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ON THE CONTROL OF THE MOTION OF A BOAT

OLIVIER GLASS AND LIONEL ROSIER

Abstract. In this paper we study the control of the motion of a boat, viewed as a rigid
body S with one axis of symmetry, which is surrounded by an inviscid incompressible
fluid filling R2 \ S. We take as control input the flow of the fluid through a part of the
boundary of the boat. We prove that the position, orientation, and velocity of the boat
are locally controllable with a bidimensional control input, even if the flow displays some
vorticity.

1. Introduction

The control of boats or submarines has attracted the attention of the mathematical
community from a long time (see e.g. [14, 15, 16, 2].) In most of the papers devoted to
that issue, the fluid is assumed to be inviscid, incompressible and irrotational, and the rigid
body is supposed to have an elliptic shape. On the other hand, to simplify the model, the
control is often assumed to appear in a linear way in a finite-dimensional system describing
the dynamics of the rigid body, the so-called Kirchhoff laws.

A large vessel (e.g. a freighter) presents often one tunnel thruster built into the bow to
make docking easier. The aim of this paper is to provide some accurate model of a boat
controlled by two propellers, the one displayed in a transversal bowthruster at the bow
of the ship, the other one placed at the stern of the boat (see Figure 1), and to give a
rigorous analysis of the control properties of such a system.
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Figure 1. Forward propulsion by a propeller
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The fluid, still inviscid and incompressible, will no longer be assumed to be irrotational
(i.e., the vorticity may not vanish everywhere), and the only geometric assumption for the
shape of the boat will be the existence of one axial symmetry.

To be more precise, we consider a boat, represented by a rigid body with one axis
of symmetry occupying a bounded, simply connected open set S(t) ⊂ R2 of class C∞

and which is surrounded by a homogeneous incompressible perfect fluid. We denote by
Ω(t) = R2 \ S(t) the domain occupied by the fluid, and write merely S = S(0) and
Ω = Ω(0) for the domains occupied respectively by the rigid body and the fluid at t = 0.
The equations for the dynamics of the system fluid + rigid body read then

∂u

∂t
+ (u · ∇)u+∇p = 0, t ∈ [0, T ], x ∈ Ω(t), (1.1)

div u = 0, t ∈ [0, T ], x ∈ Ω(t), (1.2)

u · n = (h′ + r(x− h)⊥) · n+ w(t, x), t ∈ [0, T ], x ∈ ∂Ω(t), (1.3)
lim
|x|→∞

u(t, x) = 0, (1.4)

mh′′ =
∫
∂Ω(t)

pn dσ, t ∈ [0, T ], (1.5)

Jr′ =
∫
∂Ω(t)

(x− h)⊥ · pn dσ, t ∈ [0, T ], (1.6)

θ′ = r t ∈ [0, T ], (1.7)
u(0, x) = u0(x), x ∈ Ω, (1.8)

(h(0), θ(0)) = (h0, θ0) ∈ R2 × R, (h′(0), r(0)) = (h1, r0) ∈ R2 × R. (1.9)

In the above equations, u (resp. p) is the velocity field (resp. the pressure) of the fluid, h
denotes the position of the center of mass of the solid, θ is the angle between some axis
linked to the rigid body and a given fixed axis, and r denotes the angular velocity. The
positive constants m and J , which denote respectively the mass and the moment of inertia
of the rigid body, are defined as

m =
∫
S
ρ(x) dx, J =

∫
S
ρ(x)|x|2dx,

where ρ(·) denotes the density of the rigid body. The vector n is the outward unit vector
to ∂Ω(t), so that τ = −n⊥ = (n2,−n1) is a unit tangent vector to ∂Ω(t). Finally, the
term w(t, x), which stands for the flow through the boundary of the rigid body, is taken
as control input. Its support will be strictly included in ∂Ω(t), and actually only a finite
dimensional control input will be considered here (see below (1.13) for the precise form of
the control term w(t, x)).

When no control is applied (i.e. w(t, x) = 0), then the existence and uniqueness of
strong solutions to (1.1)-(1.9) was obtained in [18] for a ball, and in [19] for a rigid body
S of arbitrary form. The result in [18] was extended to any dimension in [20] (in that
paper, the issue of the persistence of regularity is also studied). We also refer to [10] for
the situation when Ω(t) = Ω0 \ S(t), with Ω0 a bounded open set in R3, and for the issue
of the analyticity in time. The detection of the rigid body S(t) from partial measurements
of the fluid velocity has been tackled in [5] when Ω(t) = Ω0 \ S(t) (Ω0 ⊂ R2 still being a
bounded cavity) and in [4] when Ω(t) = R2 \ S(t).

Here, we are interested in the control properties of (1.1)-(1.9). The controllability of
Euler equations has been established in 2D (resp. in 3D) in [6] (resp. in [9]) Note, however,
that there is no hope here to control both the fluid and the rigid body motion. Indeed,
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Ω(t) is an exterior domain, and the vorticity is transported by the flow with a finite speed
propagation, so that it is not affected (at any given time) far from the boat. Therefore,
we will deal with the control of the motion of the rigid body only. As the state of the
rigid body is described by a vector in R6, namely (h, θ, h′, r), it is natural to consider a
finite-dimensional control input.

Note also that since the fluid is flowing through a part of the boundary of the rigid
body, one more boundary condition is needed to ensure the uniqueness of the solution of
(1.1)-(1.9) (see [11], [12]). In dimension two, one can impose the value of the vorticity
ω(t, x) := curl v(t, x) on the inflow section of ∂Ω(t); that is, one can set

ω(t, x) = ω0(t, x) for w(t, x) < 0

where ω0(t, x) is a given function.

In order to write the equations of the fluid in a fixed domain, we perform a change of
coordinates. We set

θ(t) = θ0 +
∫ t

0
r(s) ds, Q(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (1.10)

and
x = Q(θ(t))y + h(t), (1.11)

where x (resp. y) represents the vector of coordinates of a point in a fixed frame (respec-
tively in a frame linked to the rigid body). Note that, at any given time t, y ranges over
the fixed domain Ω when x ranges over Ω(t). Next, we introduce the functions

v(t, y) := Q(θ(t))∗u(t, Q(θ(t))y + h(t)),
q(t, y) := p(t, Q(θ(t))y + h(t)),
l(t) := Q(θ(t))∗ḣ(t),

(1.12)

where ˙ = d/dt and ∗ means transpose. Finally, we assume that the control takes the form

w(t, x) = w(t, Q(θ(t))y + h(t)) =
∑

16j6m

wj(t)χj(y), (1.13)

where m ∈ N∗ stands for the number of independent inputs, and wj(t) ∈ R is the control
input associated with the function χj ∈ C∞(∂Ω). Often, the functions χj have disjoint
supports, i.e.

χj(y)χk(y) = 0 ∀y ∈ ∂Ω, ∀j 6= k,

but we shall not make this hypothesis thereafter. To ensure the conservation of the mass
of the fluid, we impose the relation∫

∂Ω
χj(y) dσ = 0 for 1 6 j 6 m. (1.14)

Finally, we assume that the solid is symmetric with respect to the y1−axis (see Figure 2),
i.e.

(y1, y2) ∈ S ⇒ (y1,−y2) ∈ S, (1.15)

and that the functions χj fulfill the following symmetry properties

χ1(y1,−y2) = χ1(y1, y2) for (y1, y2) ∈ ∂S; (1.16)
χj(y1,−y2) = −χj(y1, y2) for j ∈ {2, ...,m}, (y1, y2) ∈ ∂S. (1.17)



4 OLIVIER GLASS AND LIONEL ROSIER

w3
w2

w1

y2

y1

Figure 2. Three tunnel thrusters

Then the functions (v, q, l, r) satisfy the following system

∂v

∂t
+ (v − l − ry⊥) · ∇v + rv⊥ +∇q = 0 in [0, T ]× Ω, (1.18)

div v = 0 in [0, T ]× Ω, (1.19)

v · n = (l + ry⊥) · n+
∑

16j6m

wj(t)χj(y) on [0, T ]× ∂Ω, (1.20)

lim
|y|→∞

v(t, y) = 0, in [0, T ], (1.21)

ml̇ =
∫
∂Ω
qn dσ −mrl⊥ in [0, T ], (1.22)

Jṙ =
∫
∂Ω
qn · y⊥dσ in [0, T ], (1.23)

v(0, y) = v0(y) in Ω, (1.24)
(l(0), r(0)) = (l0, r0), (1.25)

where v0(y) = Q(θ0)∗u0(Q(θ0)y + h0) and l0 = Q(θ0)∗h1.

The paper is organized as follows.

In Section 2, we first consider potential flows. In that case, we obtain a finite-dimensional
system similar to Kirchhoff laws, in which the control input w appears through both linear
terms (with time derivative) and bilinear terms. To investigate the controllability of such
a system, we apply the return method due to Jean-Michel Coron (we refer the reader
to [7] for an exposition of that method for finite-dimensional systems and for PDEs).
We consider the linearization along a certain closed-loop trajectory and obtain a local
controllability result (Theorem 2.9) assuming that two conditions are fulfilled, by using a
variant of Silverman-Meadows test for the controllability of a time-varying linear system.
A difficulty in the previous result is that the control may be different from 0 at the final
time. This inconvenient disappears for certain values of the constants in the system,
leading to a (global) steady-state controllability result (Theorem 2.14).

