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Abstract 

 
A corrected version of the Microscopic Elasticity (ME) theory is proposed. Previous 
versions of this theory, like that of Khachaturyan, contained a discrepancy which caused 
severe problems in certain applications. One such case is the simulation of precipitation 
of secondary phases with long-ranged elastic interactions: Monte-Carlo simulations using 
the published ME theories to account for the elastic stresses profoundly fail to predict the 
precipitation of plate-like particles, like Guinier-Preston-Zones in Al-Cu-alloys. The 
quoted discrepancy is resolved, so that Monte-Carlo simulations using the new ME 
theory comply with all theoretical expectations. The revised theory also introduces new 
parameters such that real materials can be considered more accurately. 

 
Keywords: microscopic elasticity theory; precipitation 

 
 

1. Introduction 

 
To perform a Monte Carlo (MC) simulation, a description of the energy of an atomic 

configuration is required. A very popular method is found in the use of a cluster 

expansion. An advantage of this approach remains its low computational cost for a 

simulation at the atomic scale. In a cluster expansion, the lattice positions are usually 

fixed such that they represent a perfect lattice. This rigid lattice is not adapted for the 

modelling of a lattice containing defects. But when modelling precipitation near a 

dislocation, for instance, a different approach should be considered. In a continuum 

medium, Hu and Chen [2] used the Macroscopic Elasticity theory of Khachaturyan to 

consider the dislocations' elastic stresses. At the atomic level, the Microscopic 
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Elasticity (ME) theory of the same author [1] can be employed, according to current 

understanding. But in MC simulations by the present authors using the ME theory as 

defined by Khachaturyan, severe problems occurred.  

In the quoted simulations, the precipitation of Guinier-Preston zones in AlCu 

alloys was to be simulated. As an example, Guinier-Preston zones of type I are single 

layers of Cu atoms in {100} planes. Their occurrence is known to be based on the 

large size mismatch between Al and Cu atoms: this mismatch prevents the formation 

of coherent voluminous particles because the corresponding elastic energy scales with 

its volume, and is too high. In contrast, the formation of plate-like precipitates is not 

prevented by elastic strains because these are similar to those of dislocations and 

hence scale more favourably with length. But in the quoted MC simulations using 

Khachaturyan's ME theory, always spherical precipitates emerged, even when the size 

mismatch between Al and Cu atoms was greatly exaggerated. This is a strong 

contradiction to both theoretical expectation and to well-known experimental 

findings. The motivation for the present work was to find the cause for the 

discrepancy. It lead to the development of a corrected version of the ME theory. 

To assess the quality of the ME theory (starting with the original), the elastic 

energies were also calculated in a more straightforward way for comparison. In this 

approach, the energy changes in every time step of an MC simulation were derived 

from a relaxation simulation of "atoms" interacting by harmonic potentials. The 

relaxation was done using Molecular Statics (MS), i.e. a Molecular Dynamics [3] 

program combined with a conjugate gradient algorithm [4] for the atomic relaxation. 

When harmonic potentials are employed for the description of the atomic interactions, 

the energy of a bond between two atoms of nature X and Y is given by: 

VX−Y(∆x)  =  EX−Y  +  
κX−Y

2
 ∆x − dX−Y( )2

      (1) 
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where EX-Y represents the ground energy, κX-Y the bond stiffness, and dX-Y the 

equilibrium length of the bond between atoms of type X any Y. The total energy of a 

configuration is then given by: 

E
(MS)  =  1

2
r

∑
r′≠r

∑ En(r ),n(r′) +
κn(r ),n(r′)

2
r′ − r − dn(r ),n(r′ )( )2 

 
 

 

 
    (2) 

where the field n(r) indicates the nature of the atom sitting at position r. Compared to 

the application of the ME theory, the relaxation simulation and evaluation of equation 

(2) takes much more time to compute. But the MS method and its implementation are 

very simple and therefore virtually guaranteed to be free of programming or 

interpretation errors. Therefore this method is useful to assess ME theories (and 

implementations thereof).  

The coupled MC-MS simulations of precipitation in AlCu alloys in fact 

yielded the formation of Guinier-Preston-zones of type I, in full agreement with both 

theoretical expectation and experimental findings. Therefore the ME theory has been 

revisited. 

