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Abstract 

 

Elastic and plastic aspects of martensitic transformations are discussed using the 

topological model. Here the interface comprises an array of transformation 

dislocations (disconnections) and dislocations (slip/twinning) superposed on 

coherently strained terraces. Plastic transformation strain arises by virtue of the 

conservative motion of the defect array, and is quantified directly in terms of the 

Burgers vectors of the defects. Superposition of the elastic fields of the defects and 

the coherency strain produces a short-range interfacial distortion field, but only rigid 

rotation,φ , of the phases at long-range. Furthermore, the treatment shows that, for 

elastically isotropic phases with similar moduli, elastic relaxations cause the habit 

plane to differ by 2/φ  from the classical predictions where such relaxations are 

suppressed. A non-linear analysis is presented suitable for instances of large values 

ofφ . However, the plastic transformation strain, in combination with the relative 

orientation,φ , corresponds to the classically predicted shape deformation. 

1. Introduction 
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The objective of this paper is to discuss elastic and plastic aspects of martensitic 

transformations where the interface between parent and product crystals is modelled 

in terms of dislocations. Bullough and Bilby [1] presented the first such treatment in 

1956. Their “simple glissile interface” comprises a “surface dislocation” 

corresponding to a single set of dislocations which move conservatively and thereby 

cause the necessary lattice-invariant deformation (LID), represented in matrix 

notation by 2P (for convenience, we use the later nomenclature introduced by Wayman 

[2]). Motion of the interface also produces the lattice deformation, B , but this is not 

modelled explicitly in terms of defects. These two homogeneous deformations, along 

with a rigid body rotation, R , combine into the shape deformation, 1P . Under these 

assumptions, the interface is an undistorted plane, and the shape deformation is an 

invariant-plane strain (IPS) given by, 

21 RBPP = .                      (1) 

They showed furthermore that the total Burgers vector content for such an 

interface is zero, consistent with the absence of stress in either crystal. These 

conclusions are in complete accord with the phenomenological theory of martensite 

crystallography (PTMC), developed contemporaneously by Wechsler, Lieberman and 

Read [3] and Bowles and MacKenzie [4], which also considers two crystals to be 

homogeneous and separated by an invariant-plane (IP). In this framework, the total 

shape change on transformation can be written 

( )'1 dpIP += ,                            (2) 

where I is the unit matrix,d  is the displacement of all points at unit distance from the 

interface, and 'p is the transpose of the interface normal [2, 3, 4]. Note that, in this 

view, the interface plane, 'p , is determined geometrically by the affine rotation and 

deformations R , B , and 2P . The former two also determine the orientation 

relationship (OR) between the adjacent crystals. 

Since the pioneering works [1, 3, 4] a large number of microscopical 

investigations of interface structure have been undertaken (for a review see [5]). 

Several studies using transmission electron microscopy showed that martensitic 

interfaces actually comprise two (or more) sets of discrete defects. One set of 

dislocations (slip or twinning) corresponds to the LID as envisaged above. The second 

set comprises transformation dislocations [6], or disconnections [7], line defects with 

both dislocation and step character. A schematic view of such an interface is depicted 

Page 3 of 27

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

in figure 1, as has been discussed qualitatively by various authors [8-12]. Recently, 

Pond, Hirth and co-workers [13] have presented a quantitative treatment of such 

transformation interfaces, known as the topological model (TM). In this model, the 

interface is partially-coherent, the dislocation and disconnection arrays delineating 

coherent terraces, as in figure 1. The mechanism of transformation is lateral motion of 

the disconnection array along the interface, and in general must be conservative. 

Figure1 here. 

In this paper we demonstrate that plastic transformation strains arise in the TM 

through motion of the defect arrays, producing a shape deformation in agreement with 

the PTMC. However, the interface plane and OR are determined by superposed 

plastic and elastic fields of the defects that comprise the stationary interface, and we 

show that small differences in the habit planes predicted by the two approaches arise 

as a consequence of the elastic fields. 