Next, we come back to the original system (1.18)-(1.25) in Section 3. We prove that it
admits a global solution for a convenient choice of the vorticity at the inflow section of
∂Ω such that the difference between the present velocity and the potential velocity can be
estimated by some measurement of the vorticity at time t = 0 (Proposition 3.1).
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Combining the results in Sections 2 and 3, we obtain in Section 4 the main result of the
paper (Theorem 4.1), namely a local controllability result for the dynamics of the boat
even if the flow is not potential. Such a result, which may be seen as a “linearization”
with respect to the vorticity, involves in its proof a topological argument (Lemma 4.2).

Finally Section 5 is an appendix containing some computations that can be skipped
during a first reading.

2. Potential flows

2.1. Equations of the motion in the potential case.

In this section we derive the equations describing the motion of the rigid body subject
to flow controls on ∂Ω when the flow of the fluid is potential. We still denote by v0(·) the
velocity of the fluid at t = 0, and here we assume that

curl v0 = 0 in Ω (2.1)∫
∂Ω
v0 · τ dσ = 0. (2.2)

We also assume that the vorticity ω = curl v is null at the inflow part of ∂Ω, i.e.

ω(t, y) = 0 if
m∑
j=1

wj(t)χj(y) < 0. (2.3)

Proposition 2.1. Under the assumptions (2.1), (2.2) and (2.3), one has

ω = curl v = 0 in [0, T ]× Ω, (2.4)∫
∂Ω(t)

v(t, y) · τ dσ = 0 in [0, T ]. (2.5)

For the sake of completeness, Proposition 2.1 is proven in Section 5.

Now it follows from (1.19), (1.21), (2.4) and (2.5) that the flow is potential, i.e.

v = ∇φ (2.6)

where φ = φ(t, y) solves

∆φ = 0 in [0, T ]× Ω, (2.7)
∂φ

∂n
= (l + ry⊥) · n+

∑
16j6m

wj(t)χj(y) on [0, T ]× ∂Ω, (2.8)

lim
|y|→∞

∇φ(t, y) = 0 on [0, T ]. (2.9)

Actually, φ may be decomposed as

φ(t, y) =
∑

16i62

li(t)Φi(y) + r(t)Φ3(y) +
∑

16j6m

wj(t)Ψj(y) (2.10)

where Φi, i ∈ {1, 2, 3}, solves

∆Φi = 0, in Ω (2.11)
∂Φi

∂n
(y) = Ki(y) on ∂Ω (2.12)

lim
|y|→∞

∇Φi(y) = 0, (2.13)
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with
Ki(y) = n(y) · ei = ni(y) for i = 1, 2 and K3(y) = y⊥ · n(y),

and where Ψj , j = 1, ..,m solve

∆Ψj = 0 in Ω, (2.14)
∂Ψj

∂n
= χj(y) on ∂Ω, (2.15)

lim
|y|→∞

∇Ψj(y) = 0. (2.16)

Let Ĥs(Ω) denote the homogeneous Sobolev space

Ĥs(Ω) = {q ∈ L2
loc(Ω); ∇q ∈ Hs−1(Ω)},

where q ∈ L2
loc(Ω) means that q ∈ L2(Ω∩B0) for any ball B0 ⊂ R2 with B0∩Ω 6= ∅. Then

we have the following result.

Lemma 2.2. Let s > 1 and g ∈ Hs− 1
2 (∂Ω) be such that

∫
∂Ω gdσ = 0.

1. There exists a solution Ψ ∈ Ĥs+1(Ω) of the system

∆Ψ = 0 in Ω, (2.17)
∂Ψ
∂n

= g on ∂Ω, (2.18)

and this solution is unique up to the addition of an arbitrary constant.
2. Assume that s > 1. Then

lim sup
|y|→∞

(
|y|2|∇Ψ(y)|+ |y|3|∇2Ψ(y)|

)
<∞. (2.19)

and we may pick Ψ so that lim|y|→∞Ψ(y) = 0.

The proof of the first part of Lemma 2.2 may be done along the same lines as [20,
Proposition 3.1]. For the second part, it is sufficient to write Ψ(y1, y2) = Re f(y1 + iy2)
where f is some holomorphic function on Ω ⊂ R2 ∼ C and to note that the expansion as
a Laurent series of f reads f(y1 + iy2) =

∑
k60 ak(y1 + iy2)k for some sequence (ak)k60 in

C, since lim|y|→∞∇Ψ(y) = 0.

As the domain S occupied by the rigid body and the functions χj , 1 6 j 6 m, supporting
the control are assumed to be smooth, we infer that the functions ∇Φi (i = 1, 2, 3) and
the functions ∇Ψj (1 6 j 6 m) are in the space H∞(Ω). As a consequence, we notice
that for all i = 1, 2, 3 and j = 1, . . . ,m,∫

∂Ω
ΦiKjdσ =

∫
Ω
∇Φi · ∇Φj dy =

∫
∂Ω
KiΦjdσ, (2.20)∫

∂Ω
ΨiKjdσ =

∫
Ω
∇Ψi · ∇Φj dy =

∫
∂Ω
χiΦjdσ. (2.21)

Let us now reformulate the equations for the motion of the rigid body. We define the
matrix M∈ R3×3 by

Mij =
∫

Ω
∇Φi · ∇Φj dy, (2.22)

and the (added mass) inertia matrix J by

J =
[
mId2 0

0 J

]
+M. (2.23)

Since M is a Gram matrix, it is nonnegative. It follows that J is a positive definite
matrix, hence it is invertible.
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Remark 2.3. Under the assumptions (1.15) and m = 3, one easily infer from Proposition
5.2 (see below) that M takes the following form

M =

 ∫
∂Ω Φ1n1 dσ 0 0

0
∫
∂Ω Φ2n2 dσ

∫
∂Ω Φ2n · y⊥ dσ

0
∫
∂Ω Φ2n · y⊥ dσ

∫
∂Ω Φ3n · y⊥ dσ

 ·
If, in addition,

(y1, y2) ∈ S ⇒ (−y1, y2) ∈ S, (2.24)
then both M and J are diagonal.

Let us set

q = (q1, q2, q3) = (h1, h2, θ), p = (p1, p2, p3) = (l1, l2, r) and w = (w1, . . . , wm).

Recall that ḣ = Q(θ)l. Introduce the 3× 3 matrix

Q(q) =
(
Q(q3) 0

0 1

)
·

In the potential case, the dynamics of the boat can be written in the following way.

Proposition 2.4. The dynamics of (q, p) read

q̇ = Q(q)p, (2.25)
ṗ = J −1 (Cẇ + F (p, w)) , (2.26)

where C denotes the constant matrix c1 0 · · · 0
0 c2 · · · cm
0 c̃2 · · · c̃m

 :=

 − ∫∂Ω Ψ1K1 dσ 0 · · · 0
0 −

∫
∂Ω Ψ2K2 dσ · · · −

∫
∂Ω ΨmK2 dσ

0 −
∫
∂Ω Ψ2K3 dσ · · · −

∫
∂Ω ΨmK3 dσ


and F (p, w) is composed of bilinear terms in pi, 1 6 i 6 3, and wj, 1 6 j 6 m.

The detailed computations yielding Proposition 2.4 are given in Appendix. In particular,
the equation (2.26) with the term F (p, w) is made explicit in (5.32) -(5.34).

2.2. Elementary approaches.

Let us have a look at the linearization of (2.25)-(2.26) at the origin, namely

q̇ = p, (2.27)
ṗ = J −1Cẇ. (2.28)

The following result relates the controllability of (2.27)-(2.28) to the rank of C.

Proposition 2.5. The linearized system (2.27)-(2.28) with control input ẇ ∈ Rm is con-
trollable if and only if rank (C) = 3.

Proof. To apply Kalman rank test (see e.g. [7, 22]), we compute

rank
((

0
J −1C

)
,

(
0 I
0 0

)(
0

J −1C

))
= 2 rank(C)

and the result follows at once.

In particular, the controllability of the linearized system requires that the number m of
control inputs satisfies m > 3.
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Example 2.6. When the boat has an elliptic shape, i.e.

