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Multi-precision computation of the complex error function

We give a very simple algorithm to compute the error and complementary error functions of complex argument to any given accuracy.

Introduction

With standard normalization, the error function is defined as erf(x) = 2 √ π

x 0 e -t 2 dt and the complementary error function as

erfc(x) = 2 √ π ∞ x e -t 2 dt.
Thanks to the relation erf(x) = 1erfc(x) and the symmetry erfc(-x) = 2erfc(x), it is sufficient to be able to compute erfc on the right half complex plane.

Many formula exist for this calculation, obtained either via integration or with asymptotic expansions near zero or infinity. In this note, we study an integration-based formula which is simple, efficient and easy to apply rigorously.

Although this formula is not new (we found in particular [MR71]), it seems that it has not been introduced in numerical systems so far. J. Weideman [Wei94] justifies this by the difficulties to find a correct stepsize, and some numerical instabilities. The rigorous treatment we give here aims at removing these prejudices. We also introduce a trick which accelerates the multiprecision computations.

Motivation, and a smooth integral formula

In [START_REF] Molin | Intégration numérique par la méthode double-exponentielle[END_REF], we showed that the trapezoidal scheme yields a very fast method for the computation of integrals of the form

R F(u)e -Q(u 2 ) du (1)
where

F(x) ∈ R(x) is a rational fraction with no pole on R and Q(x) ∈ R + [x] is a polynomial.
If we focus on the simplest case

f (α) = R e -u 2 u -α du, α ∈ R, (2) 
we have the following formula, which enables us to compute the complementary error function to any accuracy.

Proposition 1.1

For all x such that Re(x) > 0,

erfc(x) = -ie -x 2 π f (ix). (3) 
Proof : f is analytic outside R, derivating there under the integral and integrating by parts yields the differential equation

f ′ (α) + 2α f (α) + 2 √ π = 0. Writing f (α) = λ(α)e -α 2 , λ satisfies λ ′ (α) = -2 √ πe α 2 , so that for Im(α) > 0 we have λ(α) = K -2 √ π α 0 e u 2 du with K ∈ C. The limit lim x→∞ f (ix)e -x 2 = 0 determines K to be 2 √ π i∞ 0 e u 2 du. As a consequence, λ(ix) = 2 √ π i∞ ix e -u 2 du = iπ erfc x, hence the result.
More precisely, the general theory ensures that f (α) can be evaluated to a precision of p binary digits with a number of points n ∼ p log 2 π . The results of [START_REF] Molin | Intégration numérique par la méthode double-exponentielle[END_REF] also assert that this formula is optimal amongst integrationbased formulas, which means that any other integration formula will need a larger number of points (for theoretic reasons due to the uncertainty principle).

Computation

We adopt the following notation for the numerical approximation to p binary digits of absolute precision:

Definition 2.1 For a, b ∈ C, a = p b ⇔ |a -b| 2 -p . (4)
Moreover, the consideration of a residue term leads to the following:

Definition 2.2
Let x be a complex number with Re(x) 0, and h > 0, and define δ(x, h) to be

δ(x, h) = 1 if Re(x) < π h ; (5) = 0 otherwise. (6) 
The numerical formula is then Theorem 2.3

Let x be a complex number such that Re(x) 1, and suppose p 2. Then for all h > 0 and n ∈ N such that h

π √ arcsinh(2 p √ π)+2
and nh p log 2 we have

erfc(x) = p e -x 2 π h x + 2hx n ∑ k=1 e -(kh) 2 x 2 + (kh) 2 - 2δ(x + 1, h) e 2πx h -1 . ( 7 
)
We give a complete proof in the next paragraphs.

Trapezoidal formula

For α ∈ C such that Im(α) > 0 we define g(x) = e -x 2 x-α . The trapezoidal formula for f = R g reads

Lemma 2.4

Let α ∈ C such that Im(α) > 0. For all h > 0 and n 1, we have

f (α) = h n ∑ k=-n e -(kh) 2 kh -α + E t (n, h) -E q (h) (8) 
where

E q (h) = ∑ k =0 ĝ( k h ) and E t (N, h) = ∑ |k|>N g(kh)
.

Proof : This is the Poisson formula written for g on the lattice hZ, isolating the first Fourier term ĝ(0) = f (α).