 

According to the topological model, the elastic distortion field of a static interface 

can be written as 
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The strain and rotational distortion components of ( )',',' zyxsΓ  vary from point to 

point, describing both the short- and long-range fields produced by superposition of 

the coherency strain and the elastic field of the defect networks. (The ',',' zyx  

coordinate frame defines the habit plane, as opposed to the terrace plane frame 

zyx ,, as illustrated in fig.1). At short-range all strains are partitioned between the 

phases in a manner depending on their relative elastic compliances and the boundary 

conditions. In the case where the coherency strain is completely accommodated by the 

network, all component strains except '

zzε  vanish at long-range. At short-range, these 

strains alternate in sign along 'x  and 'y  respectively, in anti-phase across the habit 

plane, and diminish to zero when dzz ≈'  is approximately equal to the relevant defect 

spacing, D
d or L

d  [14]. The magnitude of '

zzε  is finite at long-range in the “single 
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interface” case, where no constraint by the matrix is present. For 'z  > dz  the strain 

portion of the distortions vanish and the rotational portions are constant and equal to 

the ancillary tilts, '

xzφ and
'

yzφ , and twist, 
'

xyφ . 

Elastic aspects are discussed in section 2. The method of linear superposition of 

elastic fields is used in section 2.1, and a non-linear solution, more appropriate for 

larger strains, is described in section 2.2. Plastic transformation strains are discussed 

in section 3. A comparison of TM and PTMC predictions is presented and discussed 

in section 4. The topological character (Burgers vector, b, and step height, h) of 

disconnections is summarised in Appendix A, along with the reference states 

employed. 

 

 

2. Elastic Aspects 

 

For clarity, we consider a transformation where no LID needs to be invoked 

because the two crystals are naturally coherent parallel to ', xx . The TM is not 

restricted to such cases; Ma and Pond [15] for example have employed the TM to 

analyze habit plane variants in Fe alloys that include twist rotation in the habit plane. 

The TM and PTMC apply to a planar interface between two semi-infinite crystals, a 

parent β phase and a product α phase.  The TM method involves selecting a terrace 

plane of good match.  Then candidate disconnections, b and h, are selected from the 

coherent dichromatic pattern (see appendix), where the β  andα crystals are strained 

to give perfect matching on the terrace plane, with a coherency strain aa /0 ∆=ε  in 

the y direction.  This strain is partitioned to strains 2/0ε±  in the two phases.  Here a  

is the atom spacing in the y-direction in the coherent dichromatic complex and a∆ is 

the difference between atom spacings in the natural dichromatic complex.  The 

transformation proceeds by the motion of a sequence of such defects, figure 2.  Once 

the transformation stops, the equilibrium array of disconnections is determined by 

adjusting their spacing so that there are no long-range elastic stresses or strains for the 

array.  For this aspect, coordinates ( )',',' zyx , fixed on the habit plane, where the 

defect spacing is L as shown, are more convenient.  As also depicted in figure 2, there 
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are coherency stresses associated with the terrace segments that can be described as 

arising from continuous infinitesimal coherency dislocations [16].  No loss in rigor is 

entailed if one represents the integral of this distribution over D
d as a discrete 

coherency dislocation with Burgers vector cyb defined using the natural dichromatic 

pattern (see Appendix A). The “overlap” step h (see appendix) is assumed to be 

normal to the terrace plane: modifications when this is not the case are discussed in 

[17]. 

Figure 2 here. 

2.1 Linear Superposition Solution 

 

The bz component of the disconnection has magnitude ( )αβ hh − , so, when this is 

zero, the Burgers vector of the disconnections in figure 2 is ]0,,0[ yb=b , and that for 

the coherency dislocations is ]0,,0[ cyc b=b . Hence, cyy bb −=  when D
d  in figure 2 is 

the equilibrium value that removes misfit.   The net strain components are all zero, 

either in the (x, y, z) coordinates or when the strain matrix is transformed to any other 

set of coordinates, e.g. (x’ ,y’ ,z’).  The equilibrium condition is that the strains 

associated with the disconnections, D

y db 2/± , are equal and opposite to those of the 

coherency dislocations 2/0ε± .  Therefore, the equilibrium condition ''

cyy bb −=  is 

equivalent to cyy bb −= , or, alternatively expressed, D

y db /0 −=ε  , and long-range 

strains are all zero when this is satisfied. The latter result is the reason why the TM 

and PTMC agree exactly when bz = 0.  Of course, there would be local dislocation 

strains within a distance D
dz ≈'  of the interface according with St.Venant’s principle. 

