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Abstract 

 

Given the time and length scales in molecular dynamics (MD) simulations of dislocation-

defect interactions, quantitative MD results cannot be used directly in larger scale simulations 

or compared directly with experiment. A method to extract fundamental quantities from MD 

simulations is proposed here. The first quantity is a critical stress defined to characterise the 

obstacle resistance. This mesoscopic parameter, rather than the obstacle “strength” designed 

for a point obstacle, is to be used for an obstacle of finite size. At finite temperature, our 

analyses of MD simulations allow the activation energy to be determined as a function of 

temperature. The results confirm the proportionality between activation energy and 

temperature that is frequently observed by experiment. By coupling the data for the activation 

energy and the critical stress as functions of temperature, we show how the activation energy 

can be deduced at a given value of the critical stress.  
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1.  Introduction 

 

In a recent work [1], data on the mechanics of dislocation-defect interaction at 0 K obtained 

by molecular statics (MS) simulations in [2] were analysed in a mesoscopic framework.  It 

was shown that the change in potential energy as a dislocation encounters and finally cuts 

through a periodic row of voids can always be expressed as the sum of three different 

components: (i) the energy of elastic deformation, (ii) the energy associated with the 

elongation of the dislocation as it bows out between obstacles and (iii) the interaction energy 

between the dislocation and an individual void.  At finite temperature, the response of the 

system under mechanical load is no longer deterministic, for the local features of the 

interaction between a dislocation and obstacle introduce local energy fluctuations, even in 

isolated systems [3,4].  These fluctuations assist dislocations to unpin, thereby inducing an 

irreversible evolution of the whole system.  This explains the general decrease of the obstacle 

strength with increasing temperature.    

 Although a large number of studies by molecular dynamics (MD) simulations of 

dislocation-obstacle effects have been reported in the literature, see for example [5,6,7], little 

has been done to analyse the nature of the localised thermal activation process.  For example, 

recent investigations [8,9], although applied to the Peierls barrier rather than the localized 

obstacle case, provided two different treatments. Thus, analysis of the motion of a screw 

dislocation in iron in [8] based on a time-independent rate equation showed that the stress 

dependence on temperature can be correlated with the time-independent integration of the 

jump probability.  This method provides a self-consistent definition of the critical stress that 

accounts for its dependency on strain rate and temperature.  The properties deduced from this 

integration provided an explanation of the shift between the critical stress measured in MD 

simulation and experiment.  In the MD simulation of the motion of the Lomer dislocation in 

aluminium in [9], another approximation is used to deduce the critical stress. The 

incompatibility of these two approaches is the subject of a forthcoming paper.  

 In a completely different approach, Jarzynsky [10,11] and Crooks [12] proposed a 

connection between equilibrium statistical mechanics and systems driven far from equilibrium 

within conditions of microscopic reversibility.  The established theory, however, cannot be 

usefully applied in the case of thermal barriers.  

 It should also be noted that interpretation of the critical stress reached in MD 

simulations is not straightforward.  For example, the connection with theory via the line 

tension approximation is not successful [13] because of the absence of an appropriate 

Page 2 of 30

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 3 

definition of the interaction strength in the case of finite size obstacles.  The classical picture 

of strength defined by a critical cusp angle on the dislocation line, see for example [14], 

cannot be used even if the local dislocation character is taken into account (see below) [13]. 

 In this paper, we propose a new approach to analyse dislocation-obstacle interactions 

at finite temperature.  We illustrate it for the case of edge dislocation-void interaction, as in 

[13]. The paper is organized as follows. First, we describe briefly in section 2 the features of 

the atomic-scale simulations used here.  Then the analysis reported in [1] is applied and 

extended in section 3 in order to interpret the results of MD simulations.  In this section we 

provide a new definition of the absolute strength of finite-size obstacles that is appropriate for 

mesoscopic treatment.  The MD results of the dislocation-void interaction are presented and 

the effect of the temperature is discussed in section 4.  The thermodynamic treatment of the 

interaction process is presented in section 5. 

 

2.  MS and MD methods for simulating dislocation-obstacle interactions  

 

The source of the mesoscale analysis introduced in this paper is data from atom-scale 

modelling of a gliding edge dislocation in α-iron that interacts with an obstacle in the form of 

a spherical void centred on the glide plane.  The edge dislocation with the Burgers vector b = 

½[111] parallel to the x axis is initially aligned along the ]211[  direction of the y axis and 

glides on the )011(  plane.  We have used the two simulation techniques MS and MD with the 

interatomic potential developed by Ackland et al. [15], for which the empirical parameters 

were fitted for BCC iron.  The atomic model contained 877,590 lattice sites and its x, y and z 

dimensions were approximately 25 nm (~100b), 21 nm and 20 nm, respectively.  The void 

consisted of 59 vacancies and had diameter, D, equal to 1 nm.  Details of techniques to create 

the dislocation, visualize its core atoms, induce its motion and calculate stress and strain are 

presented in [2].  Here we just mention a few details. 