Quadrature error

Lemma 2.5

Let α ∈ C such that Im(α) > 0 and τ > 0 such that τ = Im(α), then we have for all

X > 0 ĝ(-X) + δ2iπe -α 2 -2iπXα √ π τ -Im(α) e τ 2 -2πXτ (9) ĝ(X) √ π τ + Im(α) e τ 2 -2πXτ (10) 
where δ = 0 if τ < Im(α) and δ = 1 if τ > Im(α).

Proof : We have ĝ(±X) = R e -u 2 ∓2πuX u-α
du, and we shift the contour to R ± iτ thanks to the residue theorem. The first line corresponds to R → R + iτ, which goes though the pole at α if τ > Im(α), and the second line to the shift R → R + iτ. We then bound with the L 1 norm, with R e -(u±iτ) 2 ∓2iπ(u±iτ

)X du = e τ 2 -2πτX R e -u 2 du = √ πe τ 2 -2πτX . Lemma 2.6 Assume X 0 1 π arcsinh(2 p √ π) such that πX 0 ∈]Im(α) -1, Im(α) + 1[, then ∀X X 0 , ∑ k =0 ĝ(kX) + δ(x, 1/X 0 ) 2iπe -α 2 e -2iπαX -1 2 -p . ( 11 
)
For all X

1 π arcsinh(2 p √ π) + 2 π , ∑ k =0 ĝ(kX) + δ(Im(α) + 1, 1/X) 2iπe -α 2 e -2iπαX -1 2 -p .
Proof : Fix τ = πX 0 in the preceding lemma; the hypothesis allows to remove the terms τ ± Im(α) . Summing on kX, k = 0 we obtain

∑ k =0 ĝ(kX) + δ 2iπe -α 2 e -2iπαX -1 2 √ π ∑ k>0 e -π 2 (kX 0 ) 2 √ π sinh(π 2 X 2 0 ) (12) 
hence the first assertion of the lemma. Now take X as in the second part, and set

X 2 = X -2 π , X 1 = X -1 π . If Im(α) πX 1 , then we use the first part with X 0 = X and δ(Im(α), 1/X) = δ(Im(α), 1/X 1 ) = 1. If Im(α) > πX 1 we use the first part with X X 0 = X 2 and δ(Im(α), 1/X 0 ) = δ(Im(α), 1/X 1 ) = 0. Finally, we use δ(x, 1/X 1 ) = δ(x + 1, 1/X).

Truncation error Lemma 2.7

Assume Im(α) > 1, and let p 2. Then for all n such that nh p log 2, we have

h ∑ |k|>n e -(kh) 2 kh + α 2 -p (13) 
Proof : Since Im(α) 1 we have (kh) 2 + α 1, and the left-hand side is bounded above by 2h

∞ n e -(th) 2 dt = 2 erfc(nh). The upper bound erfc(x)

2e -x 2 √ π(x+ x 2 + 4 π 2 )
gives the result (we have √ π(x + x 2 + 4 π 2 ) > 4 for x 2 log 2).

Proof of Theorem 2.3

We combine the preceeding lemmas for α = ix, writing

-ih n ∑ k=-n e -(kh) 2 kh + ix = h x + 2xh n ∑ k=1 e -(kh) 2 x 2 + (kh) 2 The value 1 h = X = √ arcsinh(2 p √ π) π + 2
π ensures the hypothesis of Lemma 2.6 is satisfied, so that

E q (h) + 2iπδ(x, h) e 2πx h -1 2 -p .
The lemma 2.7 bounds E t (n, h) , and this proves the computation of -i π f (ix) to absolute precision 2 π 2 -p < 2 -p under the hypothesis of Theorem 2.3. The fact that we obtain the right relative precision on erfc(x) follows from the bounds 1 2 |x| + 1 erfc(x) e -x 2 1 2 |x| -1 valid for any x ∈ C with |x| 1.

Practical algorithm

The formula of Theorem 2.3 is simple. We decribe here how to evaluate it efficiently for multiprecision values.

