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Introduction

To perform a Monte Carlo (MC) simulation, a description of the energy of an atomic configuration is required. A very popular method is found in the use of a cluster expansion. An advantage of this approach remains its low computational cost for a simulation at the atomic scale. In a cluster expansion, the lattice positions are usually fixed such that they represent a perfect lattice. This rigid lattice is not adapted for the modelling of a lattice containing defects. But when modelling precipitation near a dislocation, for instance, a different approach should be considered. In a continuum medium, Hu and Chen [2] used the Macroscopic Elasticity theory of Khachaturyan to consider the dislocations' elastic stresses. At the atomic level, the Microscopic Elasticity (ME) theory of the same author [START_REF] Khachaturyan | Theory of Structural Transformations in Solids[END_REF] can be employed, according to current understanding. But in MC simulations by the present authors using the ME theory as defined by Khachaturyan, severe problems occurred.

In the quoted simulations, the precipitation of Guinier-Preston zones in AlCu alloys was to be simulated. As an example, Guinier-Preston zones of type I are single layers of Cu atoms in {100} planes. Their occurrence is known to be based on the large size mismatch between Al and Cu atoms: this mismatch prevents the formation of coherent voluminous particles because the corresponding elastic energy scales with its volume, and is too high. In contrast, the formation of plate-like precipitates is not prevented by elastic strains because these are similar to those of dislocations and hence scale more favourably with length. But in the quoted MC simulations using Khachaturyan's ME theory, always spherical precipitates emerged, even when the size mismatch between Al and Cu atoms was greatly exaggerated. This is a strong contradiction to both theoretical expectation and to well-known experimental findings. The motivation for the present work was to find the cause for the discrepancy. It lead to the development of a corrected version of the ME theory.

To assess the quality of the ME theory (starting with the original), the elastic energies were also calculated in a more straightforward way for comparison. In this approach, the energy changes in every time step of an MC simulation were derived from a relaxation simulation of "atoms" interacting by harmonic potentials. The relaxation was done using Molecular Statics (MS), i.e. a Molecular Dynamics [START_REF] Allen | Computer Simulation of Liquids[END_REF] program combined with a conjugate gradient algorithm [START_REF] Atkinson | An Introduction to Numerical Analysis[END_REF] for the atomic relaxation.

When harmonic potentials are employed for the description of the atomic interactions, the energy of a bond between two atoms of nature X and Y is given by: where E X-Y represents the ground energy, κ X-Y the bond stiffness, and d X-Y the equilibrium length of the bond between atoms of type X any Y. The total energy of a configuration is then given by:

V X-Y (∆x) = E X-Y + κ X-Y 2 ∆x -d X-Y ( ) 2 (1) 
E (MS) = 1 2 r ∑ r′≠ r ∑ E n(r ),n(r′) + κ n(r ),n(r′) 2 r′ -r -d n(r ),n(r′ ) ( ) 2       (2) 
where the field n(r) indicates the nature of the atom sitting at position r. Compared to the application of the ME theory, the relaxation simulation and evaluation of equation ( 2) takes much more time to compute. But the MS method and its implementation are very simple and therefore virtually guaranteed to be free of programming or interpretation errors. Therefore this method is useful to assess ME theories (and implementations thereof).

The coupled MC-MS simulations of precipitation in AlCu alloys in fact yielded the formation of Guinier-Preston-zones of type I, in full agreement with both theoretical expectation and experimental findings. Therefore the ME theory has been revisited.

Derivation of the corrected ME theory

The binary solution case

The aim of the ME theory is to provide an evaluation of the change of stored elastic energy by a configuration change, like in Fig. 1 where the solute atom 13 exchanges its position with the matrix atom 9. This atomic move modifies the local elastic strains and consequently changes the amount of elastic energy stored in the lattice.

-insert fig. 1 about here -

To calculate the change of stored elastic energy, the transformation from I to II is decomposed in three steps (Fig. 2). In a first step, the atoms are repositioned from their equilibrium positions (no stresses) to their positions in the reference lattice (symbolized by dashed lines in Fig. 2). The reference lattice corresponds to the undistorted, periodic lattice, in which all atoms experience forces from their neighbours. This step requires adding the energy ∆E I→I' to the system. Then, the solute atom 9 and the matrix atom 13 are exchanged in the reference lattice. This step also modifies the energy of the system by a value ∆E I'→II' . Finally, configuration II' is relaxed to II, where the atoms reach their new equilibrium positions. This last step reduces the energy of the system by ∆E II'→II .

