular 

wells. 

 

Figure 3. Time dependence of the number of complexes of migrating particles with 1-D 

triangular wells during steady complex formation and annealing. 
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Figure 1. Probability that a dissociation event occurs after time t  for 1-D triangular wells of 

different width and depth, calculated by MC. 
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Figure 2. The dependence of κ −1  and the ratio of mean dissociation times for two complex 

definitions on the interaction range calculated by MC results for 1-D triangular 

wells. 
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Figure 3. Time dependence of the number of complexes of migrating particles with 1-D 

triangular wells during steady complex formation and annealing. 
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