2. Derivation of the corrected ME theory 

 

2.1 The binary solution case 

The aim of the ME theory is to provide an evaluation of the change of stored elastic 

energy by a configuration change, like in Fig. 1 where the solute atom 13 exchanges 

its position with the matrix atom 9. This atomic move modifies the local elastic strains 

and consequently changes the amount of elastic energy stored in the lattice. 

 
- insert fig. 1 about here - 

 
 

To calculate the change of stored elastic energy, the transformation from I to II 

is decomposed in three steps (Fig. 2). In a first step, the atoms are repositioned from 
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their equilibrium positions (no stresses) to their positions in the reference lattice 

(symbolized by dashed lines in Fig. 2). The reference lattice corresponds to the 

undistorted, periodic lattice, in which all atoms experience forces from their 

neighbours. This step requires adding the energy ∆EI→I’ to the system. Then, the 

solute atom 9 and the matrix atom 13 are exchanged in the reference lattice. This step 

also modifies the energy of the system by a value ∆EI’→II’. Finally, configuration II' is 

relaxed to II, where the atoms reach their new equilibrium positions. This last step 

reduces the energy of the system by ∆EII’→II. 

 
- insert fig. 2 about here - 

 
 
 

The first and the third steps are similar in nature: II’→II corresponds to a 

relaxation while I’→I corresponds to the inverse of a relaxation. Hence, the energy 

changes by these transformations are calculated the same way. When rI´ represents the 

atomic positions in configuration I’, the positions in I can be described as rI´+u, where 

u are the relaxation displacement vectors. Considering the harmonic approximation, 

the energy of configuration I is evaluated by a first order Taylor expansion: 

E I( ) =  E I′( ) −  F I′( )⋅ u  +  1
2

u T ⋅ D ⋅ u( )      (3) 

where F(I´) represents the net forces acting on the atoms in the reference lattice 

positions and D is the force constants matrix [6]. Since configuration I corresponds to 

an equilibrium state, the displacements u minimize equation (3), leading to F(I´)=D⋅u. 

By introducing the Green tensor G defined as G=D
–1, this can be transformed to 

u=G⋅F(I´), which in turn can be inserted for in equation (3) in order to eliminate the 

unknown displacements. Then the transition energy (∆E)I'→I from configuration I’ to I 

can be expressed by the forces F(I´):  
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∆E( )I′→I
 =  E I( ) −  E I′( ) =  − 1

2
F I′( )T

⋅ G ⋅ F I′( )( )     (4) 

The determination of (∆E)I’→I is not straightforward. The dimension of the 

vector F(I´) is 3N where N is the number of atoms contained in the configuration, 

making the size of the force constants matrix D to be 3N×3N. This large matrix size 

prevents from working in real space. But the determination of (∆E)I’→I becomes 

efficient in reciprocal space. The calculation is performed in the following for an alloy 

described by harmonic potentials. Using this description of the atomic interactions, 

only two parameters per bond type are necessary to evaluate the stored elastic energy 

of the configuration: the bond stiffness κ and the equilibrium length d of the bond. As 

the derivation of (4) in reciprocal space prevents from specifying different stiffness 

values (this aspect is discussed later on), all bonds are considered having the same 

stiffness κ. 

The first step in the evaluation of (∆E)I’→I consists in determining the net force 

F(r) felt by an atom located on the reference lattice I’ at position r. As already 

indicated, the atomic positions in this lattice correspond to the ones of the undistorted 

lattice without macroscopic stresses. When a solid solution is considered, this 

reference lattice has a lattice parameter aref which is a function of the solute 

concentration csol. A simple expression for aref valid for low solute concentrations 

reads 

aref  =  1− csol( ) amat  +  csol asol       (5) 

with amat and asol being the lattice parameters of the matrix and of a pure solute lattice, 

respectively. These lattice parameters are naturally linked to the equilibrium lengths 

of the pure element bond. In case of an fcc lattice, d=2–1/2
a. By definition, the 

reference lattice is not in equilibrium: the force acting on some atoms is not zero. As 
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illustrated in Fig. 3, three different values of interatomic forces f may act on an atom 

in the reference lattice: 

fmat −mat x( ) =  κ  2−1/ 2
aref − dmat−mat( ) x0         (6) 

fmat −sol x( ) =  κ  2−1/ 2
aref − dmat −sol( ) x0         (7) 

fsol−sol x( ) =  κ  2−1/ 2
aref − dsol−sol( ) x 0      (8) 