-insert fig. 2 about here -

The first and the third steps are similar in nature: II'→II corresponds to a relaxation while I'→I corresponds to the inverse of a relaxation. Hence, the energy changes by these transformations are calculated the same way. When r I´ represents the atomic positions in configuration I', the positions in I can be described as r I´+ u, where u are the relaxation displacement vectors. Considering the harmonic approximation, the energy of configuration I is evaluated by a first order Taylor expansion:

E I ( ) = E I′ ( ) -F I′ ( ) ⋅ u + 1 2 u T ⋅ D ⋅ u ( ) (3) 
where F(I´) represents the net forces acting on the atoms in the reference lattice positions and D is the force constants matrix [START_REF] Kaxiras | Atomic and Electronic Structure of Solids[END_REF]. Since configuration I corresponds to an equilibrium state, the displacements u minimize equation (3), leading to F(I´)=D⋅u.

By introducing the Green tensor G defined as G=D -1 , this can be transformed to u=G⋅F(I´), which in turn can be inserted for in equation [START_REF] Allen | Computer Simulation of Liquids[END_REF] 

I′ →I = E I ( ) -E I′ ( ) = -1 2 F I′ ( ) T ⋅ G ⋅ F I′ ( ) ( ) (4) 
The determination of (∆E) I'→I is not straightforward. The dimension of the vector F(I´) is 3N where N is the number of atoms contained in the configuration, making the size of the force constants matrix D to be 3N×3N. This large matrix size prevents from working in real space. But the determination of (∆E) I'→I becomes efficient in reciprocal space. The calculation is performed in the following for an alloy described by harmonic potentials. Using this description of the atomic interactions, 

a ref = 1-c sol ( ) a mat + c sol a sol ( 5 
)
with a mat and a sol being the lattice parameters of the matrix and of a pure solute lattice, respectively. These lattice parameters are naturally linked to the equilibrium lengths of the pure element bond. In case of an fcc lattice, d=2 -1/2 a. By definition, the reference lattice is not in equilibrium: the force acting on some atoms is not zero. As 

f mat -mat x ( ) = κ 2 -1/ 2 a ref -d mat -mat ( ) x 0 (6) f mat -sol x ( ) = κ 2 -1/ 2 a ref -d mat -sol ( ) x 0 (7) f sol-sol x ( ) = κ 2 -1/ 2 a ref -d sol-sol ( ) x 0 (8)
Here, x 0 denotes the unit vector of x. The net force F(r) acting on an atom at position r by all neighbours is dependent on the local configuration. When all atomic interactions are limited to the nearest neighbours like with harmonic potentials, four cases are possible:

(a) A matrix atom (No. 3 in Fig. 3-a) is only surrounded by matrix atoms. Each neighbouring matrix atom acts an interatomic force f mat-mat on atom 3 (repulsive if

d mat-mat >2 -1/2 a ref as in AlCu)
. But the sum of the interatomic forces, the net force F, vanishes.

(b) A solute atom (Fig. 3-b) is only surrounded by matrix atoms. Atom 3 senses attractive interatomic forces f mat-sol coming from the neighbouring matrix atoms. In such case, the net force felt by atom 3 also vanishes.

(c) A matrix atom (Fig. 3-c) has one solute atom as a neighbour (or several ones).

Here the net force does not vanish but is f net =f mat-sol -f mat-mat , because a matrix-matrix interaction is removed and a solute-matrix interaction is added compared to the case (a).

(d) A solute atom (Fig. 3-d) has one solute atom as a neighbour (or several ones). This time, atom 3 experiences a net force f net =f sol-sol -f sol-mat because a solute-matrix interaction is replaced by a solute-solute one compared to the case (b).

-insert fig. 