When bz is non-zero, ],,0[ zy bb=b , the situation changes.  Now both yb  and zb  

contribute to '

yb  and '

zb .  When the equilibrium condition ''

cyy bb −=  is true, cyy bb −≠  

and the equilibrium spacing D
d differs from the previous case.  The equilibrium 

condition is now Lby /''

0 −=ε , where the coherency strain in the rotated coordinates 

is '

0ε .  Also, the '

zb  array, shown in figure 2, creates a tilt wall with angleφ .  If the 

disconnection array is considered as the superposition of a set of pure steps and a tilt 

wall, the simple analytical equations of [13] apply.  To appreciate this point, we can 
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imagine that the actual tilt array '

zb  is cancelled by a hypothetical extrinsic array '

ezb  

as shown in figure 3. Since zz bb ≈'  to linear order, this is equivalent to cancelling zb , 

leaving just the steps h, figure 4. The basic relation describing the removal of misfit, 

Lby /''

0 −=ε  (really Lby 2/2/ ''

0 −=ε , but the factors of 2 cancel), then leads to the 

expression for the equilibrium habit plane angle θ for this case, given by [13] 

 

( ) 12

0 tantan
−+=− hbb zy θθε .                         (4) 

 

Figures 3 and 4 here. 

 

The extrinsic dislocations '

ezb  are removed from figure 3, restoring the tilt wall 

with the attendant partitioned distortions, which, at long-range, reduce to the 

partitioned rotations 2/φ± .  The tilt wall gives a rotation, corresponding to the OR, 

 

( )








−

−
= −

2

cossin

2

sinsincos
sin2 01 θθεθθθ

φ
h

bb yz
.       (5) 

 

In the small φ  limit, this becomes 

 

( ) θφ tan/ hbz= .                            (6) 

 

In the rotated coordinates, the coherency strain is given 

by ( ) θεθνθεε 2

0

22

0

'

0 cossincos ≈−= , where ν  is Poisson’s ratio.  The dislocation 

array has a Poisson term that nearly cancels the coherency term and the ratio 

θνθ 22 sin/cos  is typically of the order 610  so the approximation is an excellent one. 

Partitioning of elastic distortions is inherent in the above description in several 

ways.  The coherency strain is partitioned to a value 2/0ε±  in each crystal. The 

vector '

yb  is partitioned to a vector 2/'

yb  in each crystal. Finally '

zb  and φ  are 

partitioned to values 2/'

zb and 2/φ  in each crystal.  In the original treatment, the total 
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rotation φ  was assigned to the product phase [13].  However, this was amended in 

[14] to include the partitioning of the rotation which is necessary as shown in figure 5. 

Figure 5 here. 

Physically, the rotation φ  arises from the summed distortions (∂ui/∂xj) of the 

defects.  At long range the strain parts of the distortions vanish and only pure rotations 

are left [17]: these partition equally in the isotropic homogeneous elastic limit.  The 

local strains are present whether the tilt components are '

zb  or zb , figure 5.  The 

differences in magnitude of strain, distortion or rotation correspond to a factor θ2cos  

and vanish to linear order. Partitioning is also nearly the same. Consider the specific 

case αh < βh .  One can think of the interface separated into two crystals with the free 

surface step heights αh and βh , figure 6a. These can also be represented as the 

superposition of pure steps of height αhh = , figure 6b, and a set of little virtual steps 

associated with the partitioned dislocations, figure 6c.   The superposition of the two 

arrays shows that, relative to figure 6b, the superposed tilt causes the habit plane in β 

to increase in this example, while that in α will decrease.  The final habit planes,ω , 

are then given by the superposed results as 2/φθω ±= . For the case where αh < βh , 

2/φθωα −=  and 2/φθωβ += , with φ  positive.  The sign of φ  would be negative 

when βh < αh . 

Figure 6 here. 