Here, x0 denotes the unit vector of x. The net force F(r) acting on an atom at position 

r by all neighbours is dependent on the local configuration. When all atomic 

interactions are limited to the nearest neighbours like with harmonic potentials, four 

cases are possible: 

(a) A matrix atom (No. 3 in Fig. 3-a) is only surrounded by matrix atoms. Each 

neighbouring matrix atom acts an interatomic force fmat-mat on atom 3 (repulsive if 

dmat-mat>2–1/2
aref as in AlCu). But the sum of the interatomic forces, the net force F, 

vanishes. 

(b) A solute atom (Fig. 3-b) is only surrounded by matrix atoms. Atom 3 senses 

attractive interatomic forces fmat-sol coming from the neighbouring matrix atoms. In 

such case, the net force felt by atom 3 also vanishes. 

(c) A matrix atom (Fig. 3-c) has one solute atom as a neighbour (or several ones). 

Here the net force does not vanish but is fnet=fmat-sol–fmat-mat, because a matrix-matrix 

interaction is removed and a solute-matrix interaction is added compared to the case 

(a).  

(d) A solute atom (Fig. 3-d) has one solute atom as a neighbour (or several ones). This 

time, atom 3 experiences a net force fnet=fsol-sol–fsol-mat because a solute-matrix 

interaction is replaced by a solute-solute one compared to the case (b). 

 
 
- insert fig. 3 about here - 
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An analytic expression for the net force F(r) compatible with the four cases 

described above is required to work in reciprocal space. A useful formulation reads 

F(r)  =  −  fmat −sol
net (r − r′) ⋅ c(r′) ⋅ 1− c(r)( ) 

r′

∑ −  fsol−sol
net (r − r′) ⋅ c(r′) ⋅ c(r)

r′

∑  (9) 

where fmat −sol
net = fsol−mat − fmat−mat  and fsol−sol

net = fsol−sol − fsol−mat  according to the cases 

(c) and (d), respectively, and c(r) represents the solute "concentration": c(r)=1 if a 

solute atom is located at r, and a matrix one if c(r)=0. In Khachaturyan's version of 

the ME theory, the net forces were wrongly accounted. In the expression of the 

relaxation energy ∆F6
relax  in [1] (p. 451), they were expressed for the case of a binary 

phase as a sum over r´ of the term fKanz.(r–r´)⋅c(r´), where fKanz. are the Kanzaki 

forces. This definition of the Kanzaki forces is incorrect because, as outlined above, 

they are not a function of (r–r´) alone only but also of position r, i.e., the nature of the 

target atom itself (atom 3 in Fig. 3). The Kanzaki forces accept two values in case of a 

binary solution, depending on the nature of the atom at r: fKanz. = fmat−sol
net  when the 

atom at r is a matrix atom, or (1–c(r))=1, and fKanz. = fsol−sol
net  otherwise. The missing 

distinction of these two cases by c(r) in the definition of the Kanzaki forces explains 

the failure of the previous ME theory mentioned in the introduction. At a theoretical 

level, one may understand the origin of the error as a wrong definition of the stimuli 

in the Green’s function analysis. When atoms showing a size misfit are considered, a 

stimulus actually corresponds to a small expansion or shrinking of an interatomic 

bond. Bus since a bond relates to two atoms, one has to count with care the stimuli. A 

simple spatial convolution involving the concentration field c(r) as in Khachaturyan's 

ME theory cannot achieve this task. This last statement is only valid at the atomic 

level. In the continuum, one can define a stimulus as the small expansion or shrinking 
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of a unit volume. Hence, the error only appears in the ME theory but not in the 

macroscopic theory of Khachaturyan, which is widely used in phase field modelling 

for example. 