F(r) = - f mat -sol net (r -r′) ⋅ c(r′) ⋅ 1-c(r) ( ) r′ ∑ - f sol-sol net (r -r′) ⋅ c(r′) ⋅ c(r) r′ ∑ (9) 
where The concentration field c(r) in real space has an image c ^(k ) in reciprocal space for a wave vector k restricted to the first Brillouin zone [START_REF] Kittel | Introduction to Solid State Physics[END_REF]. The transformations from one space to the other are defined by

f mat -sol net = f sol-mat -f mat -
c(r) = 1 N c ^(k ) ⋅ e i k⋅ r k ∑ (10) 
and

c ^(k ) = c(r) ⋅ e -i k⋅r r ∑ (11) 
Using equation ( 9), the image of the net force in reciprocal space is

F ^(k ) = - f mat -sol net (r -r′) ⋅ c(r′) r′ ∑       ⋅ e -i k⋅ r r ∑ - f sol-sol net (r -r′) -f mat -sol net (r -r′) ( ) ⋅ c(r′) ⋅ c(r) r′ ∑       ⋅ e -i k⋅r r ∑ (12) 
The first term in equation ( 12) is easily derived because it represents a convolution in real space. Its expression in reciprocal space reads f ^mat -sol net (k) ⋅ c ^(k ) [START_REF] Kreyszig | Advanced Engineering Mathematics[END_REF] where ( ) X′→X from a stressed state X´ in the reference lattice to the relaxed state X is given by ∆E ( )

f ^mat -sol net (k)
X′ →X = -1 2N F ^i (k) G ^ij (k) F ^j * (k)       k′ ∑ (13) 
where i and j represent the axis coordinates and F ^ * (k ) is the conjugate of F ^(k ).

Expression (13) allows the determinations of ∆E I→I' and ∆E II'→II .

The remaining quantity to evaluate is ∆E I'→II' , the change of elastic energy when passing from configuration I' to II' in the reference lattice. This change is proportional to the changing number of solute-solute bonds. When the passage from I'

to II' leads to the creation (or the annihilation) of M solute-solute bonds, the change of elastic energy from I' to II' equals

∆E I′ →II′ = M ⋅ E mat-mat ref + E sol-sol ref -2 E mat -sol ref ( ) (14) 
where the E ref quantities account for the elastic energy stored in the stretching of bonds to accommodate to the lattice parameter a ref in the reference lattice. Their values are given for harmonic potentials as

E mat-mat ref = κ 2 2 -1/ 2 a ref -d mat -mat ( ) 2 (15) E mat-sol ref = κ 2 2 -1/ 2 a ref -d mat -sol ( ) 2 (16) E sol-sol ref = κ 2 2 -1/ 2 a ref -d sol-sol ( ) 2 (17) 
In another ME theory proposed by Cook and de Fontaine [START_REF] Cook | [END_REF], the elastic energy change ∆E I'→II' of equations ( 14) to (17) was accounted. This helped to obtain a better agreement with MS relaxations, as is shown later on, but otherwise this theory contained the same error as the more widely known one from Khachaturyan. 

Extension to multicomponent alloys

Like the previous theory developed by Khachaturyan [1], the corrected ME theory can be extended to multicomponent alloys. The central point in this extension is the definition of an expression of the net force F(r) acting on position r of the reference lattice.

When the system is composed of solute elements of n different natures, n concentration fields are defined as c p (r)=1 if the atomic position at r is occupied by a solute atom of nature p (1≤p≤n), and c p (r)=0 otherwise. Using this convention, a matrix atom is located at r when c p (r)

p=1 n ∑ = 0 (18)
The net force applied on this matrix atom surrounded by solute atoms of different nature is then defined as:

F 0 (r) = - f p 0 (r -r′) -f 0 0 (r -r′) ( ) ⋅ c p (r′) r′ ∑ p=1 n ∑ ⋅ 1-c q (r) q=1 n ∑         (19) 
where f p0 indicates the interatomic force between a solute atom of nature p and a matrix atom of nature 0, by convention. In case of a solute atom only surrounded by matrix atoms, the net force F(r) applied on it vanishes. When a solute of nature q is surrounded by other solute atoms, it experiences the net force

F q (r) = - f p q (r -r′) -f q 0 (r -r′) ( ) ⋅ c p (r′) r′ ∑ p=1 n ∑ ( 20 
)
where f pq represents the interatomic force between a solute atom of nature p and another atom of nature q. All the interatomic forces are defined in an fcc lattice with lattice parameter a ref as: Uniting all the cases into a single expression for F(r), one obtains from equations ( 19) and (20):

f p q r ( ) = κ 2 -1/ 2 a ref -d p q ( ) r 0
F(r) = - f p 0 (r -r′) -f 0 0 (r -r′) ( ) ⋅ c p (r′) r′ ∑ p=1 n ∑ - f p q (r -r′) + f 0 0 (r -r′) -f q 0 (r -r′) -f p 0 (r -r′) ( ) ⋅ c p (r′) r′ ∑ c q (r) p=1 n ∑ q=1 n ∑ (22)
Once the expression F(r) is known, the same method as in the binary solution case can be applied to determine the relaxation energies ∆E I→I' and ∆E II'→II . The third energy term ∆E I'→II' corresponding to the change of stored elastic energy in the reference lattice is evaluated in a similar manner as in the binary case:

∆E I′ →II′ = M p q ⋅ E p q ref + E 0 0 ref -E p 0 ref -E q 0 ref ( ) q=1 n ∑ p=1 n ∑ (23) 
where M pq represents the number of bond changes between atoms of natures p and q during the transformation from configuration I' to II'. The unit energies E p q ref are defined as:

E p q ref = κ 2 2 -1/ 2 a ref -d p q ( ) 2 (24)

Accuracy of the calculation

The assessment of the accuracy of the ME theory is performed by comparing the results achieved with the ME theory with those obtained using MS relaxations. When the same harmonic potentials are used as input, the agreement should be perfect. In the calculations below, harmonic potentials were employed with the parameters: d mat- mat =2.85Å, d sol-sol =d mat-sol =2.56Å, and κ mat-mat =κ mat-sol =κ sol-sol =1.4 eV/Å 2 .

A first consistency test was conducted by looking at the energy of a configuration containing only two solute atoms as a function of the distance between the two solute atoms expressed in the number of neighbour shells NN (Fig. 4). There is a perfect agreement between MS relaxations and all ME theories when NN>1

(errors below 1meV). The situation is however different for the first neighbour shell, where the ME theory of Khachaturyan provides a value 30meV lower than the configuration energy obtained with MS relaxations. For the ME theory of Cook and

de Fontaine [START_REF] Cook | [END_REF] as well as the present one, the agreement remains excellent even for NN=1.

A second test consists in adding one more solute atom. Starting from a configuration where two solute atoms in positions r 1 and r 2 are first nearest neighbours, the third solute atom is introduced at different locations r 3 . Depending on the position of the third atom, the configuration energy is dependent on two quantities: the distance in neighbour shells NN between r 3 and r 1 , and the angle (r 2 -r 1 , 

r 3 -

-insert fig. 4 and tab. 1 about here -

The most striking difference between the previous ME theories and the version presented here is the capacity of the latter to simulate the correct shape of GP zones in AlCu alloys. As mentioned in the introduction, only spherical precipitates were obtained by MC simulations using the previous theories (both of them). On the other hand, plates located in {100} lattice planes (Fig. 5) as observed experimentally It should be noted that for certain kinds of physical mechanisms, the distinction between the various theories can be unimportant. Simulations of solute atom diffusion may be an example for this, when the solutes get in direct contact only rarely anyway. But in the present case of precipitation, where solute atoms tend to group and form nuclei for particles, it is particularly important to calculate the configuration energies of the nuclei correctly.

-insert fig. 5 about here -

Towards modeling of a real material

An additional improvement provided by the corrected ME theory is its ability to model more cases than before. In previous theories, only one misfit information could be managed: the matrix-solute bond always had the same equilibrium length as the solute-solute bond. In contrast, the new version differentiates the equilibrium length of the matrix-solute interaction from the solute-solute one. This new degree of freedom helps driving important conclusions on the effects of elastic strains on precipitation, as is shown in [START_REF] Jannot | Study of the effect of dislocations on precipitation kinetics by means of atomic simulations[END_REF]. 

D X-Y loc = 1 2 κ X-Y κ X-Y 0 κ X-Y κ X-Y 0 0 0 0         (25)
where X-Y represents any combination mat-mat, mat-sol or sol-sol. Using these local force constants matrixes, the net force acting on an atom at r can be expressed by