The results are summarized in figure 7 where habit plane inclinations are plotted 

as a function of αβ hh /  (the magnitude of αh has been fixed while βh  is allowed to 

vary).  The PTMC results are also shown in the figure; the habit plane inclination with 

respect to the β phase is βη .  For values of αβ hh / near unity, the habit plane with 

respect to theα phase (not shown) would be φηη βα −=  .  When αβ hh / > 1, φ is 

positive and αη  lies between αω and βω .  When αβ hh / < 1, φ is negative and αη  lies 

above αω . We see that the PTMC and TM habit planes differ systematically by 2/φ  

for values of αβ hh /  near 1. When αβ hh /  is larger, the values of φ  differ in the two 

methods and the habit planes differ by 2/φ≈ .  As discussed in Section 4, the 

difference of 2/φ  arises because the PTMC, being a continuum analysis, does not 

include interface structure:  the partitioning by 2/φ  arises in the relaxation of the 
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interface, figure 5. This difference of 2/φ  is only significant for cases of largeφ .  

However, it is significant in the large φ  case as a first-order correction, unlike the 

second-order effects discussed next.  As a final illustration, the steps in figure 6a and 

b can be offset by half the defect spacing without changing associated long-range 

elastic fields (plastic shear of an equilibrium interface leaves the same elastic 

equilibrium interface).  This is a hypothetical case, which would have higher energy 

than that of Figure 5, but it again demonstrates the necessity of partitioning as in the 

TM.  The fields of part of the arrays cancel and the excess array has a net Burgers 

vector bz’, which partitions to bz’/2 as in the TM as described previously.  We present 

these simple physical descriptions to emphasize that the overlap step height is the 

natural reference state for the superposition problem. 

Figure 7 here. 

As a specific example, we consider the transformation in “Ti” where the 0.86% 

mismatch in the x direction is neglected.  For this example hα = 0.2556 nm and hβ = 

0.2678 nm. The values of ββααβ ηωωφθ ,,,,,/ hh  are shown in Table 1. Another 

example in the table is a hypothetical case with no misfit in the x direction but where 

hα = 0.2556 nm and hβ = 0.2939 nm. 

Table 1 here. 

 

 

2.2. The Nonlinear Solution 

The superposition solution is accurate to 3 or 4 places in predictions ofω  provided 

that φ  < ≈ 0.8°. This suffices since it is within the experimental scatter in ω  

measurements, and of the order of the uncertainties in ω  values in either the TM or 

the PTMC because of scatter in lattice parameter measurements.  The superposition 

solution has the advantage of being described by the simple analytic equations (4) and 

(5).  In this region the habit planes are those shown between the vertical bars in figure 

7, and vary in a nominally linear manner with respect to the variable αβ hh / .  For a 

greater value ofφ , nonlinear effects become important and there is curvature in the 

lines. For the “Ti” example, the interface is described as αω  and βω as shown in 

Figures 8.  A key point is that L in figure 2 becomes )2/cos(/ φLLn = . Also the 
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rotation of coordinates to the actual (x’, y’, z’) coordinates is by the angle 

2/φθω ±=  instead ofθ .  For the rotated strains and Burgers vectors in equation (4), 

a similar modification occurs.  The relation θsin/hL =  becomes 

( )2/sin/' φθ ±=
nn hL . Also hn/h = tan )2/( φθ ± /tanθ, fig. 8a. These all are in the 

category of geometric nonlinear corrections.  Hence, equation (4) becomes, for the α 

phase, 

 

h

bb zy θφθ
ε

tan)]2/tan([
0

−+
=− .         (7) 

 

Equation (2) is similarly replaced by 

 

.
2

)2/cos()2/sin(

2

tan)2/cos()]2/sin()2/cos([(
sin2 01







 −−

−
−−−−

= − φθφθεθφθφθφθ
φ

h

bb yz

                                                                                                                                                        

(8) 

Analogous equations can be used for the β phase with ( )2/φθ −  replaced 

by ( )2/φθ + . 

