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Let f be a G-function (in the sense of Siegel), and α be an algebraic number; assume that the value f (α) is a real number. As a special case of a more general result, we show that this number can be written as g(1), where g is a G-function with rational coefficients and arbitrarily large radius of convergence. As an application, we prove that quotients of such values are exactly the numbers which can be written as limits of sequences a n /b n , where ∞ n=0 a n z n and ∞ n=0 b n z n are G-functions with rational coefficients. This result provides a general setting for irrationality proofs in the style of Apéry for ζ(3), and gives answers to questions asked by T. Rivoal in [

Introduction

This paper belongs to the arithmetic theory of G-functions, but not exactly in the usual Diophantine sense described just below. These functions are power series occurring frequently in analysis, number theory, geometry or even physics: for example, algebraic functions over Q(z), polylogarithms, Gauss' hypergeometric function are G-functions. The exponential function is not a G-function but an E-function. Both classes of functions have originally been introduced by Siegel [START_REF] Siegel | Über einige Anwendungen diohantischer Approximationen[END_REF].

Throughout this paper we fix an embedding of Q into C; all algebraic numbers and all convergents series are considered in C. Definition 1. A G-function f is a formal power series f (z) = ∞ n=0 a n z n such that the coefficients a n are algebraic numbers and there exists C > 0 such that:

(i) the maximum of the moduli of the conjugates of a n is ≤ C n .

(ii) there exists a sequence of integers d n , with |d n | ≤ C n , such that d n a m is an algebraic integer for all m ≤ n.

(iii) f (z) satisfies a homogeneous linear differential equation with coefficients in Q(z). ( 1 )

1 All differential equations considered in this text are homogeneous and consequently we will no longer mention the term "homogeneous".
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The class of E-functions is defined similarly: in Definition 1, replace a n with a n /n! in f (z), and leave the rest unchanged. Condition (i) ensures that a non-polynomial Gfunction has a finite non-zero radius of convergence at z = 0. Condition (iii) ensures that in fact the coefficients a n , n ≥ 0, all belong to a same number field. Classical references on G-functions are the books [START_REF] André | G-functions and Geometry[END_REF] and [START_REF] Dwork | An introduction to G-functions[END_REF].

Siegel's goal was to find conditions ensuring that E and G-functions take irrational or transcendental values at algebraic points: the picture is very well understood for Efunctions but largely unknown for G-functions. The main tool to study the nature of values of G-functions is inexplicit Padé type approximation (see [START_REF] André | G-fonctions et transcendance[END_REF][START_REF] Bombieri | On G-functions[END_REF][START_REF] Chudnovsky | Applications of Padé approximations to Diophantine inequalities in values of G-functions, Number theory[END_REF][START_REF] Galochkin | Lower bounds of polynomials in the values of a certain class of analytic functions, in russian[END_REF]). In an explicit form, Padé approximation is also behind Apéry's celebrated proof [START_REF] Apéry | Irrationalité de ζ(2) et ζ(3)[END_REF] of the irrationality of ζ(3), and similar results in specific cases (see for instance [START_REF] Beukers | Padé-approximations in number theory, Padé approximation and its applications[END_REF][START_REF] Fischler | Approximants de Padé et séries hypergéométriques équilibrées[END_REF]).

In this paper, we are not directly interested in Diophantine questions in the above sense, even though this is our motivation: we refer the reader to Remark b) following Theorem 2 and to §7.2 for some comments on this aspect. We are primarily interested in the type of numbers for which one can find an approximating sequence constructed in Apéry's spirit, even if no irrationality result can be deduced from this sequence. It turns out that the set of these numbers can be described very simply in terms of the set of values of G-functions with algebraic Taylor coefficients at algebraic points (see Theorem 2). Before that, we prove that the latter set coincides with the set of values at z = 1 of G-functions with Taylor coefficients in Q(i) and radius of convergence > 1 (see Theorem 1, where stronger assertions are stated). We don't know if a similar one holds for values of E-functions, and we present in §7.1 some issues in this case.

Throughout this text, algebraic extensions of Q are always embedded into Q ⊂ C; they can be either finite or infinite. Definition 2. Given an algebraic extension K of Q, we denote by G a.c.

K the set of all values, at points in K, of multivalued analytic continuations of G-functions with Taylor coefficients at 0 in K.

For any G-function f with coefficients in K and any α ∈ K, we consider all values of f (α) obtained by analytic continuation. If α is a singularity of f , then we consider also these values if they are finite. In this situation f (αz) is also a G-function with coefficients in K so that we may restrict ourselves to the values at the point 1. By Abel's theorem, G a.c.

K contains all convergent series ∞ n=0 a n α n where f (z) = ∞ n=0 a n z n is a G-function with coefficients in K and α ∈ K. Definition 3. Given an algebraic extension K of Q, we denote by G K the set of all ξ ∈ C such that, for any R ≥ 1, there exists a G-function f with Taylor coefficients at 0 in K and radius of convergence > R such that ξ = f (1).

For any R ≥ 1, we denote by G R,K the set of all ξ = f (1) where f is a G-function with Taylor coefficients at 0 in K and radius of convergence > R. In this way we have G K = ∩ R≥1 G R,K , and also G R,K ⊂ G a.c.

K for any R ≥ 1. The set of G-functions has many algebraic properties. For example, it is a ring and a Q[z]-algebra for the usual addition and Cauchy multiplication of power series; it is also stable under the Hadamard product, i.e., pointwise multiplication of the coefficients of two power series. Such algebraic properties translate easily to the set G K (which is therefore a ring, see Lemma 2 for other structural properties), but not immediately to G a.c. K . Our first result is that G a.c.

K is independent from K. Concerning G K , there is an obvious remark: if K ⊂ R then G K ⊂ R. Apart from this, G K is independent from K, and equal (up to taking real parts) to G a.c.

K . The precise statement is the following. Theorem 1. Let K be an algebraic extension of Q. Then:

• We have G a.c. K = G a.c. Q = G a.c. Q = G Q + iG Q . • If K ⊂ R then G K = G Q + iG Q ; if K ⊂ R then G K = G Q .
One of the consequences of this theorem is that G K contains Q ∩ R, and even Q if K ⊂ R. We also deduce that the set of values of G-functions ∞ n=0 a n z n with a n ∈ K at points z ∈ K inside the disk of convergence (respectively at points where this series is absolutely convergent, respectively convergent) is equal to G K .

In [24, p. 350], the second author introduced the notion of rational G-approximations to a real number. This corresponds to assertion (ii) (with K = Q) in the next result, which provides a characterization of numbers admitting rational G-approximations. This provides answers to questions asked in [24, p. 351].

Given a subring A ⊂ C, we denote by Frac(A) the field of fractions of A, namely the subfield of C consisting in all elements ξ/ξ ′ with ξ, ξ ′ ∈ A, ξ ′ = 0. Theorem 2. Let K be an algebraic extension of Q, and ξ ∈ C ⋆ . Then the following statements are equivalent:

(i) We have ξ ∈ Frac(G K ). (ii) There exist two sequences (a n ) n≥0 and (b n ) n≥0 of elements of K such that ∞ n=0 a n z n and ∞ n=0 b n z n are G-functions, b n = 0 for any n large enough and lim n→+∞ a n /b n = ξ. (iii) For any R ≥ 1 there exist two G-functions A(z) = ∞ n=0 a n z n and B(z) = ∞ n=0 b n z n , with coefficients a n , b n ∈ K and radius of convergence = 1, such that A(z) -ξB(z) has radius of convergence > R.
Remarks. a) When ξ ∈ G K , we can take b n = 1 in (ii). However, it is not clear to us if this is also the case for other elements in ξ ∈ Frac(G K ), in particular because it is doubtful that

G K itself is a field. b) Apéry has proved [5] that ζ(3) ∈ Q by constructing sequences (a n ) n≥0 and (b n ) n≥0 essentially as in (iii) with K = Q, such that b n ∈ Z and lcm(1, 2, . . . , n) 3 a n ∈ Z. Since ζ(3) = Li 3 (1) (where the polylogarithms defined by Li s (z) = ∞ n=1 1 n s z n , s ≥ 1, are G- functions), we have ζ(3) ∈ G Q
by the remark following Theorem 1. Theorem 2 provides a general setting for such irrationality proofs and one may wonder if, given an irrational number ξ ∈ Frac(G Q ), there exists a proof à la Apéry that ξ is irrational. In particular, a positive answer to this question would imply that no irrational number ξ ∈ Frac(G Q ) can be a Liouville number. More details are given in §7.2. c) G-functions also arise in other proofs of irrationality or linear independence, in the same way as in Apéry's, for instance concerning the irrationality [START_REF] Ball | Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs[END_REF][START_REF]La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs[END_REF] of ζ(s) for infinitely many odd s ≥ 3. d) A celebrated conjecture of Bombieri and Dwork predicts a strong relationship between differential equations satisfied by G-functions and Picard-Fuchs equations satisfied by periods of families of algebraic varieties defined over Q. See the precise formulation given by André in [1, p. 7], who proved half of the conjecture in [1, pp. 110-111]. See also §2 of [START_REF] Kontsevich | Periods[END_REF] for related considerations.