S = {y ∈ R2;
y2

1

a2
+
y2

2

b2
< 1}, (2.29)

where a > b > 0 are some given constants, then the functions Φi, i = 1, 2, 3, may be
explicitly computed by using complex analysis (see [4]). Letting yθ = (a cos θ, b sin θ) for
−π 6 θ 6 π, we easily obtain that

Φ1(yθ) = −b cos θ, Φ2(yθ) = −a sin θ, and Φ3(yθ) =
b2 − a2

4
sin(2θ),

Assuming that m = 3 and letting dµ = |y′θ|dθ, we arrive to

C =

 − ∫∂Ω Φ1χ1 dσ 0 0
0 −

∫
∂Ω Φ2χ2 dσ −

∫
∂Ω Φ2χ3 dσ

0 −
∫
∂Ω Φ3χ2 dσ −

∫
∂Ω Φ3χ3 dσ



=


b

∫ 2π

0
χ1(yθ) cos θ dµ 0 0

0 a

∫ 2π

0
χ2(yθ) sin θ dµ a

∫ 2π

0
χ3(yθ) sin θ dµ

0 a2−b2
4

∫ 2π

0
χ2(yθ) sin(2θ) dµ a2−b2

4

∫ 2π

0
χ3(yθ) sin(2θ) dµ

 ·

Assuming

χ1(yθ) cos θ > 0, χ2(yθ) sin θ > 0, χ3(yθ) sin θ 6 0,
Supp χ2 ⊂ {−π/2 < θ < π/2} and Supp χ3 ⊂ {π/2 < |θ| < π}

we infer that c1, c2, −c3, c̃2 and c̃3 are all (strictly) positive. This yields that det C > 0,
hence it follows from Proposition 2.5 that system (2.27)-(2.28) is controllable.

y2

w2w3

y1w1

Figure 3. Elliptic boat with three controls

From now on we assume that m = 2.

Before investigating the controllability of the full system (2.25)-(2.26), let us consider
first the case when w2 ≡ 0 and q2(0) = q3(0) = p2(0) = p3(0) = 0. Then, in view of
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(5.32)-(5.34), q2 = p2 = q3 = p3 ≡ 0, and (2.25)-(2.26) reduces to the system

q̇1 = p1, (2.30)

ṗ1 = −
(
m+

∫
∂Ω

Φ1n1

)−1(
ẇ1

∫
∂Ω

Ψ1n1 + w1p1

∫
∂Ω
χ1∂1Φ1 + w2

1

∫
∂Ω
χ1∂1Ψ1

)
=: αẇ1 + βw1p1 + γw2

1. (2.31)

In the rest of the paper, we suppose that χ1 is chosen so that

α 6= 0. (2.32)

A natural idea would be to transform (2.30)-(2.31) into a system with (q1, p1, w1) as state
and ρ1 := ẇ1 as control, namely

q̇1 = p1, (2.33)
ṗ1 = αρ1 + βw1p1 + γw2

1, (2.34)
ẇ1 = ρ1. (2.35)

Unfortunately, this approach does not work, as it is shown by the following result.

Lemma 2.7. System (2.33)-(2.35) fails to be (locally or globally) controllable.

Proof. To prove Lemma 2.7, we consider the function z1 := p1 − αw1. We notice that

ż1 = βw1z1 + (γ + αβ)w2
1,

hence

z1(t) =
(
z1(0) + (γ + αβ)

∫ t

0
w2

1(τ)e−
R τ
0 βw1(s)dsdτ

)
e

R t
0 βw1(s)ds. (2.36)

Therefore, if z1(0) = 0, then z1 ≡ 0 if γ + αβ = 0, and z1 has the same sign as γ + αβ
otherwise. It follows that (2.33)-(2.35) fails to be (locally or globally) controllable, and
the lemma is proved.

Thus we cannot control both (q1, p1) and w1. One may wonder whether it is possible
to require that the fluid be at rest when the rigid body is, that is if the condition

w1(0) = w1(T ) = 0 (2.37)

may be imposed when p1(0) = p1(T ) = 0. The following result shows that this occurs for
a very particular set of coefficients.

Lemma 2.8. Let T > 0. Then we may associate to each pair (q0
1, q

T
1 ) in R2 a control

input w1 ∈ H1
0 (0, T ) such that the solution (q1(t), p1(t)) of (2.30)-(2.31) emanating from

(q0
1, 0) at t = 0 reaches (qT1 , 0) at t = T if and only if

γ + αβ = 0. (2.38)

Proof. Assume first that (2.38) holds, and that p1(0) = 0. Pick any pair (q0
1, q

T
1 ) in R2

and consider again the function z1(t) = p1(t) − αw1(t). If w1(0) = 0, then z1(0) = 0 and
from (2.38) we infer that

p1 − αw1 = z1 ≡ 0.

As it is well known, the control system q̇1 = αw1 may be controlled by using control inputs
in C∞0 (0, T ). Conversely, (2.38) is a necessary condition, as (2.36) with z1(0) = z1(T ) = 0
and w1 6≡ 0 yields γ + αβ = 0.
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2.3. Local controllability of the potential model.

Thereafter, we will still assume that (w1(0), w2(0)) = (0, 0), but we shall refrain from
imposing the condition (w1(T ), w2(T )) = (0, 0). The main result in this section (see
below Theorem 2.9) is derived in following a strategy inspired in part from Coron’s return
method. It is organized as follows:

• Step 1. We construct a (non trivial) trajectory (q, p, w) such that

(q(0), p(0)) = (q(T ), p(T )) = (0, 0). (2.39)

To do that, proceeding as in the flatness approach by Fliess et al. [8], we consider
a particular trajectory (q1, p1) of (2.30) and next define the control input w1 by
solving the Cauchy problem (2.31) together with the initial condition w1(0) = 0.
Notice that w1(T ) may be different from 0, and that w1 is not required to be odd
with respect to the time T/2. On the other hand, w2 ≡ 0 so that q2 = p2 = q3 =
p3 ≡ 0.
• Step 2. We show that the linearization along this trajectory is controllable (under

suitable assumptions) by combining the classical Silverman-Meadows criterion to
a test for the controllability of a linear system involving a control input together
with its time derivative.
• Step 3. The local controllability of the nonlinear system (2.25)-(2.26) is then

established with the aid of a linearization argument.

For notational convenience, we introduce the matrices

A =

 a1 0 0
0 a2 a3 + αa4

0 a5 + αa6 a7 + αa8

 and B =

 b1 + α b2 0
0 b3 + α b4
0 b5 + α b6

 , (2.40)

where

a1 = −
∫
∂Ω
χ1∂1Φ1 dσ, a2 = −

∫
∂Ω
χ1∂2Φ2 dσ, a3 = −

∫
∂Ω
y2∇Ψ1 · τ dσ −

∫
∂Ω
χ1∂2Φ3 dσ,

a4 = −m−
∫
∂Ω
y2∇Φ1 · τ dσ, a5 =

∫
∂Ω
y2∇Ψ1 · τ dσ −

∫
∂Ω
χ1∇Φ2 · y⊥ dσ,

a6 =
∫
∂Ω
y1∇Φ2 · τ dσ +

∫
∂Ω
y2∇Φ1 · τ dσ, a7 = −

∫
∂Ω
χ1∇Φ3 · y⊥ dσ, a8 =

∫
∂Ω
y1∇Φ3 · ndσ,

and

b1 = −2
∫
∂Ω
χ1∂1Ψ1 dσ, b2 = −

∫
∂Ω
χ1∂1Φ1 dσ, b3 = −

∫
∂Ω
χ1∂2Ψ2 dσ −

∫
∂Ω
χ2∂2Ψ1 dσ,

b4 = −
∫
∂Ω
χ2∂2Φ1 dσ, b5 = −

∫
∂Ω
χ1∇Ψ2 · y⊥ dσ −

∫
∂Ω
χ2∇Ψ1 · y⊥ dσ,

b6 =
∫
∂Ω
y1∇Ψ2 · τ dσ −

∫
∂Ω
χ2∇Φ1 · y⊥ dσ.

Simple but tedious computations give

b3 = −
∫
∂Ω

(∇Ψ1 · ∇Ψ2)n2 dσ and b5 = −
∫
∂Ω

(∇Ψ1 · ∇Ψ2)(n · y⊥)dσ. (2.41)

We also need to introduce the matrix

D =

 0 0 0
0 0 α
0 0 0

 .



ON THE CONTROL OF THE MOTION OF A BOAT 11

The following result shows that, under suitable assumptions, the local controllability
holds with only two control inputs.

Theorem 2.9. If both rank conditions

rank (C,B + AJ −1C) = 3, (2.42)

rank (C,
1
2
JDJ −1C + B + AJ −1C) = 3, (2.43)

are fulfilled, then for any T > 0 the system

q̇ = Q(q)p, (2.44)

J ṗ = Cẇ + F (p, w), (2.45)

with state (q, p) ∈ R6 and control w ∈ R2 is locally controllable around the origin in time T .
We can also impose that the control input w satisfies w(0) = 0. Moreover, for some η > 0,
there is a C1 map from BR12(0, η) to H2(0, T,R2), which associates to (q0, p0, qT , pT ) a
control satisfying w(0) = 0 and steering the state of the system from (q0, p0) at t = 0 to
(qT , pT ) at t = T .

Remark 2.10. (1) In the limit m → ∞ and J → ∞, (2.42) and (2.43) become |c1| +

|b1| > 0 and rank
[
c2 b3
c̃2 b5

]
= 2.

(2) The condition w(0) = 0 means that the boundary condition for the fluid velocity
at t = 0 reduces to v · n = (l + ry⊥) · n.

(3) If instead of (2.42) the slightly stronger assumption rank ((c1 0 0)∗,B+AJ −1C) =
3 holds, then we can impose that w1(0) = w2(0) = w2(T ) = 0. Nevertheless, it
seems that w1(T ) 6= 0 in general, unless γ + αβ = 0 (see Theorem 2.14 below).