Evidently, equations (7) and (8) reduce to (4) and (5) in the small φ  limit.  Unlike 

the simple superposition case, equations (7) and (8) must be solved simultaneously by 

numerical or iterative methods.  Explicitly, for 1+iθ  and iφ , one can start with the linear 

result 1φφ =i  and iterate; a possible procedure is set out in Appendix B. The results for 

the “Ti” case are listed in Table 2, showing that the simple superposition results are 

satisfactory for the small φ  case, i.e. for most cases analyzed or measured.  Only in 

exceptional cases such as the  αβ hh /  = 1.15 case, would the nonlinear corrections be 

needed.  An example would be the martensite transformation in Pu-Ga alloys, where 

°≈ 6φ  and αβ hh /  = 1.2 [18, 19]. In such a case, however, nonlinear elastic 

corrections would have to be considered as well as the nonlinear geometric 

corrections.  The most obvious effect is that the coherency strains are no longer 

described by linear elasticity.  The strains arise for stresses applied to the free surfaces 

normal to y to satisfy the free surface boundary condition.  The strains are related to 

these stresses by third and higher order nonlinear elastic constants, an effect that 
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becomes important for strains greater than about 0.5%.  Anisotropic elastic effects 

lead to stress tensors that include more components, perhaps all six, for edges and 

screws, complicating defect interactions, modifying coherency relaxation and 

producing results analogous to those for isotropic elastic constants at an interface 

between elastically inhomogeneous crystals. The most important effect in the latter 

case is to modify partitioning.  For example, in the limit that the matrix was infinitely 

stiff, all among the coherency stresses, the defect stresses and the tilt rotation, if 

present, would partition to the product phase [20].  Even in the inhomogeneous 

isotropic elastic case, similar changes in partitioning occur [21]. In both cases [20, 

21], distributions of interface line forces may also be needed for the equilibrium 

description. 

Table 2 here. 

All of the effects discussed to this point apply to the analysis of the transformation 

defects only.  The same considerations of partitioning of tilt rotations apply in the TM 

analysis of LID.  As mentioned previously, twist rotations and their partitioning are 

needed when the disconnections or LID include screw components of dislocations 

[15].  Interactions between disconnections and LID defects, usually neglected, can 

also lead to complications [22]: line force distributions can again arise in the interface.  

We mention these possibilities to reinforce the earlier conclusion that the second-

order differences between the PTMC and TM models may not be significant 

compared to uncertainties arising from approximations in the models. 

 

3. Plasticity Effects 

 

In this section we show that the plastic portion of the TM description of the 

transformation strain agrees with the shape transformation obtained from the PTMC. 

For the static equilibrium of Section 2, the elastic strain fields of the 

disconnections were important in relieving coherency strains.  Moving disconnections 

also serve to produce the plastic transformation strain, converting the parent β to a 

product α. The dislocation component of a moving disconnection sweeping an area A 

produces an engineering strain per unit volume Ab
D=Γ .  Here, nA A=  with n a unit 

normal to A.  Hence a straight disconnection of length l  moving by yδ in the y 
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direction in the terrace plane coordinates sweeps an area yA δl= , numerically equal to 

yδ  for a defect of unit length. Motion of a train of disconnections as in figure 2, with 

D
d/1 defects per unit length in the y direction, produces an engineering strain, D

mΓ , 

given by 

 

( )
z

D
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00

0

00

00
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


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=Γ
δ

ε
γ ,                   (9) 

 

with nz = 1.  Here by and bz are the edge components of the disconnection Burgers 

vector.  Uniform motion of unit area of the train by -δy transforms a volume 

numerically equal to Ddyh /δ  from β  to α  and translates the habit plane in the z’ 

direction by δz’ = -δy sin θ. In this formalism, an additional, plastic strain yyε arises 

because of the motion along z of the coherency dislocations with Burgers vector 

cyb and line direction x. When the disconnection array moves by yδ , the resulting 

strain is 

 

( )00
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0

000

00

000

ycyDyy
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m nb
d

y
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

=Γ
δ

ε .           (10) 

 

Thus, knowing ],,0[ zy

D
bb=b and cyb , one can simply write the total engineering 

deformation at unit distance, produced when the interface sweeps unit volume, as 

 

( )

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













+

+=Γ+Γ+=

zz

yzyy

C

m

D

m

TM

ε
γε

100

10

001

IP .                   (11) 

 