 In the MS simulations, the dislocation moved due to resolved shear strain, γ, applied in 

increments ∆γ.  The potential energy of the model was minimized by atomic relaxation after 

each increment, and the potential energy and the applied shear stress, τ, corresponding to the 

strain were then calculated for that set of atomic coordinates.  The atomic positions obtained 

in this way represent the equilibrium configuration of the dislocation interacting with the void 

at each value of τ and γ, and are therefore the atomic-level equivalent to the dislocation line 
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shape calculated by linear elasticity theory.  To check the effect of the magnitude of ∆γ, 

simulations were performed with ∆γ equal to either 10
-4

 or 5x10
-5

.   

 Before proceeding, we recall the energy contributions analysed in the original paper 

[1].  In MS simulations, the incremental applied work δWapp and the change in potential 

energy dUpot are coupled through the equation δWapp = ∆Upot + δQ, where δQ is the heat 

extracted from the system in order to keep it at temperature T = 0 K.  It accounts for all 

irreversible processes in the simulation [12], namely work against the lattice friction Wpl and 

the annihilation of a dislocation segment inside the void.  The interaction energy (Eint) can be 

deduced from the relation Eint  = Upot – Ecurv  – Eel , where Ecurv is the energy necessary to bend 

the dislocation before it unpins from the void and Eel is the energy of the elastic deformation 

of the model due to the applied shear stress.  

 MD simulations were carried out for the temperature range 1 to 600 K at values of the 

applied strain rate, 
 
&γ , equal to 1x10

6
 s

-1
. Additional simulations for 600 K were also carried 

out for  
 
&γ  = 5x10

6
 s

-1
.  At these strain rates the steady state dislocation velocity is 2.0 and 

10.0 ms
-1

 for the model size used. The total simulation time varied from 1.6 to 16 ns.  During 

this time, the temperature of the model, calculated from the average kinetic energy of all 

the atoms, rose by less than 1 K. This increase consists of two contributions. One is due to 

friction in dislocation motion and depends on the dislocation velocity. The dislocation 

accelerates quickly when attracted into the void and when leaving it at the maximum stress. 

The other contribution arises from the decrease in potential energy when the dislocation 

enters the void, losing part of its length, and leaves it, releasing the accumulated elastic 

energy. The latter is the biggest contribution in the cases considered but occurs after release of 

the dislocation and does not affect the dislocation-void interaction analysis. The local 

temperature increase due to potential energy change is an unavoidable yet realistic 

phenomenon. This thermal energy diffuses over the surrounding atoms but does not 

homogenize completely within the simulation time. There was practically no change in the 

temperature near the crystallite boundaries in these simulations and it was unnecessary to 

apply a thermostat.     

For statistical treatment of the results, some simulation conditions were repeated up to 

five times but with different initial atomic velocity distributions.  The principal outputs of the 

MD simulation for a given temperature are the dependence of applied stress, potential energy 

and kinetic energy on applied strain and/or time.  
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3.  Results of MS simulations 

 

3.1. Dependence of stress and energy on applied strain 

 

Some results of an MS simulation (T = 0 K) are seen in Figure 1, where τ versus γ is plotted 

in (a) and the potential and other energy changes are plotted against γ in (b).  The  shear strain 

γr denotes the reference state in which the dislocation is straight and penetrates the void 

through its centre.  It corresponds to τ equal to the friction stress, τf, for the edge dislocation, 

which is close to 23 MPa.  

 

Fig. 1 : about here 

 

 

 At this stress level, the potential energy is not minimum, for although the curvature energy is 

zero, the elastic energy is Vτf,
2
/2µ , where V is the volume of the simulation box and µ  the 

shear modulus. At γr, Eint, is equal to -7.5 eV, compared to the value -17.4 eV found in the 

data for a 2 nm void [1].  The former value is approximately half of the latter, demonstrating 

that the interaction energy, deduced from the analysis in [1], is a characteristic of the 

dislocation-obstacle interaction and independent of the simulations conditions. This 

interaction energy is basically needed to form the two steps on the void surface created when 

the dislocation enters and shears the void. However, the difference between -7.5 and half of -

17.4 is due to the fact that the energy of the surface step on the 1 nm void is not simply half 

that of the step on the 2 nm void.  