F(r) = D n(r ),n(r′) loc (r -r′) ⋅ u(r′) r′ ∑ (26) 
where n(r) indicates the type of the atom at r. Since a unique small local force constants matrix does not exist, the convolution over r´ can't be simplified in reciprocal space and, hence, there is no valid formulation like F ^(k ) = D ^(k ) ⋅ u ^(k ) with a small 3×3 matrix D ^(k ) which could be afterward easily inverted to obtain a simple 3×3 Green tensor in reciprocal space. However, a difference in bond stiffness can be roughly accommodated by the following consideration. When different stiffness values are considered, the interatomic force f mat-sol defined by equation ( 7) is multiplied by the factor (κ mat-sol /κ mat-mat ). But, at the same time, the local force constants matrix is also locally multiplied by the same factor. Hence a stronger net force exists in a stiffer matrix when κ mat-sol >κ mat-mat . In such a situation, one can assume that the lattice displacements during the relaxation will be of the same amplitude. Consequently, the relaxation energy determined by equation ( 13) is only multiplied by a factor (κ mat-sol /κ mat-mat ). A simple transformation which leads to this result and remains inexpensive to implement in the relaxation energy calculation consists in the multiplication of the interatomic forces by a suitable square root, i.e. equation ( 27) may be used instead of (21): In order to model a material with a different anisotropy ratio, the description of the force constants matrix should be modified. This can be also done, as shown in [START_REF] Jannot | Study of the effect of dislocations on precipitation kinetics by means of atomic simulations[END_REF]. 

f p q (r) = κ p q κ 0 0 2 -1/ 2 a ref -d p q ( ) r 

Conclusion

  only two parameters per bond type are necessary to evaluate the stored elastic energy of the configuration: the bond stiffness κ and the equilibrium length d of the bond. As the derivation of (4) in reciprocal space prevents from specifying different stiffness values (this aspect is discussed later on), all bonds are considered having the same stiffness κ. The first step in the evaluation of (∆E) I'→I consists in determining the net force F(r) felt by an atom located on the reference lattice I' at position r. As already indicated, the atomic positions in this lattice correspond to the ones of the undistorted lattice without macroscopic stresses. When a solid solution is considered, this reference lattice has a lattice parameter a ref which is a function of the solute concentration c sol . A simple expression for a ref valid for low solute concentrations reads

. 3 ,

 3 three different values of interatomic forces f may act on an atom in the reference lattice:

  mat and f sol-sol net = f sol-solf sol-mat according to the cases (c) and (d), respectively, and c(r) represents the solute "concentration": c(r)=1 if a solute atom is located at r, and a matrix one if c(r)=0. In Khachaturyan's version of the ME theory, the net forces were wrongly accounted. In the expression of the relaxation energy ∆F 6 relax in [1] (p. 451), they were expressed for the case of a binary phase as a sum over r´ of the term f Kanz. (r-r´)⋅c(r´), where f Kanz. are the Kanzaki forces. This definition of the Kanzaki forces is incorrect because, as outlined above, they are not a function of (r-r´) alone only but also of position r, i.e., the nature of the target atom itself (atom 3 in Fig. 3). The Kanzaki forces accept two values in case of a binary solution, depending on the nature of the atom at r: f Kanz. = f mat -sol net when the atom at r is a matrix atom, or (1-c(r))=1, and f Kanz. = f sol-sol net otherwise. The missing distinction of these two cases by c(r) in the definition of the Kanzaki forces explains the failure of the previous ME theory mentioned in the introduction. At a theoretical level, one may understand the origin of the error as a wrong definition of the stimuli in the Green's function analysis. When atoms showing a size misfit are considered, a stimulus actually corresponds to a small expansion or shrinking of an interatomic bond. Bus since a bond relates to two atoms, one has to count with care the stimuli. A simple spatial convolution involving the concentration field c(r) as in Khachaturyan's ME theory cannot achieve this task. This last statement is only valid at the atomic level.In the continuum, one can define a stimulus as the small expansion or shrinking volume. Hence, the error only appears in the ME theory but not in the macroscopic theory of Khachaturyan, which is widely used in phase field modelling for example.

  represents the image of f mat -sol net (r) in reciprocal space. On the other hand, the second term in (12) can't be analytically simplified in reciprocal space. But only elements where both c(r) and c(r´) don't vanish have to be accounted in the double sum over r and r´. These terms represent the bonding between two solute atoms. Since only few of such bonds exist in dilute alloys, the calculation of the second term of (12) is also in practice relatively simple and fast in real space.Once F ^(k ) is known, the lattice displacements u are obtained in reciprocal space as u ^(k ) = G ^(k ) F ^(k ) where G ^(k ) is the image of the Green tensor in reciprocal , the change of elastic energy ∆E

  d pq represents the equilibrium bond length between atoms of natures p and q.

  r 1 ). The calculations with three atoms (Tab. 1) show that only the new version of the ME theory provides a correct estimation (±3meV) of the configuration energies derived by MS relaxations. The Cook-de Fontaine version fails for one case, and the Khachaturyan version in several configurations.

in

  AlCu alloys nucleate during an MC simulation with the new ME theory. Details on this phenomenon are discussed in[START_REF] Jannot | Study of the effect of dislocations on precipitation kinetics by means of atomic simulations[END_REF].