Example 2.11. Let us consider again a boat with an elliptic shape, which is equipped with
two tunnel thrusters parallel to the y1-axis (see Figure 4).

w̃2

y2

y1

w̃1

Figure 4. Elliptic shape with two tunnel thrusters

Assume that the normal component of the velocity is controlled as follows

v · n = (l + ry⊥) · n+ w̃1(t)χ(y) + w̃2(t)χ(y′)

where y′ = (y1,−y2), Supp χ ⊂ {y2 > 0}, and χ(−y1, y2) = −χ(y1, y2) for y ∈ ∂S.
Introducing χ1(y) = (χ(y)+χ(y′))/2 and χ2(y) = (χ(y)−χ(y′))/2, we note that (1.16) and
(1.17) are satisfied, and that (1.20) holds with m = 2 and w1 := w̃1 +w̃2, w2 := w̃1−w̃2. It
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is easy to see that c1 6= 0, α 6= 0, c2 = −
∫
∂Ω χ2Φ2dσ = 0, and that c̃2 = −

∫
∂Ω χ2Φ3dσ 6= 0.

Thus the rank condition in Remark 2.10 (i) is satisfied if and only if

b3 = −
∫
∂Ω

(∇Ψ1 · ∇Ψ2)n2dσ = −1
2

∫
∂Ω
|∇Ψ|2n2 dσ 6= 0,

where Ψ solves (2.17)-(2.18) with g = χ.

The rest of Paragraph 2.3 is devoted to the proof of Theorem 2.9. We divide the proof
according to the three steps described above.

2.3.1. Step 1. Construction of a loop-shaped trajectory. Pick any λ0 > 0 and let λ ∈
(0, λ0). Set

q1(t) = λ(1− cos(2πt/T )), p1(t) = λ(2π/T ) sin(2πt/T )
and define w1 as the solution to the Cauchy problem

ẇ1 = α−1(ṗ1 − βw1p1 − γw2
1) (2.46)

w1(0) = 0 (2.47)

By a classical result on the continuous dependence of solutions of ODE with respect to a
parameter, we see that the solution w1 of (2.46)-(2.47) is defined on [0, T ] provided that
λ0 is small enough. We “complete” (q1, p1, w1) into a solution (q, p, w) of (2.25)-(2.26) be
letting qi = pi = 0 for i = 2, 3 and w2 ≡ 0. Then (q, p)(0) = (0, 0) = (q, p)(T ).

2.3.2. Step 2. Controllability of the linearized system. Writing q = q + z, p = p + k,
w = w+ f , expanding in (2.25)-(2.26), and keeping only the first order terms in z, k, and
f , we obtain the following linear system(
ż

k̇

)
=

(
D(t) I

0 J −1A(t)

)(
z
k

)
+
(

0
J −1B(t)

) (
f1

f2

)
+
(

0
J −1C

) (
ḟ1

ḟ2

)
=: A(t)

(
z
k

)
+ B(t)

(
f1

f2

)
+ C

(
ḟ1

ḟ2

)
(2.48)

where

A(t) =

 a1w1 0 0
0 a2w1 a3w1 + a4 p1

0 a5w1 + a6 p1 a7w1 + a8 p1

 ,

B(t) =

 b1w1 + b2 p1 0
0 b3w1 + b4 p1

0 b5w1 + b6 p1

 ,

and D(t) =

 0 0 0
0 0 p1

0 0 0

 ·
For a time-varying linear system

ẋ = A(t)x+ B(t)u, x ∈ Rn, u ∈ Rm (2.49)

we denote by RT (A,B) the reachable space in time T from the origin, i.e.

RT (A,B) = {xT ∈ Rn;

∃u ∈ L2(0, T ; Rm), xT = x(T ) where x(·) solves (2.49) and x(0) = 0}.
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If φ(t, s) ∈ Rn×n denotes the fundamental solution associated with A(·), i.e. the solution
of the Cauchy problem

∂φ

∂t
= A(t)φ(t, s), (2.50)

φ(s, s) = I, (2.51)

then

RT (A,B) =
{∫ T

0
φ(T, t)B(t)u(t)dt; u ∈ L2(0, T ; Rm)

}
. (2.52)

We shall apply a controllability test due to Silverman-Meadows (see [7]) in a slightly
extended form. For the sake of completeness, we prove it in the appendix.

Define a sequence of matrices Mi(t) ∈ Rn×m by

M0(t) = B(t) and Mi(t) = Ṁi−1(t)−A(t)Mi−1(t) ∀i > 1, ∀t ∈ [0, T ]. (2.53)

Proposition 2.12. Let ε > 0, A ∈ Cω((−ε, T+ε); Rn×n) and B ∈ Cω((−ε, T+ε); Rn×m),
and let (Mi)i>0 be the sequence defined in (2.53). Then for all t0 ∈ [0, T ], we have

RT (A,B) = Span {φ(T, t0)Mi(t0)u; u ∈ Rm, i > 0}, (2.54)

where φ denotes the fundamental solution defined in (2.50)-(2.51).

Consider now the system
ẋ = A(t)x+ B(t)u+ Cu̇, (2.55)

and denote by R the reachable set from the origin, i.e.

R = {xT ∈ Rn; ∃u ∈ H1(0, T ; Rm), xT = x(T ) where x(·) solves (2.55) and x(0) = 0}.

Note that u may take arbitrary values at t = 0, T . It may be necessary to impose that
u(0) = 0 and/or that u(T ) = 0. Accordingly, we introduce the spaces

Ru(0)=0 = {xT ∈ R associated with some u ∈ H1(0, T ; Rm) with u(0) = 0},
Ru(0)=u(T )=0 = {xT ∈ R associated with some u ∈ H1

0 (0, T ; Rm)}.

Note that, by an obvious density argument, we may as well assume that u ∈ C∞([0, T ],R2)
in the above definitions of the reachable spaces, without changing these spaces.

Then the following result holds true.

Proposition 2.13. The reachable sets from the origin for the system (2.55) are respec-
tively

R = RT (A,B +AC) + C Rm + φ(T, 0) C Rm, (2.56)
Ru(0)=0 = RT (A,B +AC) + C Rm, (2.57)

Ru(0)=u(T )=0 = RT (A,B +AC). (2.58)

Proof. Any element of R takes the form x =
∫ T

0 φ(T, t)(B(t)u(t) + Cu̇(t)) dt for some u ∈
H1(0, T ; Rm). Integrating by part, and using the fact that ∂[φ(T, t)]/∂t = −φ(T, t)A(t),
we obtain

x =
∫ T

0
φ(T, t)

(
B(t) +A(t)C

)
u(t) dt+ C u(T )− φ(T, 0) C u(0), (2.59)

hence
R ⊂ RT (A,B +AC) + C Rm + φ(T, 0) C Rm.
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As we may assume in (2.52) that u ranges over C∞0 (0, T,Rm) (hence u(0) = u(T ) = 0),
we infer that

RT (A,B +AC) ⊂ R. (2.60)

On the other hand, taking u(t) = tu0 (resp. u(t) = (T − t)u0) where u0 is an arbitrary
constant vector, and using (2.59), we obtain that CRm ⊂ R (resp. φ(T, 0)CRm ⊂ R). This
completes the proof of (2.56). (2.57) and (2.58) follow at once.

We shall establish the controllability of (2.48) by combining Propositions 2.12 and 2.13.
We denote by (Mi)i>0 the sequence of matrices associated with the pair (A,B + AC)
(hence, M0(t) = B(t) +A(t)C).

Straightforward but tedious computations give

M0(t) =
(

J −1C
J −1(B(t) +A(t)J −1C)

)
,

M1(t) =
(

−DJ −1C − J −1(B(t) +A(t)J −1C)
J −1[Ḃ(t) + Ȧ(t)J −1C −A(t)J −1(B(t) +A(t)J −1C)]

)
,

M2(t) =


−ḊJ −1C +D[DJ −1C + J −1(B(t) +A(t)J −1C)]

−J −1[2(Ḃ(t) + Ȧ(t)J −1C)−A(t)J −1(B(t) +A(t)J −1C)]

J −1
{
B̈(t) + Ä(t)J −1C − d

dt [AJ
−1(B +AJ −1C)](t)

−A(t)J −1[Ḃ(t) + Ȧ(t)J −1C −A(t)J −1(B(t) +A(t)J −1C)]
}

 ·

From Propositions 2.12 and 2.13, we know that

Rf(0)=0 = CR2 +
∑
i>0

Mi(T )R2.

Now to establish the controllability of the linearized system, we distinguish between two
cases.