The paper is organized as follows. In §2, we collect a number of technical lemmas. In §3, we prove that algebraic numbers and logarithms of algebraic numbers are in G Q + iG Q . In §4, we review some classical results concerning the properties of differential equations satisfied by G-functions (namely Theorem 3, due to efforts of André, Chudnovski and Katz). We also prove in this section an important intermediate result: the connection constants of these differential equations are also values of G-functions (Theorem 4). This result, along with the analytic continuation properties of G-functions deduced from Theorem 3, is used in the proof of Theorem 1 in §5. In §6, we present the proof of Theorem 2: the main tool is the method of Singularity Analysis as described in details in the book [START_REF] Flajolet | Analytic combinatorics[END_REF]. Finally, in §7, we present a few problems suggested by our results: what can be said about the case of E-functions and about Diophantine perspectives.

2 Technical lemmas

General properties of the ring G K

The set of G-functions satisfies a number of structural properties. It is a ring and even a Q[z]-algebra; it is stable by differentiation and the Hadamard product of two G-functions is again a G-function. These properties will be used throughout the text, as well as the fact that algebraic functions over Q(z) which are holomorphic at z = 0 are G-functions: this is a consequence of Eisenstein's theorem ( 2 ) and the fact that an algebraic function over Q(z) satisfies a linear differential equation with coefficients in

Q[z].
The following property is useful too:

Lemma 1. Consider a G-function ∞ n=0 a n z n . Then the series ∞ n=0 a n z n , ∞ n=0 Re(a n )z n and ∞
n=0 Im(a n )z n are also G-functions. Proof. The series ∞ n=0 a n z n satisfies a linear differential equation Ly = 0 with coefficients in Q[z], hence ∞ n=0 a n z n satisfies the linear differential equation Ly = 0 where L is obtained from L by replacing each coefficient d k=0 p k z k with d k=0 p k z k . Furthermore, 2 which states that for any power series ∞ n=0 a n z n algebraic over Q(z), there exists a positive integer D such that D n a n is an algebraic integer for any n the moduli of the conjugates of a n and their common denominators obviously grow at most geometrically. Hence, ∞ n=0 a n z n is a G-function. For ∞ n=0 Re(a n )z n and ∞ n=0 Im(a n )z n , we write 2Re(a n ) = a n +a n , 2iIm(a n ) = a n -a n and use the fact that the sum of two G-functions is also a G-function.

The following lemma includes the easiest properties of G K ; especially (i) will be used very often without explicit reference. Lemma 2. Let K be an algebraic extension of Q.

(i) G K is a ring and it contains K.

(ii) If K is invariant under complex conjugation then:

• G K is invariant under complex conjugation. • G K∩R = G K ∩ R. • R ∩ Frac(G K ) = Frac(G K∩R ) = Frac(G K ∩ R). (iii) G Q(i) = G Q [i] = G Q + iG Q , and more generally if K ⊂ R then G K(i) = G K [i] = G K + iG K .
Remark. André [1, p. 123] proved that algebraic functions holomorphic at z = 0 and nonvanishing at z = 0 form the group of units of the ring of G-functions. It is an interesting problem to determine the group of units of G Q(i) . So far, it is known that it contains Q (see Lemma 7) but also all integral powers of π. This is a consequence of the identities π = 4 arctan(1) (see also Lemma 8) and 1/π = ∞ n=0 2n n 3 (42n + 5)/2 12n+4 (Ramanujan), which show that π and 1/π are in G a.c. Q = G Q , by Theorem 1. Proof. (i) The properties of G-functions ensure that the sum and product of two Gfunctions with coefficients in K and radii of convergence > R ≥ 1 are G-functions with coefficients in K and radii of convergence > R. Moreover algebraic constants are G-functions with infinite radius of convergence.

(ii) Using Lemma 1 and the fact that K is invariant under complex conjugation, if

∞ n=0 a n z n is a G-function with coefficients in K and radii of convergence > R ≥ 1 then so is ∞ n=0 a n z n : this proves that G K is invariant under complex conjugation. The inclusion G K∩R ⊂ G K ∩ R is obvious. Conversely, if ξ ∈ R ∩ G K then for any R ≥ 1 we have ξ = ∞ n=0 a n where ∞ n=0 a n z n is a G-function with coefficients in K and radius of convergence > R. Then ∞ n=0 Re(a n )z n is also a G-function (by Lemma 1); it has coefficients in K ∩ R (because Re(a n ) = 1 2 (a n + a n )) and radius of convergence > R. Therefore ξ = ∞ n=0 Re(a n ) ∈ G K∩R . Finally, the inclusion Frac(G K ∩ R) ⊂ R ∩ Frac(G K ) is trivial. The converse is trivial too if K ⊂ R; otherwise let ξ, ξ ′ ∈ G K be such that ξ ′ = 0 and ξ/ξ ′ ∈ R. Multiplying if necessary by a non-real element of K, we may assume ξ, ξ ′ ∈ iR. Then we have ξ/ξ ′ = (ξ + ξ)/(ξ ′ + ξ ′ ) ∈ Frac(G K ∩ R). (iii) Assume K ⊂ R. Since G K is a ring and i 2 = -1 ∈ G K , we have G K [i] = G K +iG K . This is obviously a subset of G K(i) . Conversely, K(i) is invariant under complex conjugation (because K ⊂ R) so that for any ξ ∈ G K(i) we have Re(ξ) = 1 2 (ξ + ξ) ∈ G K(i) ∩ R = G K by (ii). Since i ∈ K(i) ⊂ G K(i) we have Im(ξ) = -i(ξ -Re(ξ)) ∈ G K(i) ∩ R = G K , using (ii) again. Finally ξ = Re(ξ) + iIm(ξ) ∈ G K + iG K .
The following lemma is a consequence of Lemma 7 proved in §3 below; of course the proof of Lemma 7 does not use Lemma 3, hence there is no circularity. Lemma 3. Let K be an algebraic extension of Q.

(i) We have Q ∩ R ⊂ G Q ⊂ G K , and G K is a (Q ∩ R)-algebra. (ii) If K ⊂ R then Q ⊂ G Q(i) ⊂ G K , and G K is a Q-algebra. Proof. (i) By Lemma 7, we have Q ∩ R ⊂ G Q(i) ∩ R; this is equal to G Q by Lemma 2. The inclusion G Q ⊂ G K is trivial since Q ⊂ K. (ii) Since K ⊂ R, there exist α, β ∈ R such that α + iβ ∈ K and β = 0; since α -iβ is also algebraic, we have α, β ∈ Q. Therefore we can write i = 1 β ((α + iβ) -α) with 1 β , α ∈ Q ∩ R ⊂ G K (by (i)). Since G K is a ring which contains α + iβ, this yields i ∈ G K , so that (using Lemma 2 and the trivial inclusion G Q ⊂ G K ) G Q(i) = G Q + iG Q ⊂ G K . Using the inclusion Q ⊂ G Q(i)
proved in Lemma 7, this concludes the proof of (ii).