The concentration field c(r) in real space has an image c
^

(k) in reciprocal 

space for a wave vector k restricted to the first Brillouin zone [7]. The transformations 

from one space to the other are defined by 

c(r)  =  1
N

  c
^

(k) ⋅ e i k⋅r

k

∑         (10) 

and 

c
^

(k)  =   c(r) ⋅ e−i k ⋅r

r

∑         (11) 

Using equation (9), the image of the net force in reciprocal space is 

F
^

(k)  = −     fmat−sol
net (r − r′) ⋅ c(r′)  

r′

∑
 

 
 

 

 
  ⋅  e− i k⋅r

r

∑

  −    fsol−sol
net (r − r′) − fmat−sol

net (r − r′)( )⋅ c(r′) ⋅ c(r)  
r′

∑
 

 
 

 

 
  ⋅  e−i k ⋅r

r

∑
  (12) 

The first term in equation (12) is easily derived because it represents a convolution in 

real space. Its expression in reciprocal space reads f
^

mat−sol
net (k) ⋅ c

^

(k)  [9] where 

f
^

mat−sol
net (k)  represents the image of fmat −sol

net (r)  in reciprocal space. On the other hand, 

the second term in (12) can’t be analytically simplified in reciprocal space. But only 

elements where both c(r) and c(r´) don’t vanish have to be accounted in the double 

sum over r and r´. These terms represent the bonding between two solute atoms. Since 

only few of such bonds exist in dilute alloys, the calculation of the second term of 

(12) is also in practice relatively simple and fast in real space. 

Once F
^

(k) is known, the lattice displacements u are obtained in reciprocal 

space as u
^

(k) = G
^

(k) F
^

(k) where G
^

(k) is the image of the Green tensor in reciprocal 
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space. Finally, the change of elastic energy ∆E( )X′→X
 from a stressed state X´ in the 

reference lattice to the relaxed state X is given by 

∆E( )X′→X
 =  − 1

2N
   F

^

i(k)  G
^

ij (k)  F
^

j
∗(k)  

 
 
 

 
 
 

k′

∑      (13) 

where i and j represent the axis coordinates and F
^

∗(k)  is the conjugate of F
^

(k). 

Expression (13) allows the determinations of ∆EI→I’ and ∆EII’→II.  

The remaining quantity to evaluate is ∆EI’→II’, the change of elastic energy 

when passing from configuration I’ to II’ in the reference lattice. This change is 

proportional to the changing number of solute-solute bonds. When the passage from I’ 

to II’ leads to the creation (or the annihilation) of M solute-solute bonds, the change of 

elastic energy from I’ to II’ equals 

∆E I′→II′  =  M ⋅ Emat−mat
ref + E sol−sol

ref − 2 Emat−sol
ref( )     (14) 

where the Eref quantities account for the elastic energy stored in the stretching of 

bonds to accommodate to the lattice parameter aref in the reference lattice. Their 

values are given for harmonic potentials as 

Emat−mat
ref  =  κ

2
  2−1/ 2 aref − dmat−mat  ( )2

      (15) 

Emat−sol
ref  =  κ

2
  2−1/ 2 aref − dmat−sol  ( )2

       (16) 

E sol−sol
ref  =  κ

2
  2−1/ 2 aref − dsol−sol  ( )2

       (17) 

In another ME theory proposed by Cook and de Fontaine [5], the elastic 

energy change ∆EI’→II’ of equations (14) to (17) was accounted. This helped to obtain 

a better agreement with MS relaxations, as is shown later on, but otherwise this theory 

contained the same error as the more widely known one from Khachaturyan. 
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2.2 Extension to multicomponent alloys 

Like the previous theory developed by Khachaturyan [1], the corrected ME theory can 

be extended to multicomponent alloys. The central point in this extension is the 

definition of an expression of the net force F(r) acting on position r of the reference 

lattice. 