Case 1: γ+αβ = 0. We begin with the “simplest” case when γ+αβ = 0. We infer from
(2.36) that z1 := p1−αw1 ≡ 0, hence w1(T ) = α−1p1(T ) = 0 and ẅ1(T ) = α−1p̈1(T ) = 0.
It follows that

A(T ) = Ä(T ) = 0, B(T ) = B̈(T ) = 0 and D(T ) = D̈(T ) = 0. (2.61)

On the other hand, ẇ1(T ) = α−1ṗ1(T ) = α−1(2π/T )2λ 6= 0, hence

Ȧ(T ) = ẇ1(T )A, Ḃ(T ) = ẇ1(T )B, Ḋ(T ) = ẇ1(T )D. (2.62)

It follows that

Rf(0)=0 ⊃ CR2 +
∑

06i62

Mi(T )R2

=
(

0
J −1C

)
R2 +

(
J −1C

0

)
R2

+
(

0
J −1(B + AJ −1C)

)
R2 +

(
J −1[JDJ −1C + 2(B + AJ −1C)]

0

)
R2

= R6
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thanks to (2.42)-(2.43). We have proved that (2.48) is controllable.

Case 2. γ + αβ 6= 0. We claim that for T > 0 arbitrary chosen and λ0 small enough, we
have for 0 < λ < λ0,

rank (C,M0(T ),M1(T ),M2(T )) = 6.

First, ‖p1‖W 2,∞(0,T ) = O(λ) still with p1(T ) = p̈1(T ) = 0. From (2.46)-(2.47), we infer
with Gronwall lemma (for λ0 small enough) that w1 is well defined on [0, T ] and that
‖w1‖L∞(0,T ) = O(λ). This also yields (with (2.46)) ||w1||W 2,∞(0,T ) = O(λ). Next, in-
tegrating in (2.46) over (0, T ) yields w1(T ) = O(λ2). Finally, derivating in (2.46) gives
ẅ1(T ) = O(λ2). We conclude that

(A(T ), B(T ), Ä(T ), B̈(T )) = O(λ2), D(T ) = 0,

while
(Ȧ(T ), Ḃ(T ), Ḋ(T )) = α−1(2π/T )2λ(A,B,D) +O(λ4),

for ṗ1(T ) = αẇ1(T ) +O(λ4). It follows that

rank (C,M0(T ),M1(T ),M2(T ))

= rank

[(
0

J −1C

)
,

(
J −1C

0

)
,

(
0

J −1(B + AJ −1C)

)
,

(
J −1[JDJ −1C + 2(B + AJ −1C)]

0

)]
R2

= 6,

for 0 < λ < λ0 with λ0 small enough. This proves that (2.48) is controllable.

2.3.3. Step 3. Local controllability of the nonlinear system. Let us introduce the Hilbert
space

H := R3 × R3 × {f ∈ H2(0, T,R2); f(0) = 0}
endowed with its natural Hilbertian norm

||(q, p, f)||2H = |q|2 + |p|2 + ||f ||2H2(0,T ).

We denote by BH(0, δ) the open ball in H with center 0 and radius δ, i.e.

BH(0, δ) = {(q, p, f) ∈ H; ||(q, p, f)||H < δ}.

Let us introduce the map

Γ : BH(0, δ) → R12

(q0, p0, f) 7→ (q0, p0, q(T ), p(T ))

where (q(t), p(t)) denotes the solution of

q̇ = Q(q)p, (2.63)

J ṗ = C(ẇ + ḟ) + F (p, w + f), (2.64)
(q(0), p(0)) = (q0, p0). (2.65)

Note that Γ is well defined for δ > 0 small enough. Using the Sobolev embedding
H2(0, T ) ⊂ W 1,∞(0, T ) combined to [22, Theorem 1], we infer that Γ is of class C1 on
BH(0, δ) and that its tangent linear map at the origin is given by

dΓ(0)(z0, k0, f) = (z0, k0, z(T ), k(T )),
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where (z(t), k(t)) solves the system(
ż

k̇

)
= A(t)

(
z
k

)
+ B(t)

(
f1

f2

)
+ C

(
ḟ1

ḟ2

)
, (2.66)(

z(0)
k(0)

)
=

(
z0

k0

)
. (2.67)

We know from Step 2 that (2.66)-(2.67) is controllable, so that dΓ(0) is onto. Let V :=
(ker dΓ(0))⊥ denote the orthogonal complement of ker dΓ(0) in H. Clearly dΓ|V (0)
is invertible, and therefore it follows from the inverse function theorem that the map
Γ|V : V → R12 is locally invertible at the origin. More precisely, there exists a number
δ > 0 and an open set Ω ⊂ R12 containing 0 such that the map Γ : BH(0, δ) ∩ V → Ω is
well-defined, of class C1, invertible, and with an inverse map of class C1. Let us denote
this inverse map by Γ−1, and let us write Γ−1(q0, p0, qT , pT ) = (q0, p0, f(q0, p0, qT , pT )).
Finally, let us set w = w + f . (Note that w(0) = 0.) Then, for η > 0 small enough, we
have that

w ∈ C1(BR12(0, η), H2(0, T,R2)) (2.68)

and that for ||(q0, p0, qT , pT )|| < η, the solution (q(t), p(t)) of the system

q̇ = Q(q)p, (2.69)
J ṗ = Cẇ + F (p, w), (2.70)

(q(0), p(0)) = (q0, p0) (2.71)

satisfies (q(T ), p(T )) = (qT , pT ). The proof of Theorem 2.9 is complete.

2.4. A global steady-state controllability result.

Theorem 2.9 is a local controllability result. A global controllability result may be
obtained when γ + αβ = 0.

Theorem 2.14. If γ + αβ = 0 and

rank (C,
1
2
JDJ −1C + B + AJ −1C) = 3, (2.72)

rank (B + AJ −1C,AJ −1(B + AJ −1C)) = 3, (2.73)

then for any (q0, qT ) ∈ R6 there exists a time T > 0 and a control input w ∈ H2(0, T ; R2)∩
H1

0 (0, T ; R2) driving the system

q̇ = Q(q)p,
J ṗ = Cẇ + F (p, w)

from (q0, 0) at t = 0 to (qT , 0) at t = T .

Proof. It may be assumed without loss of generality that q0 = (0, 0, 0). We first establish a
local controllability result around the equilibrium point (q0, 0). This is done along the same
lines as for Theorem 2.9, using again the return method with the same reference trajectory
(q, p, w). (Note that w(0) = w(T ) = 0.) However, the new constraint w ∈ H1

0 (0, T ; R2)
impose to consider the reachable set Rf(0)=f(T )=0 instead of the reachable set Rf(0)=0.
Recall that from Proposition 2.12

Rf(0)=f(T )=0 =
∑
i>0

Mi(T )R2,
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where the sequence of matrices (Mi)i>0 is the one associated with the pair (A,B +AC).
As a continuation of the computations performed in the proof of Theorem 2.9, we obtain

M3(t) =



−D̈J −1C + d
dt{D[DJ −1C + J −1(B +AJ −1C)]}

−D
{
−ḊJ −1C +D[DJ −1C + J −1(B +AJ −1C)]

−J −1[2(Ḃ + ȦJ −1C)−AJ −1(B +AJ −1C)]
}

−J −1
{

3[B̈ + ÄJ −1C]− 2 d
dt [AJ

−1(B +AJ −1C)]

−AJ −1[Ḃ + ȦJ −1C −AJ −1(B +AJ −1C)]
}

J −1
{...
B +

...
AJ −1C − d2

dt2
[AJ −1(B +AJ −1C)]

− d
dt

(
AJ −1[Ḃ + ȦJ −1C −AJ −1(B +AJ −1C)]

)
−AJ −1

[
B̈ + ÄJ −1C − d

dt [AJ
−1(B +AJ −1C)]

+Ḃ + ȦJ −1C −AJ −1(B +AJ −1C)
]}



·

Using (2.61)-(2.62), we obtain

M3(T ) =

(
0
J −1

{...
B(T ) +

...
A(T )J −1C − 3Ȧ(T )J −1[Ḃ(T ) + Ȧ(T )J −1C]

} )
.

Since ẇ1(T ) = α−1ṗ1(T ) and
...
w1(T ) = α−1

...
p 1(T ), we infer that

Rf(0)=f(T )=0 ⊃
∑

06i63

Mi(T )R2

=
(
J −1C

0

)
R2 +

(
0

J −1(B + AJ −1C)

)
R2

+
(
J −1(JDJ −1C + 2(B + AJ −1C))

0

)
R2

+
(

0
J −1AJ −1(B + AJ −1C)

)
R2

= R6,

by (2.72)-(2.73). A local controllability may be deduced as in Theorem 2.9. Since w
vanishes at t = 0, T , it follows from an iterated application of the previous result that
any state of the form (0, 0, θ, 0, 0, 0), θ ∈ [0, 2π), may be reached from 0. On the other
hand, a (long) longitudinal displacement along the y1−axis from (q, p) = 0 to (q, p) =
(L, 0, 0, 0, 0, 0) may be obtained by taking any w = (w1, 0) ∈ H2(0, T,R2) ∩H1

0 (0, T,R2)
with ∫ T

0
w1(t) dt =

L

α
.

A trajectory from the origin to any state (qT , 0) = (hT1 , h
T
2 , θ

T , 0, 0, 0) may therefore be
obtained as a concatenation of

(1) a trajectory from the origin to (0, 0, θ, 0, 0, 0) with θ = arg (hT1 + i hT2 );
(2) a straight line from (0, 0, θ, 0, 0, 0) to (hT1 , h

T
2 , θ, 0, 0, 0);

(3) a trajectory from (hT1 , h
T
2 , θ, 0, 0, 0) to (qT , 0).