 

3.2. Critical strength of obstacles of finite size  

 

It is clear that during pinning of the dislocation by the void, mechanical equilibrium prevails 

around the obstacle.  Unpinning occurs when the obstacle experiences an effective force due 

to the dislocation curvature that is larger than it can sustain.  The conventional picture of this 

equilibrium is that of point obstacles [14,16], depicted in Figure 2a. The line tension (LT), Γ, 

on each side of the obstacle generates a resultant force F = 2Γ cos(ϕ/2), where cusp angle ϕ  

reflects the obstacle strength. With an increasing line curvature, ϕ decreases and F increases.  
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When the force exceeds the resistance of the obstacle, Fmax, the dislocation unpins from the 

obstacle. 

 

Fig. 2 : about here 

 

 This scheme has been used in theories of alloy strengthening, for a review see [17]. It 

was also used for the treatment of the Orowan mechanism [18] by employing a line tension 

that accounts properly for the dipole interaction between dislocation arms around the particle. 

However, the line tension approximation suffers from three principal limitations.  (i) It is not 

easy to extend it to obstacles of finite size.  The critical stress it gives with the actual ϕ for a 

void is not in good agreement with MD results [13].  (ii) The method implies Γ can be defined 

in the vicinity of the obstacle, but this is uncertain because the LT in the vicinity of the 

obstacle depends on the orientation of the line [19] and is not the same as that due to line 

curvature [20]. (iii) The force balance on a dislocation segment is not necessarily parallel to 

the segment direction [20].  A different method can be used to resolve these issues [21]. In the 

case of an obstacle in a periodic row, as shown in Figure 2b, imagine the obstacle to be 

equivalent to a dislocation segment of length w which experiences a stress preventing its 

motion. The obstacle experiences a force composed of two components: (a) the force τbw 

resulting from the applied stress τ, where w the shortest distance between dislocation arms 

touching the obstacle, as defined in Figure 2b, and (b) the force resulting from the curvature 

of the dislocation when the applied stress exceeds the friction stress, τf, resulting from the 

lattice friction on the edge dislocation. The second component is given by lb(τ − τf), where l is 

the spacing between obstacles shown in Figure 2b. The following equation is imposed by the 

condition of force balance: 

 

feff
w

l

w

l
τττ −







 += 1 ,      (1) 

 

where τeff is the ‘effective’ stress experienced by the obstacle when the applied stress is τ.  

Mechanical equilibrium prevails as long as the obstacle counterbalances τeff with an equal 

resistance in the opposite direction.  At T = 0 K unpinning proceeds when τeff exceeds the 

maximum obstacle resistance, o

cτ , which can be deduced from Equation (1) when the applied 

stress reaches its maximum τmax. 
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In most cases, l is much larger than w and this leads to the following approximation:   

 

 ( )
f

o

c
w

l
τττ −= max

.       (2) 

 

 It should be noted that Equation (2) is valid as long as the friction stress is independent 

of the dislocation character. Therefore, this method cannot be applied when a screw 

dislocation segment is formed during the interaction, which is the case for large void size [5], 

because of the large Peierls stress known to exist for the screw dislocation in iron at room 

temperature and below [8]. The idea of connecting unpinning to a critical effective stress 

rather than a critical force was already used successfully in dislocation dynamics simulations 

to predict strengthening by different mechanisms [22,23].  Here, we extend the method with 

the help of MD simulations to characterise void strength. 

 In the case of voids, the effective stress is associated with the stress felt by atoms on 

the void surface on both sides of the slip plane, tending to create the missing dislocation 

segment of length w that has been annihilated inside the void.  The other term, o

cτ , can be 

interpreted as the maximum resistance of the lattice to the creation of an edge dislocation at a 

curved free surface. o

cτ  should then be a characteristic material property and must be 

independent of the void size and simulation conditions.  This point can be checked using 

Equation (2) if the critical shape of the dislocation is known for different void sizes and 

dislocation lengths. 

 An MS study for different void sizes was reported in [5].  In order to check the 

validity of our method, we select the cases of relatively weak obstacles, i.e. D = 0.9, 1, 1.5 

and 2 nm, for which unpinning is controlled by dislocation curvature.  Data for larger voids 

cannot be used because MS simulations show that straight screw dipoles are generated at the 

obstacle before unpinning, which connects the unpinning process to the mobility of screw 

segments. For the different sizes considered, the values of w are taken to be equal to 4a 3/6 , 

5a 3/6  and 6a 3/6 , where a is the lattice parameter. These values correspond to the 

integer number of interplanar spacings along ]211[  that are closest to the observed critical 

width. According to Equation 2, a plot of τmax versus w/l should give a straight line with 

intercept τf (approx. 23 MPa) on the τmax axis.  This is tested in Figure 3, where MS results for 
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τmax obtained in [5] with simulation boxes with length along the y axis equal to either 42 or 

83 nm are plotted as circles or rectangles, respectively.  

