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error function
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Abstract

We give a very simple algorithm to compute the error and complemen-
tary error functions of complex argument to any given accuracy.
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1 Introduction

With standard normalization, the error function is defined as

erf(x) =
2√
π

∫ x

0
e−t2

dt

and the complementary error function as

erfc(x) =
2√
π

∫ ∞

x
e−t2

dt.

∗INRIA Nancy, project team CARAMEL. 1



Thanks to the relation erf(x) = 1− erfc(x) and the symmetry erfc(−x) =
2− erfc(x), it is sufficient to be able to compute erfc on the right half complex
plane.

Many formula exist for this calculation, obtained either via integration or
with asymptotic expansions near zero or infinity. In this note, we study an
integration-based formula which is simple, efficient and easy to apply rigor-
ously.

Although this formula is not new (we found in particular [MR71]), it seems
that it has not been introduced in numerical systems so far. J. Weideman
[Wei94] justifies this by the difficulties to find a correct stepsize, and some nu-
merical instabilities. The rigorous treatment we give here aims at removing
these prejudices. We also introduce a trick which accelerates the multipreci-
sion computations.

1.1 Motivation, and a smooth integral formula

In [Mol10], we showed that the trapezoidal scheme yields a very fast method
for the computation of integrals of the form

∫

R

F(u)e−Q(u2) du (1)

where F(x) ∈ R(x) is a rational fraction with no pole on R and Q(x) ∈ R+[x]
is a polynomial.

If we focus on the simplest case

f (α) =
∫

R

e−u2

u− α
du, α 6∈ R, (2)

we have the following formula, which enables us to compute the complemen-
tary error function to any accuracy.

Proposition 1.1

For all x such that Re(x) > 0,

erfc(x) =
−ie−x2

π
f (ix). (3)

Proof : f is analytic outside R, derivating there under the integral and integrating
by parts yields the differential equation

f ′(α) + 2α f (α) + 2
√

π = 0.

Writing f (α) = λ(α)e−α
2
, λ satisfies λ

′(α) = −2
√

πeα
2
, so that for Im(α) > 0

we have λ(α) = K − 2
√

π
∫

α

0 eu2
du with K ∈ C. The limit limx→∞ f (ix)e−x2

= 0

determines K to be 2
√

π
∫ i∞

0 eu2
du. As a consequence, λ(ix) = 2

√
π
∫ i∞

ix e−u2
du =

iπ erfc x, hence the result. �
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More precisely, the general theory ensures that f (α) can be evaluated to a

precision of p binary digits with a number of points n ∼ p log 2
π

.
The results of [Mol10] also assert that this formula is optimal amongst integration-

based formulas, which means that any other integration formula will need a
larger number of points (for theoretic reasons due to the uncertainty princi-
ple).

2 Computation

We adopt the following notation for the numerical approximation to p binary
digits of absolute precision:

Definition 2.1

For a, b ∈ C,
a =p b⇔ |a− b| 6 2−p. (4)

Moreover, the consideration of a residue term leads to the following:

Definition 2.2

Let x be a complex number with Re(x) > 0, and h > 0, and define δ(x, h) to
be

δ(x, h) = 1 if Re(x) <
π

h
; (5)

= 0 otherwise. (6)

The numerical formula is then

Theorem 2.3

Let x be a complex number such that Re(x) > 1, and suppose p > 2. Then
for all h > 0 and n ∈ N such that h 6 π√

arcsinh(2p
√

π)+2
and nh >

√

p log 2

we have

erfc(x) =p
e−x2

π

(

h

x
+ 2hx

n

∑
k=1

e−(kh)2

x2 + (kh)2

)

− 2δ(x + 1, h)

e
2πx

h − 1
. (7)

We give a complete proof in the next paragraphs.

2.1 Trapezoidal formula

For α ∈ C such that Im(α) > 0 we define g(x) = e−x2

x−α
. The trapezoidal formula

for f =
∫

R
g reads

3



Lemma 2.4

Let α ∈ C such that Im(α) > 0. For all h > 0 and n > 1, we have

f (α) = h
n

∑
k=−n

e−(kh)2

kh− α
+ Et(n, h)− Eq(h) (8)

where Eq(h) = ∑k 6=0 ĝ( k
h ) and Et(N, h) = ∑|k|>N g(kh).