When the system is composed of solute elements of n different natures, n 

concentration fields are defined as cp(r)=1 if the atomic position at r is occupied by a 

solute atom of nature p (1≤p≤n), and cp(r)=0 otherwise. Using this convention, a 

matrix atom is located at r when 

c p (r)  
p=1

n

∑ =  0          (18) 

The net force applied on this matrix atom surrounded by solute atoms of different 

nature is then defined as: 

F0(r)  =  −  f p 0(r − r′) − f0 0(r − r′)( )⋅ c p (r′)
r′

∑
p=1

n

∑ ⋅ 1− cq (r)
q=1

n

∑
 

 
  

 

 
     (19) 

where fp0 indicates the interatomic force between a solute atom of nature p and a 

matrix atom of nature 0, by convention. In case of a solute atom only surrounded by 

matrix atoms, the net force F(r) applied on it vanishes. When a solute of nature q is 

surrounded by other solute atoms, it experiences the net force 

Fq (r)  =  −  f p q (r − r′) − fq 0(r − r′)( )⋅ c p (r′)
r′

∑
p=1

n

∑      (20) 

where fpq represents the interatomic force between a solute atom of nature p and 

another atom of nature q. All the interatomic forces are defined in an fcc lattice with 

lattice parameter aref as: 

f p q r( ) =  κ   2−1/ 2
aref − dp q  ( ) r 0       (21) 
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where dpq represents the equilibrium bond length between atoms of natures p and q. 

Uniting all the cases into a single expression for F(r), one obtains from equations (19) 

and (20): 

F(r)  =  −  f p 0(r − r′) − f0 0(r − r′)( )⋅ c p (r′)
r′

∑
p=1

n

∑

−  f p q (r − r′) + f0 0(r − r′) − fq 0(r − r′) − f p 0(r − r′)( )⋅ c p (r′)
r′

∑ cq (r)
p=1

n

∑
q=1

n

∑
 (22) 

Once the expression F(r) is known, the same method as in the binary solution 

case can be applied to determine the relaxation energies ∆EI→I’ and ∆EII’→II. The third 

energy term ∆EI’→II’ corresponding to the change of stored elastic energy in the 

reference lattice is evaluated in a similar manner as in the binary case: 

∆E I′→II′  =  M p q ⋅ E p q

ref + E0 0
ref − E p 0

ref − Eq 0
ref( )

q=1

n

∑
p=1

n

∑     (23) 

where Mpq represents the number of bond changes between atoms of natures p and q 

during the transformation from configuration I’ to II’. The unit energies E p q

ref  are 

defined as: 

E p q

ref  =  κ
2

  2−1/ 2 aref − dp q  ( )
2
       (24) 

3. Accuracy of the calculation 

The assessment of the accuracy of the ME theory is performed by comparing the 

results achieved with the ME theory with those obtained using MS relaxations. When 

the same harmonic potentials are used as input, the agreement should be perfect. In 

the calculations below, harmonic potentials were employed with the parameters: dmat-

mat=2.85Å, dsol-sol=dmat-sol =2.56Å, and κmat-mat=κmat-sol=κsol-sol=1.4 eV/Å2. 

A first consistency test was conducted by looking at the energy of a 

configuration containing only two solute atoms as a function of the distance between 
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the two solute atoms expressed in the number of neighbour shells NN (Fig. 4). There 

is a perfect agreement between MS relaxations and all ME theories when NN>1 

(errors below 1meV). The situation is however different for the first neighbour shell, 

where the ME theory of Khachaturyan provides a value 30meV lower than the 

configuration energy obtained with MS relaxations. For the ME theory of Cook and 

de Fontaine [5] as well as the present one, the agreement remains excellent even for 

NN=1. 

A second test consists in adding one more solute atom. Starting from a 

configuration where two solute atoms in positions r1 and r2 are first nearest 

neighbours, the third solute atom is introduced at different locations r3. Depending on 

the position of the third atom, the configuration energy is dependent on two 

quantities: the distance in neighbour shells NN between r3 and r1, and the angle (r2−r1, 

r3−r1). The calculations with three atoms (Tab. 1) show that only the new version of 

the ME theory provides a correct estimation (±3meV) of the configuration energies 

derived by MS relaxations. The Cook-de Fontaine version fails for one case, and the 

Khachaturyan version in several configurations. 

 

- insert fig. 4 and tab. 1 about here - 

 
 

The most striking difference between the previous ME theories and the 

version presented here is the capacity of the latter to simulate the correct shape of GP 

zones in AlCu alloys. As mentioned in the introduction, only spherical precipitates 

were obtained by MC simulations using the previous theories (both of them). On the 

other hand, plates located in {100} lattice planes (Fig. 5) as observed experimentally 
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in AlCu alloys nucleate during an MC simulation with the new ME theory. Details on 

this phenomenon are discussed in [10]. 