 

Fig. 3 : about here 

 

 The error bar for w/l is estimated from the uncertainty in determining w due to width of the 

dislocation core in visualization of core atoms.  The dashed line represents the best linear fit 

passing through the point (0, τf ).  It is seen that the MS data are well aligned with the dashed 

line. The maximum obstacle resistance, o

cτ , given by the gradient of the line is constant 

(4230 MPa) and therefore characteristic of the strength of voids, independent of D and L.  It 

will be seen that the value o

cτ  = 4230 MPa is important for our treatment. 

 

4.  MD simulations results 

 

Thermodynamic analysis at finite temperature is complex since thermal activation introduces 

a time-dependence into the interaction process and quasi-static treatment is no longer valid.  

However, the first law of thermodynamics for energy conservation is still valid, but with the 

difference that the heat generated is not extracted from the system.  This leads to an increase 

in temperature, ∆T, of the system.  

 The major contribution to this heat is dissipated work due to lattice friction [1].  It 

increases with decreasing temperature. The maximum value corresponds to the heat extracted 

from the system in MS simulation. The corresponding change in ∆T would be given by  

 












∆−=∆ ∫ pot

v

UdV
C

T
tγ

γτ
0

1
,        (3) 

 

where Cv is a heat capacity at constant volume, dγ  the increment of applied strain, γt the total 

shear strain and ∆Upot the difference in the potential energy between the beginning and end of 

the simulation. The term in brackets in Equation (3) is the difference between the total 

mechanical energy provided to the system and the change in the potential energy, which 

corresponds exactly to the extracted heat. This heat amounts to 7.8 eV, which corresponds to 

∆T < 1 K at the end of the simulation. Since this heat is extracted, the transformation is 
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isothermal at 0 K. In MD simulations, the computed friction stress is so low (see observation 

(i) below) that it is difficult to assign a finite value to it. Even if the dissipated heat remains in 

the vicinity of the moving dislocation, the change in temperature in this region would be 

small. It is clear that this change can be neglected and the MD simulations, although 

irreversible, can be considered to be carried out at constant temperature and pressure, as a 

consequence of the relatively small friction stress on the edge dislocation. 

 To illustrate the effect of temperature, Figure 4a shows plots of stress versus strain for 

six different temperatures at the same applied strain rate and Figure 4b shows the four 

independent simulations at 300K and the same strain rate.  

 

Fig. 4 : about here 

 

Several effects can be distinguished. 

(i)  τf, which is 23 MPa at T = 0 K, decreases rapidly with increasing T, thereby confirming 

that the dissipated heat can be completely neglected.   

(ii)  τmax decreases with increasing T, which is the signature of thermal activation. 

(iii)  The pinning time decreases with increasing T. 

(iv)  The behaviour of the system is markedly stochastic, since the response is not identical in 

the independent simulations carried out at the same temperature. 

Thus, unpinning occurs at different stress levels and different loading times.  The latter is a 

specific feature of thermal activation. The amount of mechanical work necessary for 

unpinning is not the same in the different simulations and so a rigorous analysis should 

account for this. It will be seen in the following that the temperature effect and thermal 

activation can be analysed only on the mesoscopic scale. By ‘mesoscopic’ we mean the scale 

on which the atomic nature of the material is smoothed and replaced by other contiunuum 

models such as elasticity, elasto-plasticity, etc. For example, it is typically the scale used in 

dislocation dynamics simulations. 

 

5.  Thermodynamic analyses 

 

5.1. Free energy and the reaction coordinate 

 

Deleted:  
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At the mesoscopic scale, the atomic-level parameters should be replaced by homogenous 

variables. As the applied stress increases during straining from the reference strain γ = γr, 

effective stress given by Equation (1) increases. This leads to relative displacement of atoms 

above and below the slip plane at the void surface, generating a local shear. A convenient way 

to describe the progress of the interaction is to introduce a scalar variable, ξ, representing the 

interaction coordinate, see Figure 5. However, it is difficult to assign a precise physical 

meaning to ξ in our case since atomic displacements are not restricted to the atomic rows 

belonging to the void surface. 

 

Fig. 5 : about here 

 

 Following the discussion above, the transformation can be considered isothermal at 

constant pressure.  The system potential is thus the Gibbs free energy, G, [24] and not the 

enthalpy.  Figure 5 is a scheme of the interaction giving the evolution of the change ∆G(τeff = 

0) in G as a function of ξ in the absence of stress. Initially the system is in its ground state 

labelled I. To overcome the whole barrier, the free energy ∆Gmax should be provided in order 

to bring the system reversibly to its saddle state B.  The derivative of the free Gibbs energy 

with respect to ξ gives the resistance stress τlattice, i.e. ∂∆G(τeff = 0)/∂ξ = bwτlattice.  A 

schematic representation of τlattice is depicted in Figure 5.  Under the effect of an applied 

effective stress τeff, the system potential ∆G(τeff ) evolves due to the work done by the 

effective stress, see Figure 5, and is now characterised by a new ground state labelled A at ξ 

where τlattice = -τeff.  Also, the saddle state becomes S and the energy barrier decreases to 

∆G(τeff ) because of the work done by τeff during the transition from state A to state S.  The 

system would stay at state A forever at 0 K.  The unpinning of the dislocation occurs only 

when the effective stress is increased to its critical maximum value o

cτ . At a temperature 

greater than 0 K, there is a non-zero probability for the missing free energy ∆G(τeff ) to be 

supplied by the rest of the crystal, leading to the release of the dislocation. 