To conclude this section, we state and prove the following lemma, which is very useful for constructing elements of G R,K . Recall that G R,K is the set of all ξ = f (1) where f is a G-function with coefficients in K and radius of convergence > R.

Lemma 4. Let K be an algebraic extension of Q. Let ζ ∈ K, and g(z) be a G-function in the variable ζz, with coefficients in K and radius of convergence ≥ r > 0. Then

g(z 0 ) ∈ G R,K for any R ≥ 1 and any z 0 ∈ K such that |z 0 -ζ| < r/R. Proof. Letting f (z) = g ζ + z(z 0 -ζ) , we have f (1) = g(z 0
) and f is a G-function with coefficients in K and radius of convergence > R.

Miscellaneous lemmas

We gather in this section two lemmas which are neither difficult nor specific to G-functions, but very useful.

Lemma 5. Let A be a subring of C. Let S ⊂ N and T ⊂ Q be finite subsets. For any (s, t) ∈ S × T , let f s,t (z) = ∞ n=0 a s,t,n z n ∈ A[[z]
] be a function holomorphic at 0, with Taylor coefficients in A. Let Ω denote an open subset of C, with 0 in its boundary, on which a continuous determination of the logarithm is chosen. Then there exist c ∈ A, σ ∈ N and τ ∈ Q such that, as z → 0 with z ∈ Ω:

s∈S t∈T (log z) s z t f s,t (z) = c (log z) σ z τ (1 + o(1)).
(2.1)

Proof. Let T + N = {t + n, t ∈ T, n ∈ N}.
For any s ∈ S and any θ ∈ T + N, let c s,θ = t∈T a s,t,θ-t where we let a s,t,θ-t = 0 if θt ∈ N. Then the left handside of (2.1) can be written, for z ∈ Ω sufficiently close to 0, as an absolutely converging series θ∈T +N s∈S c s,θ (log z) s z θ . If c s,θ = 0 for any (s, θ) then (2.1) holds with c = 0. Otherwise we denote by τ the minimal value of θ for which there exists s ∈ S with c s,θ = 0, and by σ the largest s ∈ S such that c s,τ = 0. Then (2.1) holds with c = c σ,τ ∈ A.

The following result will be used in the proof of Theorem 2. Lemma 6. Let ω 1 , . . . , ω t be pairwise distinct complex numbers, with

|ω 1 | = • • • = |ω t | = 1. Let κ 1 , . . . , κ t ∈ C be such that lim n→+∞ κ 1 ω n 1 + • • • + κ t ω n t = 0. Then κ 1 = • • • = κ t = 0.
Proof. For any n ≥ 0, let δ n = det M n where

M n =      ω n 1 ω n 2 . . . ω n t ω n+1 1 ω n+1 2 . . . ω n+1 t . . . . . . . . . ω n+t-1 1 ω n+t-1 2 . . . ω n+t-1 t      . Let C i,n denote the i-th column of M n . Since C i,n = ω n i C i,0 we have |δ n | = |ω n 1 . . . ω n t δ 0 | = |δ 0 | = 0
because δ 0 is the Vandermonde determinant built on the pairwise distinct numbers ω 1 , . . . , ω t . Now assume that κ j = 0 for some j. Then for computing δ n we can replace C j,n with 1

κ j t i=1 κ i C i,n ; this implies lim n→+∞ δ n = 0, in contradiction with the fact that |δ n | = |δ 0 | = 0.

Algebraic numbers and logarithms as values of Gfunctions

An important step for us is to show that algebraic numbers are values of G-functions. Despite quite general results in related directions, this fact does not seem to have been proved in the literature in the full form we need. Eisenstein [START_REF] Stillwell | Eisenstein's footnote[END_REF] showed that the G-function

(of hypergeometric type) ∞ n=0 (-1) n 5n n 4n + 1 a 4n+1
is a solution of the quintic equation x 5 + x = a, provided that |a| ≤ 5 -5/4 (to ensure the convergence of the series). Eisenstein's formula can be proved using Lagrange inversion formula. More generally, given a polynomial P (x) ∈ C[x], it is known that multivariate series can be used to find expressions of the roots of P in terms of its coefficients p j . For example in [START_REF] Sturmfels | Solving algebraic equations in terms of A-hypergeometric series[END_REF], it is shown that these roots can be formally expressed as A-hypergeometric series evaluated at rational powers of the p j 's. (A-hypergeometric series are an example of multivariate G-functions.) It is not clear how such a representation could be used to prove Lemma 7 below: beside the multivariate aspect, the convergence of the series imposes some conditions on the p j 's and their exponents are not integers in general. Our proof is more in Eisenstein's spirit.

Lemma 7. Let α ∈ Q, and Q(X) ∈ Q[X] be a non-zero polynomial of which α is a simple root. For any u ∈ Q(i) such that Q ′ (u) = 0, the series Φ u (z) = u + ∞ n=1 (-1) n Q(u) n n! ∂ n-1 ∂x n-1 x -u Q(x) -Q(u) n |x=u z n is a G-function with coefficients in Q(i); it satisfies the equation Q(Φ u (z)) = (1 -z)Q(u). For any R ≥ 1, if u is close enough to α then the radius of convergence of Φ u is > R and α = Φ u (1) ∈ G R,Q(i) .
Accordingly we have

Q ⊂ G Q(i) .
Remarks. a) The proof can be made effective, i.e., given α, Q and R, we can compute

ε(α, Q, R) such that for any u ∈ Q(i) with |α -u| < ε(α, Q, R), we have Φ u (1) = α and the radius of convergence of Φ u is > R. b) Using Lemma 2(ii), we deduce that any real algebraic number is in G Q .
We also need a similar property for values of the logarithm.

Lemma 8. Let α ∈ Q ⋆ .
For any determination of the logarithm, the number log(α) belongs to G Q(i) .

Algebraic numbers

Proof of Lemma 7. If deg Q = 1 then Φ u (z) = u+(α-u)z so that Lemma 7 holds trivially.

From now on we assume deg

Q ≥ 2. Then Q(X)-Q(u) X-u
is a non-constant polynomial with coefficients in Q(i); its value at X = u is Q ′ (u) = 0 so that the coefficients of Φ u (z) are well-defined and belong to Q(i). If Q(u) = 0 then Φ u (z) = u and the result is trivial, so that we may assume Q(u) = 0 and define the polynomial function

z u (t) = 1 - Q(t + u) Q(u) ∈ Q(i)[t] so that z u (0) = 0 and z ′ u (0) = -Q ′ (u) Q(u) = 0. Hence z u (t) can be locally inverted around t = 0 and its inverse t u (z) = n≥1 φ n (u)z n is holomorphic at z = 0.
The Taylor coefficients of t u can be computed by means of Lagrange inversion formula [16, p. 732] 

which in this case gives Φ u (z) = u + t u (z). By definition of t u (z), this implies Q(Φ u (z)) = (1 -z)Q(u). Therefore Φ u is an algebraic function hence it is a G-function. Now let φ n (u) = (-Q(u)) n n! ∂ n-1 ∂x n-1 x -u Q(x) -Q(u) n |x=u denote, for n ≥ 1, the coefficient of z n in Φ u (z). Then for any n ≥ 1 we have φ n (u) = Q(u) n 2iπ C dz (Q(u) -Q(z)) n (3.1)
where C is a closed path surrounding u but no other roots of the polynomial Q(X) -Q(u). This enables us to get an upper bound on the growth of the coefficients φ n (u). Let us denote by β 1 (u) = u, β 2 (u), . . . , β d (u) the roots (repeated according to their multiplicities) of the polynomial

Q(X) -Q(u), with d = deg Q ≥ 2.
We take u close enough to α so that β 2 (u), . . . , β d (u) are also close to the other roots α 2 , . . . , α d of the polynomial Q(X).