It should be noted that for certain kinds of physical mechanisms, the 

distinction between the various theories can be unimportant. Simulations of solute 

atom diffusion may be an example for this, when the solutes get in direct contact only 

rarely anyway. But in the present case of precipitation, where solute atoms tend to 

group and form nuclei for particles, it is particularly important to calculate the 

configuration energies of the nuclei correctly.   

 

- insert fig. 5 about here - 

 
 

4. Towards modeling of a real material 

An additional improvement provided by the corrected ME theory is its ability to 

model more cases than before. In previous theories, only one misfit information could 

be managed: the matrix-solute bond always had the same equilibrium length as the 

solute-solute bond. In contrast, the new version differentiates the equilibrium length 

of the matrix-solute interaction from the solute-solute one. This new degree of 

freedom helps driving important conclusions on the effects of elastic strains on 

precipitation, as is shown in [10]. 

Meanwhile, the derived ME theory still possesses a serious inconvenience: all 

bonds have the same stiffness. The reason for this limitation relates to the definition 

of the force constants matrix. When atoms of two different types are present in the 

lattice, the large matrix D can be expressed as a combination of small local force 

constant matrices of size 3×3 like the following ones for the [110] first neighbour 

interaction in fcc an lattice: 
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DX−Y
loc  =  1

2
 

κX−Y κX−Y 0
κX−Y κX−Y 0

0 0 0

 

 

 
 

 

 

 
 
       (25) 

where X-Y represents any combination mat-mat, mat-sol or sol-sol. Using these local 

force constants matrixes, the net force acting on an atom at r can be expressed by 

F(r)  =   Dn(r ),n(r′)
loc (r − r′) ⋅ u(r′)

r′

∑        (26) 

where n(r) indicates the type of the atom at r. Since a unique small local force 

constants matrix does not exist, the convolution over r´ can’t be simplified in 

reciprocal space and, hence, there is no valid formulation like F
^

(k) = D
^

(k) ⋅ u
^

(k) with 

a small 3×3 matrix D
^

(k) which could be afterward easily inverted to obtain a simple 

3×3 Green tensor in reciprocal space. However, a difference in bond stiffness can be 

roughly accommodated by the following consideration. When different stiffness 

values are considered, the interatomic force fmat-sol defined by equation (7) is 

multiplied by the factor (κmat-sol/κmat-mat). But, at the same time, the local force 

constants matrix is also locally multiplied by the same factor. Hence a stronger net 

force exists in a stiffer matrix when κmat-sol>κmat-mat. In such a situation, one can 

assume that the lattice displacements during the relaxation will be of the same 

amplitude. Consequently, the relaxation energy determined by equation (13) is only 

multiplied by a factor (κmat-sol/κmat-mat). A simple transformation which leads to this 

result and remains inexpensive to implement in the relaxation energy calculation 

consists in the multiplication of the interatomic forces by a suitable square root, i.e. 

equation (27) may be used instead of (21):  

f p q (r)  =  κp q κ0 0   2−1/ 2
aref − dp q  ( ) r 0      (27) 
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The change of bond stiffness also modifies the expression of the bond energies Eref in 

the reference lattice, where the specific stiffness has to be considered instead of a 

general κ value in expressions (15) to (17). 

Performing the modifications of the model described above, the consideration 

of different bond stiffness is illustrated in an AlCu model alloy with stiffness 

κAlAl=1.4eV/Å2 (giving the elastic constants C11
Al =112GPa and C12

Al = C44
Al =56GPa) and 

κCuCu=2.1eV/Å2 ( C11
Cu =187GPa and C12

Cu = C44
Cu =93GPa). As before, the straightforward 

MC-MS simulation is used as a benchmark. The results (Tab. 2) for a configuration 

with two solute atoms and for different Al-Cu bond stiffness κAlCu indicate that the 

method described by equation (27) qualitatively reproduces the influence of a 

difference of bond stiffness. However, discrepancies of the order of 0.01eV are 

observed for the first nearest neighbour interaction. 