 It is important to note that the free energy profile and the corresponding reasoning are 

valid for quasi-static progress of the reaction. This, of course, is not the case during the 

thermal activation event, when the transition occurs in a time interval of the same order of 

magnitude as the period of atomic vibration [25].  The reaction coordinate has to be 

reconsidered correspondingly as a function of the inertial effects, which, to our knowledge, is 
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not covered by any theoretical or simulation investigation reported in the literature.  This is 

the main problem of all approaches tending to estimate the activation energy directly from the 

Gibbs free energy profile [9,26,27].  The approach proposed in this paper for determination of 

the activation energy allows this difficulty to be avoided.     

   

5.2. Connection with statistical dynamics 

 

 

Let us restrict our system to a small volume of atoms Ω surrounding the void.  This volume is 

in thermal equilibrium with the rest of the crystal at temperature T.  Each MD simulation can 

be considered as a sample path from an initial state I at time t = 0 to the saddle state S at t = 

∆t, see Figure 5. An appropriate choice of these states facilitates the theoretical treatment.  In 

our case, the natural choice for the initial and final states corresponds to the reference state γr 

and the saddle state, respectively.  The latter corresponds to the state of the maximum Gibbs 

free energy. Within every such path, work W is done by the effective stress on the volume Ω.  

According to Jarzynsky [10,11] and Crooks [12], under the condition of microscopic 

reversibility, the increase of the system potential can be obtained by averaging the work done 

on the system over all sample paths: 

 

( )WGGG ISmax β
β

−−=−=∆ expln
1

,    (4)  

 

where β is the temperature parameter (kT)
-1

 and k is the Boltzmann constant.  The brackets 

< > in Equation (4) denote the average over all paths.  The average change in the system 

potential is, in general, less than the entire work done on the system, because of dissipation.  

But Equation (4) stipulates that the modification of the system potential is a simple function 

of the average over all possible paths of the work done on the system.  In our special case, all 

paths are characterised by the same initial and final states.  The difference between GS and GI 

is therefore exactly equal to the height of the energy barrier ∆Gmax, see Figure 5.   

 Among the different paths in Equation (4), some of the statistical systems acquire the 

additional quantity of energy corresponding to the missing energy, ∆G = ∆Gmax – W, due to 

thermal fluctuations and therefore reach the saddle state. Once a system acquires ∆G from the 

surrounding crystal, it undergoes an irreversible transformation beyond the saddle state B.  

This is why all paths that can be computed through MD simulations are restricted to only 

Page 11 of 30

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 12 

paths in which the system has acquired the activation energy.  In contrast, the average in 

Equation (4) covers all possible paths and not only paths selected in MD simulations. This is 

the reason behind the difference between the expected change in energy ∆G ≡ W and the 

acquired value ∆Gmax.  

 Following the dynamical approach and equilibrium statistics [28], the probability of 

acquiring an additional energy ∆G is proportional to the Boltzmann factor exp(-β∆G).  The 

exact jump rate ω [4] can then be given by ω  = ν exp[-β ∆G], where ν is a frequency 

parameter to be discussed later.  This rate equation stipulates that the probability of unpinning 

depends only on the instantaneous chance to receive ∆G from the rest of the crystal.  During a 

time increment dt, the infinitesimal probability of acquiring ∆G is:  

 

 dp = ν exp (-β ∆G) dt       (5) 

 

The probability p, increasing with time, reflects the chance that every one of the statistical 

systems passes through the activated stress.  

 

5.3. Activation energy under constant stress conditions 

 

 

We investigate here the unpinning process in the simple condition of constant effective stress, 

τeff = τc. Since τc is lower than o

cτ , the system is in a stable equilibrium state called the ground 

state A in Figure 5.  The system Ω is in thermal equilibrium with the rest of the crystal at 

finite temperature T.  We assume that at t = 0 the volume Ω is in its ground state A, 

characterised by a given value of the thermodynamic potential.  The dislocation unpins when 

thermal fluctuations provide the missing mechanical energy ∆G.  Here we should note that (i) 

the energy barrier is assumed to be solely a function of stress and (ii) ∆G is a function of the 

effective stress defined in Equation (1), and not of the applied stress.  This point is important 

since most treatments reported in the literature assume a dependency on the applied stress (for 

a review see [25,29]). Considering ∆G to have a dependency on the applied stress is not exact 

in the case of localised obstacles. It leads to unrealistic values for the activation volume, as 

will be seen later.  