Since α is a simple root of Q(X), we have α ∈ {α 2 , . . . , α d }. We can then choose the smooth curve C in (3.1) independent from u such that the distance from C to any one of u, β 2 (u), . . . , β d (u) is ≥ ε > 0 with ε also independent from u, in such a way that u lies inside C and β 2 (u), . . . , β d (u) outside C . ( 3) It follows in particular that, for any z ∈ C ,

|Q(u) -Q(z)| ≥ ρ for some ρ > 0 independent from u. Hence max z∈C 1 Q(u) -Q(z) ≤ 1 ρ .
From the Cauchy integral in (3.1), we deduce that

|φ n (u)| ≤ |C | 2π • |Q(u)| n ρ n , (3.2) 
where

|C | is the length of C . Let R ≥ 1. Since Q(u) → Q(α) = 0 as u → α,
we deduce that the radius of convergence of Φ u (z) is > R provided that u is sufficiently close to α (namely as soon as R|Q(u)| < ρ). Then the series Φ u (1) is absolutely convergent and we have

|Φ u (1) -u| = ∞ n=1 φ n (u) ≤ |C | 2π ∞ n=1 |Q(u)| n ρ n = O |Q(u)| . (3.3)
Therefore Φ u (1) can be made arbitrarily close to u, and accordingly arbitrarily close to α. Now for any z inside the disk of convergence of Φ u we have

Q(Φ u (z)) = (1 -z)Q(u), so that Φ u (1) is a root of Q(X).
If it is sufficiently close to α, it has to be α. This completes the proof of Lemma 7.

Logarithms of algebraic numbers

Proof of Lemma 8. Throughout this proof, we will always consider the determination of log z of which the imaginary part belongs to (-π, π] (but the result holds for any determi-

nation because iπ = log(-1) ∈ G Q(i) ).
Using the formula log(α) = n log(α 1/n ) with n sufficiently large, we may assume that α is arbitrarily close to 1; in particular the imaginary part of log α gets arbitrarily close to 0.

Letting Q(X) denote the minimal polynomial of α, we keep the notation in the proof of Lemma 7,and 

write α = Φ u (1) = u + uΨ u (1) where u ∈ Q(i) is close enough to α, Ψ u (1)
is in G Q(i) and Ψ u (0) = 0. By Equation (3.2), the radius of convergence at z = 0 of the G-function Ψ u (z) can be taken arbitrarily large provided that u ∈ Q(i) is close enough to α. We have log(α) = log(α/u) + log(u) = log 1 + Ψ u (1) + log(u), because all logarithms in this equality have imaginary parts arbitrarily close to 0. Let R ≥ 1; we shall prove, if u is close enough to 1, that both log(1 + Ψ u (1)) and log(u) belong to G R,Q(i) .

a) Provided that u is close enough to α, reasoning as in Equation (3.3) we get |Ψ u (z)| < 1 for all z in a disk of center 0 and radius > R. Hence for such a u, the radius of convergence of the Taylor series of log(1

+ Ψ u (z)) at z = 0 is > R ≥ 1. To see that it is a G-function with coefficients in Q(i), we observe that d dz log 1 + Ψ u (z) = Ψ ′ u (z)
1+Ψu(z) is an algebraic function holomorphic at the origin: its Taylor series is a 

G-function ∞ n=0 a n z n ∈ Q(i)[[z]]. Therefore log(1+Ψ u (z)) = ∞ n=0 an n+1 z n+1 ∈ Q(i)[[z]]; this is a G-function because the set of G-functions is stable under Hadamard product and both ∞ n=0 a n z n+1 and ∞ n=0 1 n+1 z n+1 are G-functions. Whence, log(1 + Ψ u (1)) ∈ G R,Q(i) . b) It remains to prove that log(u) ∈ G R,Q(i) for any u ∈ Q(i) sufficiently close to 1. Let a, b ∈ Q be such that u = a + ib. Then we have log(u) = 1 2 log(a 2 + b 2 ) + i arctan b a . Now log(1 + z) = ∞ n=1 ( - 

Analytic continuation and connection constants 4.1 Properties of differential equations of G-functions

Let K be an algebraic extension of Q, and

f (z) = ∞ n=0 a n z n ∈ K[[z]
] be a G-function with coefficients a n ∈ K. Let L be a minimal differential equation with coefficients in K[z] of which f (z) is a solution. We denote by ξ 1 , . . . , ξ p ∈ C the singularities of L (throughout this paper, we will consider only points at finite distance). For any i ∈ {1, . . . , p}, let ∆ i be a closed broken line from ξ i to the point at infinity; we assume ∆ i ∩ ∆ j = ∅ for any i = j, and let D = C \ (∆ 1 ∪ . . . ∪ ∆ p ): this is a simply connected open subset of C. In most cases we shall take for ∆ i a closed half-line starting at ξ i .

The differential equation Ly = 0 has holomorphic solutions on D, and these solutions make up a C-vector space of dimension equal to the order of L; a basis of this vector space will be referred to as a basis of solutions of L.

Let We shall use the following theorem (see [3, p. 719] for a discussion).

Theorem 3 (André, Chudnovski, Katz). Let K denote an algebraic extension of Q. Consider a minimal differential equation L of order µ, with coefficients in K[z] and admitting a solution at z = 0 which is a G-function in K[[z]]. Let D, ξ 1 ,. . . , ξ p be as above.

Then L is fuchsian with rational exponents at each of its singularities, and for each point ζ ∈ D ∪ {ξ 1 , . . . , ξ p } there is a basis of solutions (g 1 (z), . . . , g µ (z)) of L, holomorphic on D, with the following properties:

• There exists an open disk D centered at ζ and functions F s,t,j (z), holomorphic at 0, such that for any j ∈ {1, . . . , µ} and any z ∈ D ∩ D:

g j (z) = s∈S j t∈T j log(ζ -z) s (ζ -z) t F s,t,j (ζ -z)
where S j ⊂ N and T j ⊂ Q are finite subsets.

• If ζ ∈ K then the functions F s,t,j (z) are G-functions with coefficients in K.

• If ζ is not a singularity of L then S j = T j = {0} for any j, so that g 1 (z), . . . , g µ (z) are holomorphic at z = ζ.

This theorem is usually stated in a more precise form, namely

(g 1 (z), . . . , g µ (z)) = f 1 (ζ -z), f 2 (ζ -z), . . . , f µ (ζ -z) • ζ -z C ζ
where the functions f j (z) are holomorphic at 0 and C ζ is an upper triangular matrix, and a similar formulation holds for the singularity at infinity, where one replaces ζz by 1/z. However this precise version won't be used in this paper.

Statement of the theorem on connection constants

Let K, f , L and D be as in §4.1. Let (g 1 , . . . , g µ ) denote a basis of the C-vector space of holomorphic solutions on D of the differential equation Ly = 0; here µ is the order of L.

Since f ∈ K[[z]

] satisfies Lf = 0 and is holomorphic on a small open disk centered at 0, it can be analytically continued to D and expanded in the basis (g 1 , . . . , g µ ):

f (z) = µ j=1 ̟ j g j (z) (4.1)
for any z ∈ D, where ̟ 1 , . . . , ̟ µ ∈ C are called connection constants.

The following theorem is an important ingredient in the proof of Theorems 1 and 2. . . , g µ ) be a basis of solutions given by Theorem 3. Then the connection constants ̟ 1 , . . . , ̟ µ defined by Equation (4.1) belong to G K(i) .

The following corollary is a consequence of Theorem 4 and Lemma 5 (applied with R = G K(i) ). It is used in the proof of Theorem 2.

Corollary 1. Let K, f , D, ζ be as in Theorem 4. Then there exist c ∈ G K(i) , σ ∈ N and τ ∈ Q such that, as z → ζ with z ∈ D:

f (z) = c log(ζ -z) σ (ζ -z) τ (1 + o(1)).

Wronskian of fuchsian equations

Given a linear differential equation L with coefficients in Q(z), of order µ and with a basis of solutions f 1 , f 2 , . . . , f µ , the wronskian W = W (f 1 , . . . , f µ ) is the determinant

W (z) = f 1 (z) f 2 (z) • • • f µ (z) f (1) 1 (z) f (1) 2 (z) • • • f (1) µ (z) . . . . . . • • • . . . f (µ-1) 1 (z) f (µ-1) 2 (z) • • • f (µ-1) µ (z) 
.