Proof : This is the Poisson formula written for g on the lattice hZ, isolating the first
Fourier term ĝ(0) = f (α). �

2.2 Quadrature error

Lemma 2.5

Let α ∈ C such that Im(α) > 0 and τ > 0 such that τ 6= Im(α), then we
have for all X > 0

∣

∣

∣
ĝ(−X) + δ2iπe−α

2−2iπXα

∣

∣

∣
6

√
π

∣

∣τ − Im(α)
∣

∣

eτ
2−2πXτ (9)

∣

∣ĝ(X)
∣

∣ 6

√
π

∣

∣τ + Im(α)
∣

∣

eτ
2−2πXτ (10)

where δ = 0 if τ < Im(α) and δ = 1 if τ > Im(α).

Proof : We have ĝ(±X) =
∫

R

e−u2∓2πuX

u−α
du, and we shift the contour to R± iτ thanks

to the residue theorem. The first line corresponds to R → R + iτ, which goes
though the pole at α if τ > Im(α), and the second line to the shift R→ R+ iτ. We

then bound with the L1 norm, with
∫

R

∣

∣

∣
e−(u±iτ)2∓2iπ(u±iτ)X

∣

∣

∣
du = eτ

2−2πτX
∫

R
e−u2

du =
√

πeτ
2−2πτX . �

Lemma 2.6

Assume X0 > 1
π

√

arcsinh(2p
√

π) such that πX0 6∈]Im(α)− 1, Im(α) + 1[,

then

∀X > X0,

∣

∣

∣

∣

∣

∣

∑
k 6=0

ĝ(kX) + δ(x, 1/X0)
2iπe−α

2

e−2iπαX − 1

∣

∣

∣

∣

∣

∣

6 2−p. (11)

For all X > 1
π

√

arcsinh(2p
√

π) + 2
π

,

∣

∣

∣

∣

∣

∣

∑
k 6=0

ĝ(kX) + δ(Im(α) + 1, 1/X)
2iπe−α

2

e−2iπαX − 1

∣

∣

∣

∣

∣

∣

6 2−p.

4



Proof : Fix τ = πX0 in the preceding lemma; the hypothesis allows to remove the
terms

∣

∣τ ± Im(α)
∣

∣. Summing on kX, k 6= 0 we obtain
∣

∣

∣

∣

∣

∣

∑
k 6=0

ĝ(kX) + δ
2iπe−α

2

e−2iπαX − 1

∣

∣

∣

∣

∣

∣

6 2
√

π ∑
k>0

e−π
2(kX0)2

6

√
π

sinh(π2X2
0)

(12)

hence the first assertion of the lemma. Now take X as in the second part, and set
X2 = X− 2

π
, X1 = X− 1

π
. If Im(α) 6 πX1, then we use the first part with X0 = X

and δ(Im(α), 1/X) = δ(Im(α), 1/X1) = 1. If Im(α) > πX1 we use the first part
with X > X0 = X2 and δ(Im(α), 1/X0) = δ(Im(α), 1/X1) = 0. Finally, we use
δ(x, 1/X1) = δ(x + 1, 1/X). �

2.3 Truncation error

Lemma 2.7

Assume Im(α) > 1, and let p > 2. Then for all n such that nh >
√

p log 2,
we have

∣

∣

∣

∣

∣

∣

h ∑
|k|>n

e−(kh)2

kh + α

∣

∣

∣

∣

∣

∣

6 2−p (13)

Proof : Since Im(α) > 1 we have
∣

∣

∣
(kh)2 + α

∣

∣

∣
> 1, and the left-hand side is bounded

above by 2h
∫ ∞

n e−(th)
2

dt = 2 erfc(nh). The upper bound erfc(x) 6 2e−x2

√
π(x+

√

x2+ 4
π2 )

gives the result (we have
√

π(x +
√

x2 + 4
π2 ) > 4 for x >

√

2 log 2).
�

2.4 Proof of Theorem 2.3

We combine the preceeding lemmas for α = ix, writing

−ih
n

∑
k=−n

e−(kh)2

kh + ix
=

h

x
+ 2xh

n

∑
k=1

e−(kh)2

x2 + (kh)2

The value 1
h = X =

√
arcsinh(2p

√
π)

π
+ 2

π
ensures the hypothesis of Lemma 2.6 is

satisfied, so that
∣

∣

∣

∣

∣

Eq(h) +
2iπδ(x, h)

e
2πx

h − 1

∣

∣

∣

∣

∣

6 2−p.