First, we write λ = x h to put formula (7) into the form

erfc(x) = p e -x 2 π 1 λ + 2λ n ∑ k=1 (e -h 2 ) k 2 λ 2 + k 2 -δ 2 e 2πλ -1 (14) (with h ∼ π √ p log 2 and n ∼ p log 2 π ).
We then write

U k = e -(kh) 2 , V k = e -(2k+1)h 2 and D k = λ 2 + k 2 , so that the main sum becomes n ∑ k=1 U k D k ,
subject to the recursions

U k+1 = U k V k (15) V k+1 = e -2h 2 V k (16) D k+1 = D k + 2k + 1. ( 17 
)

Small integer trick

Finally, thanks to the loose condition we have on h, we can improve the computation if we constraint the factor e -2h 2 to be exactly a small precision rational u/2 v , as soon as h =log √ u/2 v satifies Theorem 2.3. This way, the computation of each term of the sum is reduced to the following significant operations

• a multiprecision multiplication U k V k ; • a small multiplication V k u/2 v ; • a multiprecision division U k /D k ;
and we have Theorem 3.1 (complexity)

The complex error function can be evaluated to p binary digits in complexity

p log 2(1+λ) π M(p) + o(pM(p))
, where M(p) denotes the complexity of a multiplication of size p and λ is the number of multiplications needed to perform a division.

Remark : Of course this complexity can be lowered for negative real part, since there the result approaches 2 and the precision required to compute the difference can be decreased.

Improvement for real argument

The trick above can be improved if we apply it to the denominator D k and simplify the division instead of the multiplication. We write

erfc(x) = p e -x 2 πλ 1 + 2 n ∑ k=1 (e -h 2 ) k 2 1 + k 2 /λ 2 - 2δ e 2πλ -1 (18) 
and choose h to have exactly λ -2 = u2 -v , u, v ∈ N 2 with v much smaller than p, so that the computation becomes

erfc(x) = p e -x 2 πλ 1 + 2 v+1 n ∑ k=1 (e -h 2 ) k 2 2 v + k 2 u - 2δ e 2πλ -1 . ( 19 
)
In order to compute with this formula, the only condition we have is that v > log 2 (x 2 /h 2 ). For the multiprecision range1 , this condition is very mild.

Remark : This trick assumes x to be real, otherwise there is no reason why both its real and imaginary parts should be exactly representable using small integers.

Extension for small real part

The theorem 2.3 can be extended to Re(x) < 1 if we shift the path of integration. Indeed, the function f defined for Im(α) > 0 in (2) extends analytically to Im(α) > -d for any d > 0 with

f (α) = R-id e -u 2 u -α du. ( 20 
)
We then have Theorem 3.2

Let x be a complex number such that Re(x) 0. Then for all h > 0 and

n ∈ N such that h < π √ arcsinh(2 p √ π)+2
and nh (p + 1) log 2, we have

erfc(x) = p e -x 2 +1 π 1 λ + 2 n ∑ k=1 (λ cos(2kh) + k sin(2kh))e -(kh) 2 λ 2 + k 2 - 2δ(x + 1, h) e 2πλ -1 (21) 
where λ = x+1 h .

Proof : Using (20), the main Riemann sum for f (α) takes the form (πX-d) 2 so that the value X 1 of Lemma 2.6 is enough; for X < 0 we apply the same bounds as in Lemma 2.6. This gives the result, fixing the value d = 1.

S(α) = h n ∑ k=-n e -(kh) 2 e 2idkh e d 2 kh - α , α = α + id = - he d 2 α + he d 2 n ∑ k=1 e -(kh) 2 2ikh sin(2dkh) + 2α cos(2dkh) (kh) 2 -α2 . If Re(x + d) 1,

Timings

We did a PARI/gp implantation which proves to be quite efficient. In Table 1 we compared its running time on a few inputs to MPFR [FHL + 07] and Maple 14. It turns out that the integration formula is not very interesting in the asymptotic range (near zero or infinity), where the asymptotic expansions of erf and erfc are very accurate. However, it sould be considered in the transition range, when the modulus of the argument comes around the square root of the precision (as in the line 10 4 digits, x = 200). When the precision increase, this range gets wider : at 10 5 digits our formula starts to be better from x = 10.

We also remark that the integration formula gives a running time which depends only on the required precision, and to a minor extent of the nature (real or complex) of the argument, contrary to Maple and MPFR.

  the truncation error is bounded by 2 ∞ nh e -t 2 +d 2 e d 2 E t (n, h), so that for d = 1 it is enough to take nh > (p + 3) log 2. (τ±d) 2 -2πXτ . For X > 0 the denominator is greater than d and this can be bounded by

	The quadrature error, once corrected by the residue
	is bounded by	2πδ(x + d, h)e x 2 e 2π(x+d) h -1 τ±Re(x+d) e √ √ π π d e -	,

We remark that current multiprecision library do not allow x to exceed 10 10 .

Algorithm 1: Computation of the complementary error function Input: x such that Re(x) 1 Input: binary precision p 1 Output: z such that (erfc xz)/z < 2 -p begin choose parameters