 Since τeff is constant, there is no reason for the Boltzmann factor not to be uniformly 

distributed over time. According to the transition state theory and dynamical theory [25,28], 
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the average survival time, or the average time for the system to stay in the half space 

containing the ground state A, is simply the inverse, ω-1
, of the reaction rate.  This survival 

time can be considered as the average incubation time of the unpinning process:  

 

 < ∆t > = ν−1
 exp [β ∆G(τc)].      (6) 

 

Values of ∆t could be measured from MD simulations performed at constant applied stress 

and the Boltzmann factor, exp [-β ∆G(τc)], then deduced from the average <∆t> using 

Equation (6).  However, the simulations in the present work used constant applied strain rate 

loading and required the following treatment. 

 

5.4. Definition of the critical stress in MD simulation performed at constant strain rate  

 

For simulations performed under conditions of fixed applied strain rate, a definition has to be 

assigned to the critical stress τc since the applied stress, and consequently the effective stress, 

varies with time.  When τeff is not constant, Equation (5) is only valid during an infinitesimal 

time increment dt.  Here we have to distinguish between the maximum of the effective stress, 

τmax, related to the maximum of the applied stress through Equation (2), and the critical stress 

τc, characteristic of the unpinning process. This issue was first addressed in [8], where a 

definition of τc was provided.  In MS simulations, the critical stress is equal to the maximum 

stress because the process is quasi-static, but at finite temperature the thermally-activated 

unpinning depends on time, which precludes the critical stress from being considered equal to 

the maximum stress.  During loading from γr in MD simulations, the effective stress increases 

with time, which leads to a rapid increase in the accumulated jump probability. The unpinning 

occurs after an incubation time ∆t.  The critical stress is by definition the constant effective 

stress that would have provided the same jump probability during the same incubation time 

∆t.  This leads to the following expression:  

 

[ ] ( )∫
∆

∆−=∆−∆
t

effc dtGGt
0

)(exp)(exp τβτβ ,    (7) 
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in which τeff tends to τmax when t tends to ∆t. Since the Boltzmann factor is a monotonic 

increasing function of τeff, it turns out from Equation (7) that τc is always less than τmax.  The 

difference between the two quantities depends on the temperature and the activation volume, 

which accounts for stress sensitivity of activation energy. In order to make progress in 

estimating the critical stress, we have to postulate a functional form of the activation energy.  

As a first approximation, we can develop ∆G in the vicinity of τmax by ∆G = C – V
*τeff, where 

C is constant (not to be confused with the value of ∆G at zero stress) and V
*
 the activation 

volume. It is important to underline here that our concept of the activation volume does not 

correspond to the apparent activation volume measured in experiment, Vapp. The connection 

with our definition would be V
*
 = Vapp×(w/l). Equation (7) allows us to deduce the critical 

stress: 

 

t
effc V

V ∆
= )exp(ln

1 *

*
τβ

β
τ ,     (8) 

 

where the integral in Equation (7) is replaced by its average value over the incubation time.  

The variation of V
*
 in Equation (8) is relatively weak compared to the variation of τeff.  This 

allows us to deduce τc using a rough estimate of V
*
.  In our case, it can be set equal to wb

2
, 

which accounts for the interaction range of the process.    

 In order to illustrate the difference between τmax and τc, consider the case where the 

effective stress increases linearly with time from 0 to τmax.  The average in Equation (8) can 

then be derived analytically: 

 

 [ ]1)exp(
1

)exp( *

*

* −= max

max

eff V
V

V τβ
βτ

τβ .   (9) 

 

It is easy to check that for typical values of β, V
*
 and τmax, the exponential term in Equation 

(9) is dominant.  The critical stress is then given by 

 

 
kT

V

V

kT
c

max

*

*max ln
τ

ττ −= .      (10) 
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Equation (10) confirms that τc is less then τmax and shows clearly that the difference between 

them increases with temperature.  On the other hand, when the temperature tends to zero, τc 

tends to τmax. This asymptotic behaviour is expected since, in the absence of thermal 

activation, the unpinning proceeds only when the effective stress reaches the maximum stress.  