The wronskian can be defined in a more intrinsic way as follows. We write L as

y (µ) (z) + a µ-1 (z)y (µ-1) (z) + • • • + a 1 (z)y(z) = 0
where a j (z) ∈ Q(z), j = 1, . . . , µ -1. Then W (z) is a solution of the linear equation

y ′ (z) = -a µ-1 (z)y(z), (4.2) 
hence W (z) = ν 0 expa µ-1 (z)dz . The value of the constant ν 0 is determined by the solutions f 1 , f 2 , . . . , f µ .

Lemma 9. Let K, f , L, D, ζ, g 1 , . . . , g µ be as in Theorem 4. Then the wronskian W (z) = W (g 1 , . . . , g µ )(z) is an algebraic function over Q(z), and its zeros and singularities lie among the poles of a µ-1 (z).

Proof. Since the differential equation (4.2) is fuchsian, Equation (5.1.16) in [20, p. 148] yields W (z) = ν J j=1 (zp j ) -r j where p 1 , . . . , p J ∈ Q are the poles of a µ-1 (z) (which are simple because L is fuschian), r 1 , . . . , r j ∈ Q (because L has rational exponents at its singularities), and ν ∈ C ⋆ . It remains to prove that ν is algebraic.

With this aim in view, we compute the determinant W (z) for z ∈ D sufficiently close to ζ by means of the expansions of g 1 ,. . . , g µ and their derivatives. This yields

W (z) = s∈S t∈T log(ζ -z) s (ζ -z) t F s,t (ζ -z)
where S ⊂ N and T ⊂ Q are finite subsets, and the F s,t (z) are G-functions with coefficients in K. Now Lemma 5 provides c ∈ K, σ ∈ N and τ ∈ Q such that, as z → ζ with z ∈ D:

W (z) = c log(ζ -z) σ (ζ -z) τ (1 + o(1)).
On the other hand we also have J j=1 (zp j ) -r j = c(ζz) τ (1 + o(1)) for some c ∈ Q ⋆ and τ ∈ Q. Since the quotient is a constant, namely ν, taking limits as z → ζ yields σ = 0, τ = τ and ν = c/ c ∈ Q. This concludes the proof of Lemma 9.

Proof of Theorem 4

Let R ≥ 1. For any ξ ∈ (D \ {0, ζ}) ∩ K(i), let r ξ > 0 be the distance of ξ to the border ∆ 1 ∪ . . . ∪ ∆ p of D (with the notation of §4.1), and D ξ be the open disk centered at ξ of radius r ξ /R. Since ξ is not a singularity of L, there is a basis g 1,ξ (z), . . . , g µ,ξ (z) of solutions of Ly = 0 consisting in G-functions in the variable ξz with coefficients in K(i) (by Theorem 3); these G-functions have radii of convergence ≥ r ξ , so that g j,ξ (z) ∈ G R,K(i) for any z ∈ D ξ ∩ K(i) and any j (see Lemma 4). Let r 0 > 0 be the radius of convergence of the G-function f (z), and D 0 denote the open disk centered at 0 with radius r 0 /R. Finally, for any j ∈ {1, . . . , µ} we let g j,ζ (z) = g j (z); by assumption there exists r ζ > 0 such that As in the beginning of §4.2, we have connection constants ̟ j,2 ∈ C such that

g j,ζ (z) = s∈S j t∈T j log(ζ -z) s (ζ -z) t F s,t,j (ζ -z)
f (z) = µ j=1 ̟ j,2 g j,ξ 2 (z) (4.3)
for any z ∈ D. In the same way, for any z ∈ D, any k ∈ {3, . . . , s} and any j ∈ {1, . . . , µ} we have

g j,ξ k-1 (z) = µ ℓ=1 ̟ j,k,ℓ g ℓ,ξ k (z). (4.4)
Obviously the connection constants ̟ j ∈ C in Theorem 4 are obtained by making products of the vector (̟ j,2 ) 1≤j≤µ and the matrices (̟ j,k,ℓ ) 1≤j,ℓ≤µ (for k ∈ {3, . . . , s}), because g j,ξs (z) = g j (z). Since G R,K(i) is a ring and R ≥ 1 can be any real number, Theorem 4 follows from the fact that all constants ̟ j,2 and ̟ j,k,ℓ in (4.3) and (4.4) belong to G R,K(i) .

We will prove it now for (4.4); the proof is similar for (4.3). Let k ∈ {3, . . . , s} and j ∈ {1, . . . , µ}. We differentiate µ -1 times Equation (4.4), so that we get the µ equations

g (s) j,ξ k-1 (z) = µ ℓ=1 ̟ j,k,ℓ g (s)
ℓ,ξ k (z), s = 0, . . . , µ -1.

We choose z = ρ k ∈ D k-1 ∩D k ∩K(i) outside the poles of a µ-1 (z) (with the notation of §4.3). Doing so yields a system of µ linear equations in the µ unknowns ̟ j,k,ℓ , ℓ = 1, . . . , µ, which can be solved using Cramer's rule because the determinant of the system (namely W (ρ k ), where W (z) is the wronskian of L built on the basis of solutions g 1,ξ k (z), . . . , g µ,ξ k (z)) does not vanish, by Lemma 9. Using again Lemma 9, we have

W (ρ k ) ∈ Q ⋆ and therefore 1 W (ρ k ) ∈ Q ⊂ G Q(i) ⊂ G K(i) by Lemma 7. Now Cramer's rule yields ̟ j,k,ℓ = 1 W (ρ k ) g 1,ξ k (ρ k ) • • • g ℓ-1,ξ k (ρ k ) g j,ξ k-1 (ρ k ) g ℓ+1,ξ k (ρ k ) • • • g µ,ξ k (ρ k ) g (1) 1,ξ k (ρ k ) • • • g (1) ℓ-1,ξ k (ρ k ) g (1) j,ξ k-1 (ρ k ) g (1) ℓ+1,ξ k (ρ k ) • • • g (1) µ,ξ k (ρ k ) . . . • • • . . . . . . . . . • • • . . . g (µ-1) 1,ξ k (ρ k ) • • • g (µ-1) ℓ-1,ξ k (ρ k ) g (µ-1) j,ξ k-1 (ρ k ) g (µ-1) ℓ+1,ξ k (ρ k ) • • • g (µ-1) µ,ξ k (ρ k ) . Since ρ k ∈ D k-1 ∩ D k ,
the entries in this determinant belong to the ring G R,K(i) (as noticed above), so that ̟ j,k,ℓ ∈ G R,K(i) . This concludes the proof of Theorem 4.

Proof of Theorem 1

The main part in the proof of Theorem 1 is to prove that G a.c. Q ⊂ G Q(i) ; this will be done below. We deduce Theorem 1 from this inclusion as follows, by Lemmas 2 and 3. If K ⊂ R, we have:

G a.c. K ⊂ G a.c. Q ⊂ G Q(i) ⊂ G K ⊂ G a.c.

K

and Theorem 1 follows. If K ⊂ R, we have:

G K ⊂ G a.c. Q ∩ R ⊂ G Q(i) ∩ R = G Q ⊂ G K so that G K = G Q . The inclusion G a.c. K ⊂ G a.c. Q = G Q + iG Q is trivial; let us prove that G Q + iG Q ⊂ G a.c. K . Let ξ 1 , ξ 2 ∈ G Q ,
and f , g, h be G-functions with rational coefficients and radii of convergence > 2 such that f (1) = ξ 1 , g(1) = ξ 2 , and h(1

) = 4 √ 2. Then k(z) = f (z) + g(z)h(z) 4 1 -z
2 is a G-function with coefficients in Q ⊂ K, and ξ 1 + iξ 2 is the value at 1 of an analytic continuation of k (obtained after a small loop around z = 2). This concludes the proof that G a.c.