The proof of Theorem 2.14 is complete.
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3. Wellposedness of the system (1.18)-(1.25) with vorticity

In the previous section we considered the system (1.18)-(1.25) assuming that no vorticity
was present. In this section, we prove that in presence of vorticity one can still construct
a regular solution of (1.18)-(1.25) having a prescribed normal velocity, as for the solution
we had constructed in Section 2. Using the results of Sections 2 and 3 and a time-scaling
argument, we shall derive in Section 4 a controllability result for the whole system (with
vorticity).

3.1. Statements of the results.

We are concerned with the existence of solutions to the following system:

∂v

∂t
+ [(v − l − ry⊥) · ∇]v + rv⊥ +∇q = 0 in [0, T ]× Ω, (3.1)

div v = 0 in [0, T ]× Ω, (3.2)

v · n = (l + ry⊥) · n+
∑

16j6m

wj(t)χj(y) on [0, T ]× ∂Ω, (3.3)

lim
|y|→∞

v(t, y) = 0 in [0, T ], (3.4)

ml̇ =
∫
∂Ω
qn dσ −mrl⊥ in [0, T ], (3.5)

Jṙ =
∫
∂Ω
qn · y⊥dσ in [0, T ], (3.6)

v(0, y) = v0(y) in Ω, (3.7)
(l(0), r(0)) = (l0, r0). (3.8)

Once (l, r) is known, the motion of the boat is described by the system

ḣ = Q(θ)l, (3.9)

θ̇ = r, (3.10)
(h(0), θ(0)) = (h0, θ0). (3.11)

For k ∈ N and α ∈ (0, 1), let Ck,α(Ω) denote the classical Hölder space endowed with
the norm

||f ||Ck,α(Ω) =
∑

β∈N2, |β|6k

(
||∂βf ||L∞(Ω) + |∂βf |0,α

)
where

|f |0,α = sup{|f(x)− f(y)|
|x− y|α

; x ∈ Ω, y ∈ Ω, x 6= y},

and for any θ > 0 and any p ∈ [1,∞), let Lpθ(Ω) denote the weighted space Lp(Ω; (1 +
|y|θ)dy) endowed with the norm

||f ||Lpθ(Ω) =
(∫

Ω
|f(y)|p(1 + |y|θ) dy

) 1
p

.

We prove in this section the following
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Proposition 3.1. Let k ∈ N, α ∈ (0, 1), θ ∈ (2,∞), and T > 0. Assume given (l0, r0) ∈
R3, ω0 ∈ Ck,α(Ω)∩L1

θ(Ω), and a control function w ∈ C1([0, T ],Rm) (not necessarily such
that w(0) = 0). Assume finally that the initial velocity field v0 ∈ Ck+1,α(Ω) fulfills the
following compatibility conditions

curl v0 = ω0 in Ω,
div v0 = 0 in Ω,
v0 · n = (l0 + r0y

⊥) · n+
∑m

j=1wj(0)χj on ∂Ω,
lim|y|→∞ v0(y) = 0,∫
∂Ω v0(y) · τ dσ = −

∫
Ω ω0(y)dy.

(3.12)

Then there exists a solution (v, q, l, r) of (3.1)-(3.8) in the class

v ∈ L∞(0, T ;Ck+1,α(Ω)) ∩H1(0, T ;L2(Ω)), ∇v ∈ L∞(0, T ;L2
2(Ω)), (3.13)

∇q ∈ L∞(0, T ;L2(Ω)), (3.14)
(l, r) ∈W 1,∞(0, T ; R3). (3.15)

Moreover, this solution satisfies for some constant C > 0 (depending on the geometry,
‖w‖C1, ‖ω0‖Ck,α(Ω), ‖ω0‖L1

θ(Ω), and |(l0, r0)| increasingly) that

‖(l, r)− (l, r)‖L∞(0,T ) + ‖v(t)− v(t)‖L∞(0,T ;Ck+1,α(Ω)) 6 C
(
‖ω0‖Ck,α(Ω) + ‖ω0‖L1

θ(Ω)

)
,

(3.16)
where (l, r, v) is the potential solution of (3.1)-(3.8) associated with l0, r0, w, and ω0 = 0.

Remark 3.2. (1) The above solution v is of course not unique, because we can fix to
some extent the vorticity at points entering the fluid domain (see [11]). What we
show is that for some reasonable choice of the vorticity on that part of ∂Ω, we can
have a regular solution of the nonhomogenous boundary value problem (3.1)-(3.8).

(2) We do not assume here that w(0) = 0, as we shall consider later maximal solutions
obtained by concatenation of solutions over time.

3.2. Proof of Proposition 3.1.

3.2.1. Notations. Let π be a continuous linear extension operator from functions defined
in Ω to functions defined in R2, which maps Ck,α(Ω) to Ck,α(R2) for all k ∈ N and
all α ∈ (0, 1), and the space LL(Ω) of log-Lipschitz functions on Ω to LL(R2). (The
construction of such an “universal” extension operator is classical, see e.g. [23].)

We may also ask that π preserves the divergence-free character (acting on the stream
function if necessary).

We will use again the functions Φi, 1 6 i 6 3 and Ψj , 1 6 j 6 m and the matrix M
introduced in (2.11)-(2.13), (2.14)-(2.16), and (2.22), respectively.

3.2.2. Rephrasing the system. Now we rephrase a little bit the system. As before for
potential flows, we show that the pressure solves some elliptic problem. Next, we replace
the pressure by its expression in (3.5)-(3.6) to formulate in a new way the dynamics of the
boat. The Laplacian of the pressure q is given by

−∆q = div([(v − l − ry⊥) · ∇]v) + div(rv⊥)

= ∂i(vj∂jvi)− ∂i(lj∂jvi)− ∂i(r(y⊥)j∂jvi) + r div(v⊥)

= (∂ivj)(∂jvi)− r(∂i(y⊥)j)∂jvi − rω
= (∂ivj)(∂jvi)− r(∂2v1 − ∂1v2)− rω
= tr(∇v · ∇v),
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where we used Einstein’s convention of repeated indices and the fact that div(v) = 0.
Next, we compute the normal derivative of q on ∂Ω.

∂q

∂n
= −

(
∂tv + [(v − l − ry⊥) · ∇]v + rv⊥

)
· n

= −∂t

[l + ry⊥ +
m∑
j=1

wj∇Ψj ] · n

− ([(v − l − ry⊥) · ∇]v + rv⊥
)
· n

= −(l̇ + ṙy⊥) · n−
m∑
j=1

ẇjχj −
(

[(v − l − ry⊥) · ∇]v + rv⊥
)
· n.

Next, we introduce the function µ defined as the solution of the following elliptic prob-
lem:

−∆µ = f := tr[∇v · ∇v], in [0, T ]× Ω, (3.17)

∂µ

∂n
= g := −

m∑
j=1

ẇjχj −
(

[(v − l − ry⊥) · ∇]v + rv⊥
)
· n, on [0, T ]× ∂Ω. (3.18)

Note that for v ∈ Ck+1,α(Ω) with∇v ∈ L2(Ω)∩L4
θ′(Ω) and θ′ > 2, then f ∈ L1(Ω)∩L2

θ′(Ω),
g ∈ Ck,α(∂Ω) with the compatibility condition∫

Ω
f(y)dy = −

∫
∂Ω
g(y)dσ

satisfied, and it follows from [1] that the problem (3.17)-(3.18) admits a solution µ ∈
Ĥ1(Ω), which is unique up to a constant, with

||∇µ||L2(Ω) 6 C[
m∑
j=1

|ẇj |+ ||v||2Ck+1,α(Ω)
+ ||∇v||2L4

θ′ (Ω) + |(l, r)|2]. (3.19)

We see that

∇q = ∇µ−
(
∇Φj

)
j=1,2,3

(
l̇
ṙ

)
.

Noting that ∫
∂Ω
qKi dσ =

∫
Ω
∇q · ∇Φi dy

we deduce the following form of (3.5)-(3.6)([
m Id2 0

0 J

]
+M

)(
l̇
ṙ

)
=
(∫

Ω
∇µ(t, y) · ∇Φi(y) dy

)
i=1,2,3

−
(
mrl⊥

0

)
. (3.20)

After these preliminaries, we prove Proposition 3.1 in several steps. First, we prove the
local-in-time existence of solutions (that is, up to some time T ′ which may be less than
T ), by means of Schauder’s fixed point theorem. Next, we prove that such a solution can
be extended up to time T by using some a priori estimates.

3.2.3. The operator. We first define an operator whose fixed points will give local-in-time
solutions of (3.20).

Introduce
M := e · ‖ω̂0‖Ck,α(R2) + (1 + 22θ)‖ω̂0‖L1

θ(R2).