 Here we have to underline another difficulty in estimating the critical stress.  In 

Equation (8), τc provided by an MD simulation is only an estimate of the statistically 

representative critical stress.  By repeating the MD simulation at the same strain rate and 

temperature, we obtain different estimates of τc.  However, averaging should be carried out in 

the probability space and not in the stress space because the stochastic feature of the 

activation has its origin in the probability of occupying a given state in the phase space.  This 

probability is proportional to the Boltzmann factor, imposing an exponential dependency on 

the stress.  The arithmetic (linear) average in the stress space is therefore not justified [9].  As 

a result, the value of τc at a given strain rate and given temperature can be calculated from 

 

 
nt

effc V
V ∆

= )exp(ln
1 *

*
τβ

β
τ ,     (11) 

  

where the inner average is to be carried out over time during every MD simulation, while the 

outer average is to be taken over the number n of repeated MD simulations. The validity of 

this approach is conditioned by the fact that the repeated MD simulations are independent. 

The formula in Equation (11) is the same as that developed in [8].  The validity of the 

treatment in the latter work is thus established under an implicit condition: there is no 

correlation between the successive kink-pair nucleation events.  

 The treatment above has been used to calculate the effective stress in our simulations.  

The results are shown in Figure 6, where it is seen how the maximum and the critical effective 

stress vary with temperature. However, in order to show the spread of values of τc, we have 

used Equation (8) rather than Equation (11) and the different values obtained at each 

temperature are shown in the figure.  It can be seen that the spread of values of τc at a given 

temperature is quite small, so the convergence of the different estimates of τc is sufficiently 

fast for our system.   

 

Fig. 6 : about here 
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 As expected, the difference between the stresses τmax and τc tends to zero as T tends to 

0 K.  The difference increases rapidly with increasing T at low temperature, reaching an 

almost constant value of 0.7 GPa in the range 100 to 600 K. There are two reasons explaining 

this constant shift at high temperature. As can be seen in Eq. (11), the efficiency of the 

thermal activation is proportional to ln(τmax). Also the slope of the function (kT)ln(kT) 

decreases strongly with kT. It is thus easy to understand why the difference between τmax and 

τc should saturate with increasing temperature. This difference, however, amounts to 20 to 

25% of τc.  Consequently, it cannot be neglected and τc should not be confused with τmax [9].  

In other words, the unpinning process is not only determined by the maximum stress, but 

depends also on the time spent to reach this stress.  

 

5.5. Calculation of the activation energy 

  

The aim of this section is to provide a method for estimating the activation energy as a 

function of the critical stress.  The unpinning process depends on three factors, namely the 

effective stress, the temperature and the deformation rate (through the incubation time), but 

only two are independent.  Equation (6) shows how these parameters are connected.  Since in 

MD simulations the temperature is almost conserved and <∆t> can be estimated from 

different independent simulations, it is possible, in principle, to evaluate the activation energy 

using Equation (6), provided that the frequency parameter ν is known.  This question has been 

addressed several times in the literature, for a review see [4,25].  The effect of the kinetic 

energy on the activation rate can be considered through the change in the vibrational free 

energy of the atomic row between state A and S [30].  The determination of ν for localised 

obstacles is complex and involves different characteristics [30]: strength, size, spread, etc.  It 

also involves the vibrational spectrum of the bulk material. Large difference in the estimations 

of ν can be found in the investigations reported in the literature.  

 However, since the frequency parameter appears as a pre-exponential in Equation (6), 

only an order of magnitude estimate for its value is needed for the determination of the 

reaction rate. The commonly-accepted way of doing this is to scale the Debye frequency, νD, 

by the length of the vibrating atomic row [31].  The frequency ν can be represented as the 

frequency of the transverse wave of length equal to that of the effective obstacle, which, in 

our case, is clearly equal to w, the smallest distance at which the dislocation is kept pinned, 
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see Figure 2.  Since the result of activation is formation of the missing dislocation segment, 

the vibration frequency of an atomic row of length w should be close to that of a dislocation 

segment of length w.  By this procedure, we have ν ≈ νDb/w.  However, the vibrating atomic 

row belongs to the void surface, where the frequency spectrum is lower than that in the bulk 

[32], and the frequency should be corrected accordingly. As a first approximation, the slowing 

of atoms in the neighbourhood of the surface can be accounted for by assuming only half of 

the bulk frequency.  For the situation where the stress is constant, Equation (6) can then be re-

written to estimate the activation energy: 

 









>∆<=∆

w

b
tG D

c
2

ln
1

)(
ν

β
τ .      (12) 

 

 But for simulations at constant strain rate, the stress varies from τf to τmax during 

loading. This is why the concept of the critical stress was needed in section 5.4 to provide the 

same jump probability as that measured during constant stress simulations. Equation (12) 

should thus be coupled to Equation (11).  In other words, for every set of simulations 

performed at a given temperature, we have to evaluate independently the critical stress using 

Equation (11) and the activation energy using Equation (12). We then construct the two 

functions τc(T) and ∆G(T) in order to deduce the desired function ∆G(τc).  