Equation (11) describes the IP deformation transforming the natural β  crystal into 

the natural α  crystal by disconnection motion along the terrace plane. It corresponds 

to the transformation matrix S used in [13] as input to the PTMC calculation; see 

figure A1(a). 
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In the present case, where no LID is invoked, the PTMC shape deformation, 

equation (1), is simply given by RBP =1 . In other words, the shape deformation 

expresses the combined effect of the lattice deformation and the OR. The PTMC 

result is therefore equivalent to the plastic TM transformation deformation combined 

with rotation of the product byφ .  As explained above, in the TM the rigid-body 

rotation φ  is associated with the elastic distortion fields of the defects at the interface, 

which is unchanged on average as the train of defects moves. Thus both the rotations 

connected to the elastic distortions and the associated elastic distortion partitioning 

relative to the current interface are unchanged by the motion of the habit plane.   The 

PTMC and the TM agree except for the elastic partitioning.   That is, the two models 

agree on the magnitude of the components of the shape change.  However the PTMC 

applies them relative to the interface cut on βη  while the TM applies them relative 

toθ . 

Using expressions (2.7) and (2.8) of reference [14], one can readily confirm that 

both the “glide” of disconnections across the terraces and the “climb” of the 

coherency dislocations perpendicular to this are conservative. 

4. Discussion 

The pioneering works of Wechsler, Lieberman and Read [3] and Bowles and 

MacKenzie [4] are phenomenological and pertain to crystals where elastic 

displacements are suppressed. Similarly, Bullough and Bilby’s surface dislocation 

model [1] suppresses elastic relaxations, and is hence congruent with the PTMC. By 

contrast, the TM [13, 14 ] is aetiological, envisioning the interface structure as being 

partially coherent and transformation to occur by the motion of defects. In this 

approach plastic and elastic effects are distinguished. Broadly speaking, the plastic 

transformation strain and OR predicted by the TM for the case considered here is the 

same as that predicted by the PTMC. Thus, the shape transformation of the PTMC, 

equation (1), is equivalent to the plastic transformation strain, expression (11), in 

combination with the OR, expression (4), of the TM. However, consideration of 

elastic relaxations in the TM describes the partitioned interfacial displacement field 

and shows that the habit plane consequently differs slightly from the PTMC 

prediction. One consequence is that the shape transformation according to the TM can 

no longer be expressed as a simple IPS like expression (2). 
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Although the treatment presented here is for a case where no LID is invoked, it 

can be readily extended to the more general case. The plastic transformation strain 

produced when slip or twinning dislocations follow the interface can be expressed as 

an IPS analogous to equation (11). Moreover, their presence affects the OR and habit 

plane. The combination of IPSs due to disconnection and dislocation motion, along 

with the overall OR, can be expressed as an ILS, RB. An example of the application 

of the TM to a transformation involving LID is the case of ( )575  lath martensite in 

ferrous alloys [15]. Here, the disconnections and slip dislocations in the interface have 

predominantly screw character, producing a partitioned twist displacement field near 

the interface. 

The phenomenological theories cannot explain satisfactorily why habit planes 

sometimes vary with small composition changes of the phases (for example in Fe-C 

alloys) or with the mode of formation (by cold-work or cooling for example) [2, 6]. In 

these approaches the lattice deformation normally chosen, B, is that corresponding to 

minimum strains. By contrast, in the TM this is determined primarily by the Burgers 

vector of the operative disconnections, as encapsulated in expression (10). For a given 

transformation a multiplicity of disconnections may arise on a viable terrace plane, 

and hence distinct disconnection/dislocation arrays, leading to distinct habit planes, 

might arise in differing circumstances. The multiplicity of potential 

disconnection/dislocation combinations is particularly marked in the case of ferrous 

alloys [15]. 

Partitioning of coherency strains has been recognised by many previous workers, 

e.g. [16]. However, the partitioning of tilt in phase transformations has only been 

recognised recently [17]. This is an irreversible thermodynamic relaxation in the 

strain energy of the system. Its incorporation into the TM augments the PTMC, 

producing an added rotation of the αβ /  habit planes, by 2/φ±  when φ  is small. An 

unrelaxed PTMC interface is depicted in figure 9, but there is no dislocation 

arrangement that can be superimposed on the TM structure to reproduce it.  Extrinsic 

dislocations could be added to make, say, θηα =  when αβ hh f , but then βη  would 

also equal θ  and not equal the value ηβ = θ + ϕ of figure 7.  Similarly in the other 

cases, one or the other habit plane could be made to agree with figure 9, but both 

could not together so agree. 