Here ω̂0 stands for the extension π(ω0) of ω0 (see (3.29) below).
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Given T ′ ∈ (0, T ], N > 0, and θ > 2, we introduce the set

C :=
{

(l, r, ω) ∈ C0([0, T ′]; R2)× C0([0, T ′]; R)× L∞(0, T ′;Ck,α(Ω) ∩ L1
θ(Ω));

‖l − l0‖L∞(0,T ′) + ‖r − r0‖L∞(0,T ′) 6 N, ‖ω‖L∞(0,T ′;Ck,α(Ω)) + ‖ω‖L∞(0,T ′;L1
θ(Ω)) 6 M

}
.

(3.21)

Let us now define the operator T on C: to any (l, r, ω) ∈ C, we associate

T (l, r, ω) := (l̂, r̂, ω̂), (3.22)

as follows. First, we introduce the “fluid velocity” v as the solution to the system

curl v = ω in [0, T ]× Ω, (3.23)
div v = 0 in [0, T ]× Ω, (3.24)

v · n = (l + ry⊥) · n+
m∑
j=1

wj(t)χj(y) on [0, T ]× ∂Ω, (3.25)∫
∂Ω
v(t, y) · τ dσ = −

∫
Ω
ω(t, y)dy in [0, T ], (3.26)

lim
|y|→∞

v(t, y) = 0 in [0, T ]. (3.27)

Next, we extend the velocity field and the initial vorticity by letting

v̂(t, ·) := π[v(t, ·)], (3.28)

ω̂0 := π[ω0]. (3.29)

The flow Φ̂ associated with v̂ − l − ry⊥ is defined as the solution to the Cauchy problem
∂

∂t
Φ̂(t, s, y) = v̂(t, Φ̂(t, s, y))− l(t)− r(t)Φ̂⊥(t, s, y),

Φ̂(s, s, y) = y

where (t, s, y) ranges over [0, T ′]2 × R2. The vorticity part of T (l, r, ω) is then given by

ω̂(t, y) := ω̂0(Φ̂(0, t, y)). (3.30)

Note that ω̂ satisfies
ω̂t + (v̂ − l − ry⊥) · ∇ω̂ = 0. (3.31)

Finally, to define the pair (l̂, r̂), we introduce the function µ : [0, T ]×Ω→ R which solves
−∆µ = tr[∇v · ∇v] in [0, T ]× Ω,
∂µ

∂n
= −

m∑
j=1

ẇjχj −
(

[(v − l − ry⊥) · ∇]v + rv⊥
)
· n, on [0, T ]× ∂Ω. (3.32)

We define l̂ and r̂ as follows:[
l̂(t)
r̂(t)

]
=
[
l0
r0

]
(3.33)

+
([
m Id2 0

0 J

]
+M

)−1∫ t

0

[(∫
Ω
∇µ(τ, y) · ∇Φi(y) dy

)
i=1,2,3

−
(
mrl⊥

0

)]
dτ,

This completes the definition of T .
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3.2.4. Fixed point argument and local-in-time existence. Our first step consists in proving
the following result.

Lemma 3.3. Given any N > 0, there exists some time T ′ > 0 such that T has a fixed
point in C.

Proof of Lemma 3.3: Let

N := N + |l0|+ |r0|.

In the sequel, the various positive constants Ci will depend on the geometry, on (m,J)
and on the size of the controls ‖wi‖C1 only (hence, possibly also on π, but not on l0, r0,
ω0, N , etc.).
1. Let (l, r, ω) ∈ C. Consider v̌ := v −

∑m
j=1wj∇Ψj , where v is defined by (3.23)-(3.27).

It satisfies 
curl v̌ = ω in [0, T ′]× Ω,
div v̌ = 0 in [0, T ′]× Ω,
v̌ · n = (l + ry⊥) · n on [0, T ′]× ∂Ω,∫
∂Ω v̌(t, y) · τ dσ = −

∫
Ω ω(t, y)dy in [0, T ′],

lim|y|→∞ v̌(t, y) = 0 in [0, T ′].

It follows from [19, Proposition 2.2] that for all p ∈ (2,∞),

‖v̌(t)‖W 1,p(Ω) 6 C(‖ω(t)‖L1(Ω) + ‖ω(t)‖L∞(Ω) + |(l(t), r(t))|). (3.34)

Standard Schauder estimates give

‖v̌‖L∞(0,T ′;Ck+1,α(Ω)) 6 C (‖ω‖L∞(0,T ′;Ck,α(Ω)) + ‖l‖L∞(0,T ′) + ‖r‖L∞(0,T ′)

+‖ω‖L∞(0,T ′;L1(Ω)) + ‖v̌‖L∞(0,T ′;C0,α(Ω))). (3.35)

Combining (3.34) with (3.35) and Sobolev embedding, we infer that

‖v −
m∑
j=1

wj ∇Ψj‖L∞(0,T ′;Ck+1,α(Ω)) 6 C1(N +M),

and consequently, using the continuity of π we obtain

‖v̂ −
m∑
j=1

wj π(∇Ψj)‖L∞(0,T ′;Ck+1,α(R2)) 6 ||π||C1(N +M), (3.36)

where ||π|| denotes the norm of π as an operator in L(Ck+1,α(Ω), Ck+1,α(R2)). Therefore

‖v̂‖L∞(0,T ′;Ck+1,α(R2)) 6 C2(N +M + 1). (3.37)

2. It follows from Gronwall’s lemma (see also [3, Lemma 4.1.1]) that

‖ω̂‖L∞(0,T ′,Ck,α(R2)) 6 ‖ω̂0‖Ck,α(R2) exp(C3T
′||∇(v̂ − l − ry⊥)||L∞(0,T ′,Ck−1,α(R2)), (3.38)

hence

‖ω̂‖L∞(0,T ′,Ck,α(R2)) 6 ‖ω̂0‖Ck,α(R2) exp(C4T
′(N +M + 1)). (3.39)

Using (3.37) once again, we infer that

∀(s, t) ∈ [0, T ′]2, ∀y ∈ R2, |Φ̂(t, s, y)| 6 2
(
|y|+ C5T

′(N +M + 1)
)
.
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It follows that for any t ∈ [0, T ′], with Liouville’s theorem,∫
R2

|ω̂(t, x)|(1 + |x|θ) dx =
∫

R2

|ω̂0(y)|(1 + |Φ̂(t, 0, y)|θ) dy

6
∫

R2

|ω̂0(y)|
(

1 + 2θ[|y|+ C5T
′(N +M + 1)]θ

)
dy

6
∫

R2

|ω̂0(y)|
(

1 + 22θ−1(1 + [C5T
′(N +M + 1)]θ)(1 + |y|θ)

)
dy

6
(

1 + 22θ−1(1 + [C5T
′(N +M + 1)]θ)

)
‖ω̂0‖L1

θ
. (3.40)

Assuming that C5 > C4, we infer that the condition about ω̂ for T (l, r, ω) to belong to C
is satisfied provided that

T ′ 6
1

C5(N +M + 1)
· (3.41)

3. Let us turn our attention to (l̂, r̂). From (3.26) and [19, Proofs of Proposition 2.2 and
Lemma 2.6] we see that for a.e. t ∈ (0, T ′), v̌(t) ∈ L2(Ω) and (1 + |y|)∇v̌(t) ∈ Lp(Ω) for
all p ∈ [2, θ] with

||v̌(t)||L2(Ω) + ||(1 + |y|)∇v̌(t)||Lp(Ω) 6 C6

(
||ω(t)||L∞(Ω) + ||ω(t)||L1

θ(Ω) + |(l(t), r(t))|
)
.

(3.42)
An application of Hölder estimate with (3.34) and (3.42) gives that for some θ′ ∈ (2,min(θ, 7))
and a.e. t ∈ (0, T )

||∇v̌(t)||L4
θ′ (Ω) 6 C7

(
||ω(t)||L∞(Ω) + ||ω(t)||L1

θ(Ω) + |(l(t), r(t))|
)
.

Combined to (2.19), this yields

||∇v||L∞(0,T ′,L4
θ′ (Ω)) 6 C8

(
N +M + 1

)
and then, with (3.37) and (3.19)

‖∇µ‖L∞(0,T ′,L2(Ω)) 6 C9(N +M + 1)2. (3.43)

One deduces that
‖(l̂, r̂)− (l0, r0)‖∞ 6 C10T

′(N +M + 1)2. (3.44)

Therefore, the condition about (l̂, r̂) for T (l, r, ω) to belong to C is satisfied provided that

T ′ 6
N

C10(N +M + 1)2
· (3.45)

Hence for T ′ satisfying (3.41) and (3.45), one has T (C) ⊂ C.