K = G Q + iG Q if K ⊂ R. The rest of the section is devoted to the proof that G a.c. Q ⊂ G Q(i) . Let ξ ∈ G a.c
. Q ; we may assume ξ = 0. There exists a G-function f (z) = ∞ n=0 a n z n with coefficients a n ∈ Q, and z 0 ∈ Q, such that ξ is one of the values at z 0 of the multivalued analytic continuation of f . Replacing f (z) with f (z 0 z), we may assume z 0 = 1. Let L denote the minimal differential equation satisified by f , and ξ 1 , . . . , ξ p be the singularities of L. To keep the notation simple (and because the general case can be proved along the same lines), we shall assume that there is an open subset D ⊂ C (as in §4.1) such that 1 ∈ D ∪ {ξ 1 , . . . , ξ p } and ξ = f (1), where f denotes the analytic continuation of the G-function a n z n to D. If 1 is a singularity of L then f (1) is the (necessarily finite) limit of f (z) as z → 1, z ∈ D.

The coefficients a n (n ≥ 0) belong to a number field K = Q(β) for some primitive element β of degree d say. We can assume without loss of generality that K is a Galois extension of Q, i.e, that all Galois conjugates of β are in K. There exist d sequences of rational numbers (u j,n ) n≥0 , j = 0, . . . , d -1, such that, for all n ≥ 0, a n = d-1 j=0 u j,n β j and thus (at least formally)

f (z) = ∞ n=0 a n z n = d-1 j=0 β j ∞ n=0 u j,n z n .
(

The power series U j (z) = ∞ n=0 u j,n z n are G-functions (see [START_REF] Dwork | An introduction to G-functions[END_REF], Proposition VIII.1.4, p. 266), so that Equation (5.1) holds as soon as |z| is sufficiently small. Moreover U j has rational coefficients, so that it satisfies a differential equation with coefficients in Q[z] (see for instance [START_REF] Dwork | An introduction to G-functions[END_REF], Proposition VIII.2.1 (iv), p. 268). We let L j denote a minimal one, of order µ j . Let S j denote the set of singularities of L j , and

S = S 0 ∪ • • • ∪ S d-1 .
Let Γ denote a compact broken line without multiple points from 0 to 1 inside D ∪ {0, 1}. Since S is a finite set, we may assume that Γ ∩ S ⊂ {0, 1} and find a (small) simply connected open subset Ω ⊂ C such that Γ \ {0, 1} ⊂ Ω ⊂ D \ {1} and Ω ∩ S = ∅. If Γ and Ω are chosen appropriately, it is possible to construct D 0 , . . . , D d-1 as in §4.1 (with respect to L 0 , . . . ,

L d-1 ) such that Ω ⊂ D 0 ∩ • • • ∩ D d-1 .
Since Ω is simply connected and 1 ∈ Ω, we choose a continuous determination of log(1z) for z ∈ Ω. Now Equation (5.1) holds in a neighborhood of 0, and 0 lies in the closure of Ω so that, by analytic continuation,

f (z) = d-1 j=0 β j U j (z) for any z ∈ Ω.
(

We shall now expand this equality around the point 1, which lies also in the closure of Ω. For any j ∈ {0, . . . , d -1}, let (g j,1 , . . . , g j,µ j ) denote a basis of solutions of the differential equation L j y = 0 provided by Theorem 3 with ζ = 1. Then Theorem 4 gives

̟ j,1 , . . . , ̟ j,µ j ∈ G Q(i) such that U j (z) = ̟ j,1 g j,1 (z) + • • • + ̟ j,µ j g j,µ j (z) for any z ∈ Ω. Since β j ∈ G Q(i) by 7, Equation (5.
2) yields finite subsets S ⊂ N and T ⊂ Q such that, for z ∈ Ω sufficiently close to 1:

f (z) = s∈S t∈T log(1 -z) s (1 -z) t F s,t (1 -z)
where the functions F s,t (z) are holomorphic at 0 and have Taylor coefficients at 0 in

G Q(i) . Then Lemma 5 gives c ∈ G Q(i) , σ ∈ N and τ ∈ Q such that f (z) = c log(1 -z) σ (1 - z) τ (1 + o(1)) as z → 1 with z ∈ Ω. Since lim z→1 f (z) = ξ = 0, we have σ = τ = 0 and ξ = c ∈ G Q(i)
. This concludes the proof of Theorem 1.

Rational approximations to quotients of values of G-functions

This section is devoted to the proof of Theorem 2, in the following stronger form. Let K be an algebraic extension of Q, and ξ ∈ C ⋆ ; then the following statements are equivalent:

(i) We have ξ ∈ Frac(G K ).
(ii ′ ) There exist two sequences (a n ) n≥0 and (b n ) n≥0 of elements of K such that ∞ n=0 a n z n and ∞ n=0 b n z n are G-functions, b n = 0 for infinitely many n and a n -

ξb n = o(b n ). (iii ′ ) For any R ≥ 1 there exist two G-functions A(z) = ∞ n=0 a n z n and B(z) = ∞ n=0 b n z n , with coefficients a n , b n ∈ K and radius of convergence = 1, such that A(z) -ξB(z)
has radius of convergence > R and a n , b n = 0 for any n sufficiently large. Since (ii) (resp. (iii)) implies (ii ′ ) and is implied by (iii ′ ), this result contains Theorem 2. The point in assertion (ii ′ ) is that b n may vanish for infinitely many n; by asking a nξb n = o(b n ) we require that a n = 0 as soon as b n = 0 and n is sufficiently large.

Since (iii ′ ) obviously implies (ii ′ ), we shall prove that (i) ⇒ (iii ′ ) and (ii ′ ) ⇒ (i). 

Proof that

(i) ⇒ (iii ′ ) Let ξ 1 , ξ 2 ∈ G K \ {0} be such that ξ = ξ 1 /ξ 2 . Let R ≥ 1, and U(z) = ∞ n=0 u n z n , V (z) = ∞ n=0 v n z n be G-functions with coefficients in K and radii of convergence > R, such that U(1) = ∞ n=0 u n = ξ 1 and V (1) = ∞ n=0 v n = ξ 2 . For any n ≥ 0, let a n = n k=0 u k and b n = n k=0 v k , A(z) = ∞ n=0 a n z n and B(z) = ∞ n=0 b n z n . Then A(z) = U(z) ∞ n=0 z n = U (z) 1-z and B(z) = V (z) 1-z are G-
a n -ξb n = (a n -ξ 1 ) -ξ(b n -ξ 2 ) ≤ ∞ k=n+1 |u k | + |ξ| ∞ k=n+1 |v k | = O R -n because u n , v n = O(R -n
) as n → +∞ and we may assume R ≥ 2. Therefore A(z) -ξB(z) has radius of convergence ≥ R, thereby concluding the proof that (i) ⇒ (iii ′ ).

Proof that

(ii ′ ) ⇒ (i) Let A(z) = ∞
n=0 a n z n and B(z) = ∞ n=0 b n z n be G-functions with coefficients in K, such that b n = 0 for infinitely many n and a nξb n = o(b n ). Since ξ = 0, we have a n = 0 for infinitely many n: none of A(z) and B(z) is a polynomial. Therefore these G-functions have finite positive radii of convergence, say ρ and ρ respectively.

Let us denote by L the minimal differential equation over K[z] satisfied by A(z), and by ρζ 1 , . . . , ρζ q the pairwise distinct singularities of A(z) of modulus ρ (so that |ζ 1 | = . . . = |ζ q | = 1). Then we have q ≥ 1, and all ρζ i are singularities of L and are algebraic numbers.