The lemma 2.7 bounds
∣

∣Et(n, h)
∣

∣, and this proves the computation of − i
π

f (ix)

to absolute precision 2
π

2−p
< 2−p under the hypothesis of Theorem 2.3.

The fact that we obtain the right relative precision on erfc(x) follows from
the bounds

1

2 |x|+ 1
6

∣

∣

∣

∣

∣

erfc(x)

e−x2

∣

∣

∣

∣

∣

6
1

2 |x| − 1

valid for any x ∈ C with |x| > 1.
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3 Practical algorithm

The formula of Theorem 2.3 is simple. We decribe here how to evaluate it
efficiently for multiprecision values.

First, we write λ = x
h to put formula (7) into the form

erfc(x) =p
e−x2

π

(

1

λ
+ 2λ

n

∑
k=1

(e−h2
)k2

λ2 + k2

)

− δ
2

e2πλ − 1
(14)

(with h ∼ π√
p log 2

and n ∼ p log 2
π

).

We then write Uk = e−(kh)2
, Vk = e−(2k+1)h2

and Dk = λ
2 + k2, so that the

main sum becomes
n

∑
k=1

Uk

Dk
,

subject to the recursions

Uk+1 = UkVk (15)

Vk+1 = e−2h2
Vk (16)

Dk+1 = Dk + 2k + 1. (17)

3.1 Small integer trick

Finally, thanks to the loose condition we have on h, we can improve the com-

putation if we constraint the factor e−2h2
to be exactly a small precision rational

u/2v, as soon as h =
√

− log
√

u/2v satifies Theorem 2.3.

This way, the computation of each term of the sum is reduced to the follow-
ing significant operations

• a multiprecision multiplication UkVk;

• a small multiplication Vku/2v;

• a multiprecision division Uk/Dk;

and we have

Theorem 3.1 (complexity)

The complex error function can be evaluated to p binary digits in complex-

ity
p log 2(1+λ)

π
M(p) + o(pM(p)), where M(p) denotes the complexity of a

multiplication of size p and λ is the number of multiplications needed to
perform a division.

Remark : Of course this complexity can be lowered for negative real part,
since there the result approaches 2 and the precision required to compute the
difference can be decreased.
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3.2 Improvement for real argument

The trick above can be improved if we apply it to the denominator Dk and
simplify the division instead of the multiplication. We write

erfc(x) =p
e−x2

πλ

(

1 + 2
n

∑
k=1

(e−h2
)k2

1 + k2/λ2

)

− 2δ

e2πλ − 1
(18)

and choose h to have exactly λ
−2 = u2−v, u, v ∈ N2 with v much smaller than

p, so that the computation becomes

erfc(x) =p
e−x2

πλ

(

1 + 2v+1
n

∑
k=1

(e−h2
)k2

2v + k2u

)

− 2δ

e2πλ − 1
. (19)

In order to compute with this formula, the only condition we have is that
v > log2(x2/h2). For the multiprecision range1, this condition is very mild.

Remark : This trick assumes x to be real, otherwise there is no reason why
both its real and imaginary parts should be exactly representable using small
integers.

3.3 Extension for small real part

The theorem 2.3 can be extended to Re(x) < 1 if we shift the path of integra-
tion. Indeed, the function f defined for Im(α) > 0 in (2) extends analytically to
Im(α) > −d for any d > 0 with

f (α) =
∫

R−id

e−u2

u− α
du. (20)

We then have

Theorem 3.2

Let x be a complex number such that Re(x) > 0. Then for all h > 0 and

n ∈ N such that h <
π√

arcsinh(2p
√

π)+2
and nh >

√

(p + 1) log 2, we have

erfc(x) =p
e−x2+1

π

(

1

λ
+ 2

n

∑
k=1

(λ cos(2kh) + k sin(2kh))e−(kh)2

λ2 + k2

)

− 2δ(x + 1, h)

e2πλ − 1
(21)

where λ = x+1
h .