 
- insert tab. 2 about here - 

 
 
 

Until now, it has also been assumed that the nature of the atomic interactions 

is purely harmonic. Such description of the bonding between atoms only allows the 

modelling of a material with a specific relation between elastic constants 

C12=C44=C11/2, which induces a specific anisotropy ratio χ=(C11−C12)/(2C44) of 0.5. 

In order to model a material with a different anisotropy ratio, the description of the 

force constants matrix should be modified. This can be also done, as shown in [10]. 

 

5. Conclusion 

A new Microscopic Elasticity theory has been derived and validated by using slow, 

but unequivocal Molecular Statics simulations. The new version corrects a 

discrepancy found in earlier versions. Unlike the latter, the application of the present 
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version in Monte-Carlo simulations of precipitation yields results that are in full 

agreement with theoretical expectations and with experimental findings in Al-Cu 

alloys. Moreover, the new version puts an emphasis on the atomic bonds instead of 

just differing atom sizes. This introduces new, independent elastic parameters 

(distinction between solute-solute bonds and solute-matrix ones) and thereby widens 

the scope in which linear elasticity can be used to describe and understand atomic 

behaviour.  
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Figure captions 

 
Figure 1. Configuration change due to an exchange of position between a solute and a 
matrix atom  
 
Figure 2. Decomposition of the transformation in three steps 
 
Figure 3. Net force acting on an atom in the reference lattice 
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Figure 4. Configuration energies with two atoms 
 
Figure 5. Atomic configuration from an MC simulation in an Al3%at.Cu alloy using 
the new ME theory. only Cu-atoms are displayed. 
 
 

Table captions 

 
Table 1. Configuration energies with three atoms 
 
Table 2. Consideration of different bond stiffness: configuration energies with two 
solute atoms using the ME theory and MS relaxations 
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Figure 1. Configuration change due to an exchange of position between a solute and a 

matrix atom  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Decomposition of the transformation in three steps 
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Figure 3. Net force acting on an atom in the reference lattice 
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Figure 4. Configuration energies with two atoms 
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Figure 5. Atomic configuration from an MC simulation in an Al3%at.Cu alloy using 

the new ME theory. only Cu-atoms are displayed. 
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NN Angle new Khacha. C.-de F.

60° -0.188 0.000 0.030 -0.026

90° -0.146 -0.002 0.027 -0.001

120° -0.123 0.000 0.026 -0.002

180° -0.128 0.000 0.029 0.001

45° -0.146 -0.002 0.027 -0.001

90° -0.020 -0.001 -0.001 -0.001

135° -0.033 0.000 0.000 0.000

30° -0.123 0.000 0.026 -0.002

55° -0.020 -0.001 -0.001 -0.001

73° 0.006 0.000 0.000 0.000

90° 0.016 0.001 0.001 0.001

107° -0.006 0.001 0.001 0.001

125° 0.002 0.001 0.001 0.001

150° 0.000 0.001 0.001 0.001

Error ME theory [eV]

1

2

3

MS

relax.

[eV]

 
 

Table 1. Configuration energies with three atoms 

 

 

 

 

 

MS relax. [eV] Error ME th. [eV] MS relax. [eV] Error ME th. [eV] MS relax. [eV] Error ME th. [eV]

1 -0.066 0.005 -0.126 -0.006 -0.185 -0.025

2 -0.028 0.000 -0.042 -0.001 -0.057 -0.003

3 0.001 0.001 0.003 0.000 0.005 -0.001

4 0.010 0.001 0.017 -0.001 0.026 -0.003

5 -0.007 0.001 -0.011 0.001 -0.015 0.001

6 0.001 0.001 0.002 0.001 0.004 0.001

7 0.001 0.001 0.002 0.001 0.003 0.001

8 -0.004 0.001 -0.006 0.001 -0.009 0.001

βAlCu = 1.4 eV/Å2
βAlCu = 1.7 eV/Å2

βAlCu = 2.1 eV/Å2

NN

 
 

 

Table 2. Consideration of different bond stiffness: configuration energies with two 

solute atoms using the ME theory and MS relaxations 
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