Let θ 0 ∈ (-π/2, π/2) and ∆ 0 = {z ∈ C, z = 1 or arg(z -1) ≡ θ 0 mod 2π}. For any i ∈ {1, . . . , q}, let ∆ i = ρζ i ∆ 0 = {ρζ i z, z ∈ ∆ 0 }. Denoting by ξ 1 = ρζ 1 , . . . , ξ q = ρζ q , ξ q+1 , . . . , ξ p the singularities of L, we may assume (by choosing θ 0 properly) that ∆ 1 , . . . , ∆ q and some appropriate half-lines ∆ q+1 , . . . , ∆ p satisfy the assumptions made at the beginning of §4.1, so that we can take

D = C \ (∆ 1 ∪ • • • ∪ ∆ p ).
Choosing arbitrary determinations for log(ρζ i ) (i = 1, . . . , q), and also a continuous one for log z when z ∈ C \ ∆ 0 , we may define log(ρζ iz) to be log(ρζ i ) + log 1 -z ρζ i for z ∈ D sufficiently close to ρζ i (because

1 ρζ i ∆ i = ∆ 0 ). For any i ∈ {1, . . . , q}, Corollary 1 yields c i ∈ G K(i) \ {0}, σ i ∈ N and τ i ∈ Q such that A(z) = c i log(ρζ i -z) σ i ρζ i -z τ i (1 + o(1)) = c i (ρζ i ) τ i log 1 - z ρζ i σ i 1 - z ρζ i τ i (1 + o(1))
as z → ρζ i with z ∈ D. Replacing A(z) and B(z) with their ℓ-th derivatives from the beginning, where ℓ is a sufficiently large integer, we may assume τ 1 < 0 (because ρζ 1 is a singularity of A(z)). Let τ = min(τ 1 , . . . , τ q ) < 0, and σ denote the maximal value of σ i among those indices i such that τ i = τ . Let g(z) = (log(1z)) σ (1z) τ for z ∈ C \ ∆ 0 , and d i = c i (ρζ i ) τ i if (σ i , τ i ) = (σ, τ ), d i = 0 otherwise. Then (d 1 , . . . , d q ) = (0, . . . , 0) and, for any i ∈ {1, . . . , q}, we have d i ∈ G K(i) (by Lemma 7, because ρζ i ∈ Q). Finally,

A(z) = d i g z ρζ i + o g z ρζ i (6.1)
as z → ρζ i with z ∈ D. We have checked all assumptions of Theorem VI.5 ( §VI.5, p. 398) of [START_REF] Flajolet | Analytic combinatorics[END_REF] (see also [START_REF] Flajolet | Singularity analysis of generating functions[END_REF]). This result enables one to transfer this estimate (6.1) around the singularities on the circle of convergence into an asymptotic estimate for the coefficients of A(z), namely:

a n = (-1) σ Γ(-τ ) • (log n) σ ρ n n τ +1 • χ n + o(1) , with χ n = q i=1 d i ζ -n i . (6.
2)

The same arguments with B(z) provide ρ, σ, τ , ζ 1 , . . . , ζ q , d 1 , . . . , d q such that

b n = (-1) σ Γ(-τ ) • (log n) σ ρ n n τ +1 • χ n + o(1) , with χ n = q i=1 d i ζ -n i . (6.3) 
Let N 0 = {n ∈ N, b n = 0} and N = N \ N 0 . By assumption N is infinite, and a n = 0 for any n ∈ N 0 sufficiently large. In what follows, we assume implicitly that N 0 is infinite (otherwise the proof is the same, and even easier since everything works as if N 0 = ∅ and N = N). By Equations (6.2) and (6.3), we have as n → +∞ with n ∈ N :

a n b n = (-1) σ-σ Γ(-τ ) Γ(-τ ) • χ n + o(1) χ n + o(1) • ρ ρ n n τ -τ (log n) σ-σ . (6.4)
Now the left handside tends to ξ = 0 as n → +∞ with n ∈ N . If (ρ, σ, τ ) = ( ρ, σ, τ ) then χn+o (1) χn+o [START_REF] André | G-functions and Geometry[END_REF] tends to 0 or +∞ as n → +∞ with n ∈ N . Since both χ n and χ n are bounded, this implies that χ n or χ n tends to 0 as n → +∞ with n ∈ N . Since χ n = o(1) and χ n = o(1) as n → ∞ with n ∈ N 0 (using (6.2) and (6.3), because a n = b n = 0 for n ∈ N 0 sufficiently large), we have lim n→+∞ χ n = 0 or lim n→+∞ χ n = 0. By Lemma 6 this implies

d 1 = • • • = d q = 0 or d 1 = • • • = d q = 0, which is a contradiction.
Therefore we have (ρ, σ, τ ) = ( ρ, σ, τ ) in Equation (6.4), so that an bn = χn+o(1) χn+o(1) as n → +∞ with n ∈ N . Therefore χn-ξ χn+o (1) χn+o(1)

= an bnξ tends to 0 as n → +∞ with n ∈ N . Since χ n is bounded, we deduce lim n→+∞ χ nξ χ n = 0 (using the fact that χ n = o(1) and

χ n = o(1) as n → ∞ with n ∈ N 0 ). Writing χ n -ξ χ n = t j=1 κ j ω n j where {ω 1 , . . . , ω t } = {ζ -1 1 , . . . , ζ -1 q , ζ -1 1 , . . . , ζ -1 q } with ω 1 , . . . , ω t pairwise distinct, Lemma 6 yields κ 1 = • • • = κ t = 0.
Reordering the ζ j 's and the ω k 's if necessary, we may assume that d 1 = 0 and

ω 1 = ζ -1 1 . Then κ 1 = d 1 -ξ d i if there is a (necessarily unique) i such that ω 1 = ζ -1
i , and κ 1 = d 1 otherwise. Since κ 1 = 0 = d 1 , there is such an i and it satisfies d i = 0 and ξ

= d 1 / d i ∈ Frac(G K(i) ). If K ⊂ R then G K = G K(i) by Theorem 1; otherwise we have ξ ∈ R ∩ Frac(G Q ) = Frac(G Q∩R ) = Frac(G K )
by Theorem 1 and Lemma 2. In both cases, this concludes the proof of Theorem 2.

Perspectives

Other classes of arithmetic power series

It is natural to wonder if the results presented in this paper can be adapted to other classes of arithmetic power series. The most natural class is that of E-functions, also introduced by Siegel in [START_REF] Siegel | Über einige Anwendungen diohantischer Approximationen[END_REF]. The definition of these functions (see the Introduction) is formally similar to that of G-functions, but of course the presence of n! at the denominator of the Taylor coefficients changes drastically the properties of E-functions. An E-function is entire and André proved in [START_REF] André | Séries Gevrey de type arithmétique, I. Théorèmes de pureté et de dualité[END_REF]Theorem 4.3] that the only singularities of its minimal differential equation, which is no longer fuchsian in general, are 0 (a regular singularity with rational exponents) and infinity (an irregular singularity in general). Like the set of G-functions, the set of E-functions enjoys certain stability properties (for instance, it is a ring).

Let us define E K as the set of all values at points in K (an algebraic extension of Q) of E-functions with Taylor coefficients at 0 in K. This is the analogue of G K and it is a ring. However, it is not clear to us if an analogue of Theorem 1 holds for E-functions. For example, we don't know how to answer the following very simple questions:

• Given any algebraic number α = 0, is it possible to express exp(α) as the value of an E-function with Taylor coefficients in Q(i)?

• Is it possible to express any algebraic number as the value of an E-function with Taylor coefficients in Q(i)?

The possibility of a result analogous to Theorem 2 is also uncertain. It is easy to describe the limits of sequences A n /B n where A n , B n ∈ K, B n = 0 for all large enough n and ∞ n=0 A n z n and ∞ n=0 B n z n are E-functions. This is simply Frac(G K ), because the series ∞ n=0 n!A n z n and ∞ n=0 n!B n z n are G-functions, and conversely if ∞ n=0 a n z n is a G-function, then ∞ n=0 an n! z n is an E-function. This can hardly be the analogue we seek. We now observe that given an E-function f (z) = ∞ n=0 A n z n , the sequence p n /q n , with

p n = n k=0 A k and q n = 1, tends to f (1), but ∞ n=0 p n z n = f (z) 1-z is not an E-function and ∞ n=0 z n = 1 1-z is a G-function.
Hence a result analogous to Theorem 2 and involving E K might be achieved by considering simultaneously E and G-functions. It is also possible that similar questions might be easier to answer in the larger class of arithmetic Gevrey series introduced by André in [START_REF] André | Séries Gevrey de type arithmétique, I. Théorèmes de pureté et de dualité[END_REF][START_REF] André | Séries Gevrey de type arithmétique, II. Transcendance sans transcendance[END_REF].