Figure 9 here. 
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In many cases the rotation of  2/φ±  is a small emendation but in some it is not.  

We emphasize that these calculated differences apply to the idealized case of a large 

bicrystal with a planar interface.  The partitioning arises from the superposition of 

surface tractions on the free surfaces normal to y in order to satisfy the free surface 

boundary condition.  This is a good approximation for the case of lath martensite with 

a large aspect ratio.  For lenticular plates, strain partition is resisted by compatibility 

forces at the plate tips.  There the rotations and strains in the parent tend to be 

suppressed.  This would be favored particularly for plates with small aspect ratios.  

Compatibility strains '

xxε  would modify results for both the TM and the PTMC.  

Rotations would tend to be suppressed in the TM changing the partitioning in the 

direction to more closely agree with the PTMC.  Of course, many other factors enter 

when plate curvature and compatibility effects become important. 

 

5. Conclusions 

Elastic and plastic strains are distinguished in the TM treatment of martensitic 

transformations. Thus the TM extends previous methods (surface dislocations and 

phenomenological theories) by including elastic relaxation by partition of the tilt wall 

rotations,φ , when such walls are part of the interface structure. Such relaxations lead 

to rotations of the habit plane by 2/φ  away from classical predictions. A nonlinear 

elastic/plastic analysis to determine these rotations is presented, enabling application 

of the TM to larger values ofφ . In the present work a simplified case is considered 

where no LID is invoked. When LID is involved, partitioning concepts would also 

apply. 

Plastic deformation arises in the TM through motion of defects at the interface. 

Transformations exclusive of LID effects are considered in detail in this paper. 

The plastic transformation strain, in combination with the orientation relationshipφ , 

predicted by the TM agrees with the previous methods. 
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Appendix A 

The unit cells of bcc and hcp Ti viewed along αβ ]1000/[]101[ disposed in the 

Burgers OR are depicted in figure A1(a). These cells exhibit their natural lattice 

parameters, βa and αa , respectively, and misfit by 3.8% along αβ ]0211/[]111[ and 

0.86% αβ ]1000/[]101[ . In the present work, for simplicity, the latter misfit is 

suppressed. The pattern created when these modified “Ti” lattices interpenetrate is 

designated the “Natural Dichromatic Pattern”, β  sites being regarded as “white” and 

α as “black”. The Natural DP is used as a reference space in the TM. A second 

reference space is defined where the ( ) ( )αβ 0011/112 ”terrace” plane with unit normal n 

is forced into coherency by a uniaxial strain, yyε ; the result is known as the “Coherent 

DP”. 

The Natural DP is used as the reference state for characterising coherency 

dislocations, i.e. the notional array of defects producing yyε  [14]. The Coherent DP is 

used to characterise disconnections at the interface between β  andα , an array of 

which accommodates yyε [13, 14]. Figure A1(b) is a schematic illustration of such a 

disconnection. Its Burgers vector is equal to the difference between the translation 

vectors indicated, ( ) ( )αβ ttb −= , expressed in the x, y, z coordinate frame, and has 

components along y and z in this example. The smaller of the two step 

heights, ( ) ( )αβαβ // tn •=h , ( )αh  in this case, is designated the “overlap” step 

height, h. The difference between the step heights defines the z component of b. 