  Meanwhile, the derived ME theory still possesses a serious inconvenience: all bonds have the same stiffness. The reason for this limitation relates to the definition of the force constants matrix. When atoms of two different types are present in the lattice, the large matrix D can be expressed as a combination of small local force constant matrices of size 3×3 like the following ones for the [110] first neighbour interaction in fcc an lattice:
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 1 Figure 1. Configuration change due to an exchange of position between a solute and a matrix atom
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 23 Figure 2. Decomposition of the transformation in three steps
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 4 Figure 4. Configuration energies with two atoms

Figure 5 .

 5 Figure 5. Atomic configuration from an MC simulation in an Al3%at.Cu alloy using the new ME theory. only Cu-atoms are displayed.

  An analytic expression for the net force F(r) compatible with the four cases described above is required to work in reciprocal space. A useful formulation reads
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  The change of bond stiffness also modifies the expression of the bond energies E ref in the reference lattice, where the specific stiffness has to be considered instead of a general κ value in expressions (15) to (17).Until now, it has also been assumed that the nature of the atomic interactions is purely harmonic. Such description of the bonding between atoms only allows the modelling of a material with a specific relation between elastic constants C 12 =C 44 =C 11 /2, which induces a specific anisotropy ratio χ=(C 11 -C 12 )/(2C 44 ) of 0.5.

	Performing the modifications of the model described above, the consideration
	of different bond stiffness is illustrated in an AlCu model alloy with stiffness
	κ AlAl =1.4eV/Å 2 (giving the elastic constants C 11 Al =112GPa and C 12 Al = C 44 Al =56GPa) and F κ CuCu =2.1eV/Å 2 ( C 11 Cu =187GPa and C 12 Cu = C 44 Cu =93GPa). As before, the straightforward o r MC-MS simulation is used as a benchmark. The results (Tab. 2) for a configuration
	P with two solute atoms and for different Al-Cu bond stiffness κ AlCu indicate that the
	e method described by equation (27) qualitatively reproduces the influence of a
	e r difference of bond stiffness. However, discrepancies of the order of 0.01eV are
	R observed for the first nearest neighbour interaction.
	-insert tab. 2 about here -	e
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  A new Microscopic Elasticity theory has been derived and validated by using slow, but unequivocal Molecular Statics simulations. The new version corrects a discrepancy found in earlier versions. Unlike the latter, the application of the present version in Monte-Carlo simulations of precipitation yields results that are in full agreement with theoretical expectations and with experimental findings in Al-Cu alloys. Moreover, the new version puts an emphasis on the atomic bonds instead of just differing atom sizes. This introduces new, independent elastic parameters (distinction between solute-solute bonds and solute-matrix ones) and thereby widens the scope in which linear elasticity can be used to describe and understand atomic behaviour.
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Table captions Table 1 .

 captions1 Configuration energies with three atoms

Table 2 .

 2 Consideration of different bond stiffness: configuration energies with two solute atoms using the ME theory and MS relaxations

Table 1 .

 1 Configuration energies with three atoms MS relax. [eV] Error ME th. [eV] MS relax. [eV] Error ME th. [eV] MS relax. [eV] Error ME th. [eV]

		β AlCu = 1.4 eV/Å 2	β AlCu = 1.7 eV/Å 2	β AlCu = 2.1 eV/Å 2
	NN						
	1	-0.066	0.005	-0.126	-0.006	-0.185	-0.025
	2	-0.028	0.000	-0.042	-0.001	-0.057	-0.003
	3	0.001	0.001	0.003	0.000	0.005	-0.001
	4	0.010	0.001	0.017	-0.001	0.026	-0.003
	5	-0.007	0.001	-0.011	0.001	-0.015	0.001
	6	0.001	0.001	0.002	0.001	0.004	0.001
	7	0.001	0.001	0.002	0.001	0.003	0.001
	8	-0.004	0.001	-0.006	0.001	-0.009	0.001

Table 2 .

 2 Consideration of different bond stiffness: configuration energies with two solute atoms using the ME theory and MS relaxations
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