1We remark that current multiprecision library do not allow x to exceed 1010.
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Proof : Using (20), the main Riemann sum for f (α) takes the form

S(α) = h
n

∑
k=−n

e−(kh)2
e2idkhed2

kh− α̃
, α̃ = α + id

= − hed2

α̃
+ hed2

n

∑
k=1

e−(kh)2

(

2ikh sin(2dkh) + 2α̃ cos(2dkh)

(kh)2 − α̃2

)

.

If Re(x + d) > 1, the truncation error is bounded by 2
∫ ∞

nh e−t2+d2
6 ed2

Et(n, h), so

that for d = 1 it is enough to take nh >

√

(p + 3) log 2.

The quadrature error, once corrected by the residue

2πδ(x + d, h)ex2

e
2π(x+d)

h − 1
,

is bounded by
√

π

τ±Re(x+d)
e(τ±d)2−2πXτ . For X > 0 the denominator is greater than

d and this can be bounded by
√

π

d e−(πX−d)2
so that the value X1 of Lemma 2.6 is

enough; for X < 0 we apply the same bounds as in Lemma 2.6. This gives the
result, fixing the value d = 1. �

4 Timings

We did a PARI/gp implantation which proves to be quite efficient. In Ta-
ble 1 we compared its running time on a few inputs to MPFR [FHL+07] and
Maple 14. It turns out that the integration formula is not very interesting in the
asymptotic range (near zero or infinity), where the asymptotic expansions of
erf and erfc are very accurate. However, it sould be considered in the transi-
tion range, when the modulus of the argument comes around the square root
of the precision (as in the line 104 digits, x = 200). When the precision increase,
this range gets wider : at 105 digits our formula starts to be better from x = 10.

We also remark that the integration formula gives a running time which de-
pends only on the required precision, and to a minor extent of the nature (real
or complex) of the argument, contrary to Maple and MPFR.

References

[FHL+07] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick
Pélissier, and Paul Zimmermann. MPFR: A multiple-precision bi-
nary floating-point library with correct rounding. ACM Trans. Math.
Softw., 33, June 2007.

[Mol10] Pascal Molin. Intégration numérique par la méthode
double-exponentielle. http://hal.archives-ouvertes.fr/

hal-00491561/fr/, june 2010. 48 pages.

8

http://hal.archives-ouvertes.fr/hal-00491561/fr/
http://hal.archives-ouvertes.fr/hal-00491561/fr/


Algorithm 1: Computation of the complementary error function

Input: x such that Re(x) > 1
Input: binary precision p > 1
Output: z such that

∣

∣(erfc x− z)/z
∣

∣ < 2−p

begin choose parameters

h0 = π/(2 +
√

arcsinh(2p
√

π));

u0 = e−2h2
0 ;

u = ⌈2vu0⌉;
n = ⌈

√

p log 2/h0⌉;
end
begin main multiprecision computation

h =
√

− log(u/2v)/2;
λ = x/h;
U ← 1;

V ←
√

u/2v;

D ← λ
2;

z← U/D;
for k=1 to n do

U ← U ×V ; /* Uk = e−(kh)2
*/

V ← V × u/2v ; /* Vk = e−(2k+1)h2
*/

D ← D + 2k− 1 ; /* Dk = λ
2 + k2 */

z← z + U/D;

end
z← z× 2λ;
z← z + 1/λ ; /* term for k = 0 */

z← z× e−x2
/π;

end
begin residue term

if Re(x + 1) < π/h then

z← z− 2/(e2πλ − 1);
end

end
return z
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digits value Maple 14 MPFR 3.0.0 integration

100 3 1ms 0.3ms 0.1ms
100 200 0.6ms 0.04ms 0.1ms
100 10 000 0.5ms 0.04ms 0.1ms
100 π + i 5.6ms ⋆ 0.3ms
100 π + 1 000i 2ms ⋆ 0.3ms

1 000 3 5ms 9.9ms 9.8ms
1 000 200 30ms 1.9ms 9.3ms
1 000 10 000 30ms 1.3ms 9.3ms
1 000 π + i 60ms ⋆ 23ms
1 000 π + 1 000i 50ms ⋆ 23ms

10 000 3 0.08s 0.246s 2.280s
10 000 200 16.78s 47.840s 2.290s
10 000 10 000 3.48s 0.301s 2.280s
10 000 π + i 14.26s ⋆ 7.440s
10 000 π + 1 000i 16.34s ⋆ 7.462s

Table 1: timings (on a Intel Core2 Quad, 2.40GHz)
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