Appendix B 

Because
2/tantan1

2/tantan
)2/tan(

φϑ
φϑ

φθ
+

−
=− , eq. (7) can be written 
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0tan])2/tan()[(tan])2/tan([ 0101

2 =++−++ ++ εθφεθφ hbbhbb iyiziziy .   (B1) 

 

Inserting iφ  one can solve this expression for the up-dated 1+iθ . Then the updated 1+iφ  

can be found using eq. (8) in the form ( )iii f φθφ ,11 ++ = . Convergence is rapid since 1+iφ  

depends only weakly on iφ . 
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Tables 

 

 

 

 

αβ hh /  

 

 

θ  

 

φ  

 

αω  

 

βω  

 

βη  

 

 

1.048 

 

 

10.8609 

 

 

 

0.5286 

 

 

 

10.5966 

 

 

 

11.1252 

 

 

 

11.3642 

 

 

1.15 

 

 

10.0091 

 

 

1.5169 

 

 

9.2507 

 

 

10.7676 

 

 

11.4067 

 

 

Table 1. Step height ratios and habit plane parameters for “Ti” obtained by the 

linear superposition method. All angles are expressed in degrees. 

 

 

 

 

 

 

 

 

Page 18 of 27

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

αβ hh /  

 

 

θ  

 

φ  

 

αω  

 

βω  

 

1.048 

 

10.8727 

 

0.5292 

 

10.6080 

 

11.1373 

 

1.15 

 

 

10.0934 

 

1.5299 

 

9.3284 

 

10.8583 

 

Table 2.  Step height ratios and habit plane parameters for “Ti” obtained by the 

nonlinear method.  All angles are expressed in degrees. 

 

Figure Captions 

Figure 1. Schematic illustration of a parent( β )-martensite(α ) interface showing 

the terrace segments and defect arrays [13, 14 ]. Coherently strained terraces are 

reticulated by arrays of disconnections (b, h) with spacing d
D
 and crystal slip 

dislocations (b, 0). The terrace and habit (primed) coordinate frames are shown and 

the line directions of the disconnections, ξξξξD
, and dislocations, ξξξξL

, are parallel to x and 

close to y’ respectively. 

 

Figure 2. Schematic illustration showing the disconnection content of an interface, 

with Burgers vector components resolved in the terrace (upper) and habit plane 

(lower) frames [13, 14 ]. The terrace plane is inclined at an angle θ to the horizontal 

habit plane. Coherency strain is represented by the equivalent “coherency” defect 

content, cyb . The x-axis points out of the page. 

 

Figure 3. Schematic illustration of the tilt boundary along the equilibrium 

interface: the Burgers vectors of the component dislocations are '

zb .  A hypothetical 

array of extrinsic dislocations, '

ezb , exactly cancelling the former tilt is also shown. 

 

Figure 4. Schematic illustration of an array of “overlap” steps defining the habit 

plane inclination θ . 
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Figure 5. Schematic illustration of the partitioning of distortions in both adjacent 

crystals arising from the dislocation components (a) zb , and (b) '

zb . The dashed lines 

represent bending of planes (elastic distortions) in the vicinity of the dislocations. 

 

Figure 6. Schematic illustration of free-surface step heights, (a) for the separated 

β  and α crystals, (b) representation of the common “overlap” step height, and (c) 

array of virtual steps corresponding to the partitioned tilt wall, φ . 

 

Figure 7. Variation of the TM habit plane angles 2/φθωα −= (dashed line) 

and 2/φθωβ +=  (dash-dot line) with αβ hh / . The magnitude of αh  is fixed while 

that for βh  is varied systematically [14]. The PTMC habit plane angle, βη , is also 

shown (solid line). The linear-superposition treatment is valid in the region between 

the vertical arrows. In this region βω and βη are seen to vary approximately linearly 

and to differ by 2/φ . 

 

Figure 8. (a) Schematic illustration of the habit plane angle 2/φθωα −=  and (b) 

the habit plane angles 2/φθωα −=  and 2/φθωβ += after relaxation for the case 

αβ hh / >1. 

 

Figure 9. Schematic illustration of a habit plane between unrelaxed crystals 

according to the PTMC. 

 

Figure A1 (a) Illustration of natural bcc and hcp “Ti” lattices exhibiting the 

Burgers orientation relationship. (b) Schematic illustration of the formation of a 

disconnection; the b of the defect with respect to the coherent reference state is the 

Volterra operation required to create equivalent interfaces on either side of the 

crystals’ surface steps. The ‘overlap’ step height of the defect is the smaller of the two 

surface steps, h(α) in this case. The sense vector ξξξξ points out of the page. 
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Figure A1(b) 
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