Possible applications to irrationality questions

The Diophantine theory of E-functions is well understood after the works of many authors, among which we may cite Siegel [START_REF] Siegel | Über einige Anwendungen diohantischer Approximationen[END_REF] and Shidlovskii [START_REF] Shidlovskii | Transcendental Numbers[END_REF], and more recently of André [START_REF] André | Séries Gevrey de type arithmétique, II. Transcendance sans transcendance[END_REF] and Beukers [START_REF] Beukers | A refined version of the Siegel-Shidlovskii theorem[END_REF]. An E-function essentially takes transcendental values at all non-zero algebraic points, and the algebraic points where it may take an algebraic value are fully controlled a priori. This is far from true for a non-algebraic G-function. There are many examples in the literature of G-functions taking algebraic values at some algebraic points without an obvious reason, see for example [START_REF] Beukers | Algebraic values of G-functions[END_REF]. After the pioneering works of Galochkin [START_REF] Galochkin | Lower bounds of polynomials in the values of a certain class of analytic functions, in russian[END_REF] and Bombieri [START_REF] Bombieri | On G-functions[END_REF], it is known that, given a transcendental G-function f , if α is a non-zero algebraic number of modulus ≤ c, then f (α) cannot be an algebraic number of degree ≤ d.

Here, c > 0 and d ≥ 1 are explicit quantities that depend on f and on the degree and height of α. A typical example is that if α = 1/q is the inverse of an integer, then f (α) is an irrational number provided that |q| ≥ Q is sufficiently large in terms of f . An important issue is that the constant c is usually much smaller than the radius of convergence of f . Apéry's proof of the irrationality of ζ(3) is very different because it involves evaluating a G-function on the border of its disk of convergence. The starting point of his method is given by Theorem 2: he constructs two sequences (a n ) n≥0 and (b n ) n≥0 of rational numbers, whose generating functions are G-functions ( 4 ), and such that a n /b n tends to ζ(3). To prove irrationality, more is needed, i.e., one also has to find a suitable common denominator D n of a n and b n , and then prove that the linear form D n a n + D n b n ζ(3) ∈ Z + Zζ(3) tends to 0 without being equal to 0. (In this case, D n = lcm(1, 2, . . . , n) 3 .) The growth of D n is usually the main problem in attempts at proving irrationality in Apéry's style. Indeed, there exist many examples of values f (α) of a G-function f at an algebraic point α having approximations in the sense of Theorem 2(iii) (see [START_REF]Approximations rationnelles des valeurs de la fonction Gamma aux rationnels : le cas des puissances[END_REF] for references), but the growth of the relevant denominators D n prevents one to prove irrationality when the modulus of α is too close to the radius of convergence of f . For instance, this approach has failed so far to establish the irrationality of ζ(5) or of Catalan's constant G = ∞ n=0 (-1) n (2n+1) 2 . In the following proposition, we explain in details how the growth of D n , the radii of convergence and the irrationality exponent µ(ξ) of ξ are connected. Recall that µ(ξ) is the supremum of the set of real numbers µ such that, for infinitely many fractions p/q, |ξp/q| < q -µ . In particular ξ is said to be a Liouville number if µ(ξ) = +∞.

Proposition 1. Let ξ ∈ G Q . Let A(z) = ∞ n=0
a n z n and B(z) = ∞ n=0 b n z n be Gfunctions, with rational coefficients and radii of convergence = r > 0, such that A(z) -ξB(z) has a finite radius of convergence, which is ≥ R > r. Let C ≥ 1 be such that a n and b n have a common denominator ≤ C n(1+o( 1)) (as n → +∞). Then:

• If C < R then ξ ∈ Q and µ(ξ) ≤ 1 -log(C/r)
log(C/R) .

• Necessarily C ≥ √ Rr.

Proof. The second assertion follows from the first one since µ(ξ) ≥ 2 for any ξ ∈ R \ Q.

Let us prove the first one. Let p n = D n a n ∈ Z and q n = D n b n ∈ Z, where n is sufficiently large and D n ∈ Z is such that 1 ≤ D n ≤ C n (increasing C slightly if necessary). Decreasing R slightly if necessary, we may assume that the radius of convergence of A(z) -ξB(z) is > R, so that |q n ξp n | ≤ (C/R) n for any n sufficiently large. Since C < R and q n ξp n = 0 for infinitely many n (because A(z) -ξB(z) has a finite radius of convergence), this implies ξ ∈ Q. Moreover there exists a non-trivial linear recurrence relation P 0 (n)u n +P 1 (n)u n+1 +. . .+P r (n)u n+r = 0, with coefficients P j (n) ∈ Z[n], satisfied by both sequences (a n ) n≥0 and (b n ) n≥0 . We claim that for any n sufficiently large, the vectors (p n , q n ), (p n+1 , q n+1 ), . . . , (p n+r , q n+r ) span the Q-vector space Q 2 . Using Lemma 3.2 in [START_REF] Hata | Legendre type polynomials and irrationality measures[END_REF], this implies µ(ξ) ≤ 1 -log(C/r ′ ) log(C/R) for any r ′ < r, because |p n |, |q n | ≤ (C/r ′ ) n for any n sufficiently large. To prove the claim we argue by contradiction, and assume (permuting (p n ) n≥0 and (q n ) n≥0 if necessary) that for some λ ∈ Q we have q k = λp k for any k ∈ {n, n + 1, . . . , n + r}. Then the sequence (b iλa i ) i≥n satisfies the above-mentioned recurrence relation, and its first r + 1 terms vanish. If n is sufficiently large then P r (i) = 0 for any i ≥ n + r + 1 (because we may assume P r to be non-zero), so that q iλp i = b iλa i = 0 for any i ≥ n. Since lim i→+∞ q i ξp i = 0 and p i = 0 for infinitely many n, we deduce λξ = 1, in contradiction with the fact that ξ ∈ Q.

  1) n-1 n z n and arctan(z) = ∞ n=0 (-1) n 2n+1 z 2n+1 are G-functions with rational coefficients and radius of convergence = 1, and we may assume that |a 2 + b 2 -1| < 1/R and |b/a| < 1/R. Then log(u) ∈ G R,Q(i) (see Lemma 4).

  ζ be a singularity of L. Then for any sufficiently small open disk D centered at ζ, the intersection D ∩ D is equal to D with a ray removed; let us choose a determination of the logarithm of ζz, denoted by log(ζz), for z ∈ D ∩ D (in such a way that it is holomorphic in z). If ζ ∈ D is not a singularity of L, the function log(ζz) will cancel out in what follows.

Theorem 4 .

 4 Let K denote an algebraic extension of Q. Consider a minimal differential equation L of order µ, with coefficients in K[z] and admitting a solution at z = 0 which is a G-function f ∈ K[[z]]. Let D, ξ 1 , . . . , ξ p be as above, ζ ∈ K ∩ (D ∪ {ξ 1 , . . . , ξ p }) and (g 1 , .

  for any z ∈ D such that |z -ζ| < r ζ , where S j ⊂ N and T j ⊂ Q are finite subsets and the F s,t,j are G-functions with coefficients in K and radii of convergence ≥ r ζ . Then we let D ζ be the open disk centered at ζ with radius r ζ /R, so that for any z ∈ D ζ ∩ K(i) and any j we have g j,ζ (z) ∈ G R,K(i) by Lemmas 4, 7 and 8. Following a smooth injective compact path from 0 to ζ inside D ∪ {0, ζ}, we can find s -2 points ξ 2 , . . . , ξ s-1 ∈ (D \ {0, ζ}) ∩ K(i) (with s ≥ 3) such that D k-1 ∩ D k = ∅ for any k ∈ {2, . . . , s}, where we let D k = D ξ k and ξ 1 = 0, ξ s = ζ.

  functions with coefficients in K and radii of convergence = 1. Moreover lim n→+∞ a n = ξ 1 and lim n→+∞ b n = ξ 2 so that a n , b n = 0 for any n sufficiently large, and

We do so because we want to use a curve C that does not depend of u, whereas the poles of the integrand move with u.

This was apparently first observed by Dwork in[START_REF] Dwork | On Apéry's differential operator[END_REF]; see also[14, §1.10] for references.