 The variation of ∆G with T obtained using Equation (12) is shown in Figure 7. The 

linear proportionality frequently observed in experiments on BCC and HCP metals such as 

iron [33, 34], zirconium [35] and titanium [36] is clearly confirmed in our results.  This 

provides evidence for the validity of the two hypotheses that (i) the effect of stress and 

temperature on the attempt frequency is negligible and (ii) the profile of the energy barrier, 

i.e. the mechanical work necessary to overcome the barrier without the help of thermal 

activation, is independent of temperature.  The linearity can be described by the relation ∆G = 

CkT, where C is a constant close to 8.1.  

 

Fig. 7 : about here 

 

 It is also clear that, as with the critical stress, there is no dispersion in the values of the 

activation energy computed from the independent MD simulations performed for the same 

temperature.  However, two sets of points are clearly distinguishable for T = 600 K.  One is 
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consistent with the other temperatures, i.e. C = 8.1, the other is 19% lower with C = 6.6. This 

stems from the fact that the two sets of simulations were performed with different strain rates.  

The values C = 8.1 and 6.6 correspond to 
 
&γ  = 10

6
 and 5x10

6
 s

-1
, respectively.  The change in 

activation energy confirms our assumptions.  Increasing the strain rate decreases ∆G because 

a faster increase of the applied stress leads to a decrease in the incubation time.  

 Combining data from Figure 6 for τc with that for ∆G(τc) from Figure 7 enables us to 

determine the dependence of the activation energy on the critical stress, as shown in Figure 8. 

Over most of the range, the dependence is almost linear and consistent with a constant value 

of the activation volume via the relation ∆G(τc) ∝ -V
*τc, which was used to deduce Equation 

(6).  The data give V
*
 = 3.6 b

3
, which is close to our estimate made for the evaluation the 

critical stress. This ensures that the procedure for the estimation of the critical stress is 

compatible with that used for the evaluation of the activation energy. Beyond the linear region 

of the plot in Figure 8, ∆G(τc) tends to zero when τc approaches the value found for T = 0 K. 

 

Fig. 8 : about here 

 

 The values of the activation energy presented above were measured for critical 

stresses larger than 2.5 GPa.  The activation volume does not appear to increase as rapidly as 

expected when the critical stress falls below this value and tends to zero. Creation of the 

missing dislocation segment at the void surface should be accompanied, in principle, by a 

long-range perturbation of the lattice.  Although the corresponding mechanical work would 

still be finite, the activation energy should increase rapidly for low stress [4].  In order to 

investigate the low stress regime, MD simulations should be carried out at higher temperature 

and/or much lower strain rates.  Unfortunately, this is not feasible with current computer 

resources.  

 

6.  Conclusions 

 

It has been shown that a criterion for the obstacle strength of voids, expressed in terms of a 

critical local effective stress, can be derived from molecular statics calculations carried out to 

simulate a crystal at temperature T = 0 K.  The critical effective stress was found to be 

independent of the void size, the dislocation length and other simulation parameters. The 

efficiency of thermal activation in decreasing the critical effective stress is found to be a 
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function of the strain rate and the temperature, via the dislocation-void interaction time and 

the Boltzmann factor, respectively.  At a given temperature and strain rate, the activation 

energy is a function of the effective stress alone. Determination of this activation energy is 

only possible when the critical stress is defined in the sense that it provides the same 

unpinning probability during the interaction time as the probability integrated oven the 

measured stress-strain curve. 
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Figure captions 

 

Figure 1.  Data from an MS simulation. (a) the shear stress τ versus the shear strain γ and (b) 

change of the potential, elastic, curvature and interaction energies versus γ.  

 

Figure 2.  (a) Conventional picture of mechanical equilibrium for a point obstacle in the line 

tension approximation.  (b) Equilibrium around a finite size obstacle.  

 

Figure 3.  The maximum applied stress as a function the ratio w/l for voids (see text for more 

detail).  The dashed line is the best linear fit. 

 

Figure 4.  Stress-strain plots for (a) six temperatures and (b) four simulations for T = 300 K. 

 
&γ  = 10

6
 s

-1
 in all cases. 

 

Figure 5.  Schematic plots of interaction profiles as a function of the interaction coordinate, ξ.  

They represent the change of system energy at zero effective stress, the system energy at a 

given effective stress and the effective stress needed to push the interaction to a given ξ. We 

simplified the plots by considering the friction stress to be zero. 

 

Figure 6.  Dependence of the maximum stress, τmax, and the critical effective stress, τc, on 

temperature for all MD simulations.  The values of τc were calculated from Equation (9). 

 

Figure 7.  Variation of ∆G with T obtained using Equation (13). 

 

Figure 8.  Variation of the activation energy as a function of the critical stress, τc, obtained 

from Figures 6 and 7. 
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