4. It is easy to check that C is convex and closed for the uniform topology on (l, r, ω), i.e.
in E = L∞(0, T ′,R2 × R × L∞(Ω)). We claim that T (C) is relatively compact in E. For
the (l, r) component, it is sufficient to use (3.33) and the compactness of the embedding
W 1,∞(0, T ′) ⊂ C([0, T ′]). For the ω component, this is established thanks to Aubin-Lions’
Lemma (see e.g. [21]), (3.31), and the compactness of the embedding

C0,α(Ω) ∩ L1
θ(Ω) ⊂ C0,α′(Ω) ∩ L1

θ′(Ω),

for 0 < α′ < α, and 2 < θ′ < θ.
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Finally, let us show that T is continuous for the L∞ topology. Suppose that (ln, rn, ωn)
converges to (l, r, ω) uniformly. We notice that the set

K :=
{
ω ∈ Ck,α(Ω) ∩ L1

θ(Ω), ‖ω‖Ck,α(Ω) + ‖ω‖L1
θ(Ω) 6 M

}
,

is compact for both the L∞(Ω) topology and the C0,α′(Ω)∩L1
θ′(Ω) topology (where again

0 < α′ < α, and 2 < θ′ < θ). Consequently the map K → K, f 7→ f is uniformly
continuous in both directions. As a consequence, the uniform convergence of ωn towards
ω implies the convergence in L∞(0, T ′;C0,α′(Ω) ∩ L1

θ′(Ω)). Combined to the uniform
convergence of (ln, rn) to (l, r), this yields

vn → v in L∞(0, T ′;C1,α′(Ω)) ∀α′ ∈ (0, α),
and ∇vn → ∇v in L∞(0, T ′;L4

θ′(Ω)) for some θ′ ∈ (2, θ).

It follows that

∇µn → ∇µ in L∞(0, T ′;L2(Ω)),

hence (l̂n, r̂n) → (l̂, r̂) in W 1,∞(0, T ′).

On the other hand, Φ̂n(s, t, y) → Φ̂(s, t, y) uniformly on compact sets of [0, T ′]2 × R2, so
that ω̂n(t, y)→ ω̂(t, y) uniformly on compact sets of [0, T ′]× R2. Since T (C) is relatively
compact in E, we conclude that ω̂n → ω̂ in L∞(0, T ′, L∞(Ω)). The continuity of T is
proved. The conclusion of Lemma 3.3 follows then from Schauder’s fixed point theorem.

Let us now check that the fixed point solution (l, r, ω) given in Lemma 3.3 yields a
solution of (3.1)-(3.8). Let v and µ be given by (3.23)-(3.27) and (3.32), respectively, and
let

q := µ− (l̇1Φ1 + l̇2Φ2 + ṙΦ3). (3.46)
Then (3.5)-(3.6) follows at once from (3.33). Using (3.25), (3.32) and (3.46) we see that
for a.e. t ∈ (0, T ′), q(t, .) satisfies

−∆q = div((v − l − ry⊥) · ∇v + rv⊥), in Ω (3.47)
∂q

∂n
= −(vt + (v − l − ry⊥) · ∇v + rv⊥) · n, on ∂Ω. (3.48)

Introduce the function

F (t, y) := v(t, y)− v0(y) +
∫ t

0
[(v − l − ry⊥) · ∇v + rv⊥ +∇q](s, y) ds.

Then it follows from (3.31), (3.47), and (3.48) that

div F = 0 in Ω, (3.49)
curl F = 0 in Ω, (3.50)
F · n = 0 on ∂Ω. (3.51)

Clearly F (t, .) ∈ L2(Ω) ∩ Ck,αloc (Ω) for a.e. t ∈ (0, T ′). Pick such a time t. Using (3.49)-
(3.51), we see that F (t, .) ∈ H1(Ω ∩ B(0, R)) for all R > 0. It follows then from [19,
Lemma 2.5] that ∫

∂Ω
F (t, y) · τ dσ = 0.

Clearly, there exists some harmonic function ψ on Ω such that F (t, y) = ∇ψ(y). From the
proof of Lemma 2.2 we easily see that ∇ψ(y) has a limit as |y| → ∞. That limit has to
be 0, for F (t, .) ∈ L2(Ω). This shows that F (t, .) = 0 for a.e. t ∈ (0, T ′), hence (v, q, l, r)
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satisfies (3.1)-(3.7). (3.8) follows from (3.33). This gives the local-in-time existence part
of Proposition 3.1.

Remark 3.4. (1) If k > 1, it is possible to show that the operator T contracts for small
T in the norm ‖ · ‖L∞(0,T ;Ck−1,α(Ω)), using a priori estimates on v in Ck+1,α(Ω) and
Gronwall’s lemma.

(2) One easily sees that for all α′ ∈ (0, α) and all θ′ ∈ (2, θ) it holds

ω ∈ C([0, T ′], Ck,α
′
(Ω) ∩ L1

θ′(Ω)) and v ∈ C([0, T ′], Ck+1,α′(Ω)).

3.2.5. A priori estimates and global existence. Let us consider a solution of (3.1)-(3.8)
defined on a maximal interval of existence (0, T ∗) (with 0 < T ∗ 6 T ), fulfilling (3.13)-
(3.15) for all T ′ < T ∗, and satisfying as the solution constructed above that

curl(v) = ω̂|Ω,

where ω̂(t, y) = ω̂0(Φ̂(0, t, y)) and Φ̂ denotes as above the flow associated with π̂(v)−l−ry⊥.
In particular, v satisfies

‖ curl(v)‖L∞(0,T ∗,Lp(Ω)) 6 C, ∀p ∈ [1,+∞].

We will establish an a priori estimate on (l, r, ω) in a suitable space. With Lemma 3.3
and a standard procedure, this will give that T ∗ = T .

1. First, we perform an energy estimate. Since the boundary condition is not homoge-
neous, the energy in Ω may not be conserved. From (3.1) we obviously obtain that

∂

∂t

v − m∑
j=1

wj∇Ψj

+ [(v − l− ry⊥) · ∇]v + rv⊥ +
m∑
j=1

ẇj∇Ψj +∇q = 0 in [0, T ]×Ω.

Multiplying by v̌ := v −
∑m

j=1wj∇Ψj and integrating over Ω, we obtain

1
2
d

dt

∫
Ω
v̌(t, y)2 dy −

∫
Ω

|v|2

2
(t, y) div(v − l − ry⊥) dy +

∫
∂Ω

|v|2

2
(t, y)(v − l − ry⊥) · ndσ

−
m∑
j=1

wj(t)
{
−
∫

Ω
v · ∇Ψj div(v − l − ry⊥) dy −

∫
Ω
{[(v − l − ry⊥) · ∇]∇Ψj} · v dy

+
∫
∂Ω

[v · ∇Ψj ] (v − l − ry⊥) · ndσ
}

−
m∑
j=1

wj(t)
∫

Ω
rv⊥ · ∇Ψj dy +

m∑
j=1

∫
Ω
ẇj∇Ψj · v̌(t, y) dy +

∫
Ω
∇q(t, y) · v̌(t, y) dy

=: I1 + I2 + · · ·+ I7 = 0.

The above computations are legitimate thanks to (3.13)-(3.15) (with T replaced by any
T ′ < T ∗). Note that (3.26) is essential here to have a solution with a finite energy.

a. From div(v − l− ry⊥) = 0 we infer that I2 = 0 and that the first integral term in I4 is
nul.
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b. We integrate by parts in I7 to get with (3.5)-(3.6)

I7 =
∫
∂Ω
q(t, y) v̌(t, y) · ndσ

=
∫
∂Ω
q(t, y) l(t) · ndσ +

∫
∂Ω
q(t, y)r(t) y⊥ · ndσ

=
1
2
d

dt
(ml2 + Jr2).

c. Integrating by parts in I6 yields

I6 =
m∑
j=1

∫
∂Ω
ẇjΨj(y)v̌(t, y) · ndσ =

m∑
j=1

∫
∂Ω
ẇjΨj(y)(l + ry⊥) · ndσ.

d. Denote by E the total energy of the system, namely

E :=
1
2

(∫
Ω
|v̌|2(t, y) dy +ml2 + Jr2

)
.

Since

‖v‖2L2 6 (m+ 1)

‖v̌‖2L2 +
m∑
j=1

w2
j‖∇Ψj‖2L2

 ,

the total energy allows to control v in L2(Ω) as well. Consequently, we have

d

dt
E =

∫
∂Ω
v(t, y) ·

−1
2
v(t, y) +

m∑
j=1

wj(t)∇Ψj(y)

( m∑
i=1

wi(t)χi(y)

)
dσ + F, (3.52)

where F satisfies
F 6 C(1 + E)

for some constant C > 0 depending on ||Ψj ||L2(∂Ω), ||∇Ψj ||L2(Ω), ‖y∇2Ψj‖L2(Ω), ‖∇2Ψj‖L∞(Ω)

(which are finite thanks to (2.19)) and ‖wj‖C1([0,T ]) for 1 6 j 6 m.
2. We infer from (3.34) that

‖v‖C(Ω) 6 C(‖ω‖L1(Ω) + ‖ω‖L∞(Ω) + |(l, r)|+ ‖w‖C1([0,T ])).

It follows that
d

dt
E 6 C(1 + E).

Hence, by Gronwall’s lemma, E remains bounded up to time T ∗.

3. In particular (l, r) is bounded up to time T ∗, hence v ∈ L∞(0, T ∗;L∞(Ω)). We infer
from [13, Lemma 2.4] that for some constant K > 0

‖v(t)‖LL 6 K for a.e. t ∈ (0, T ∗).

An application of the well-known Wolibner-Yudovich theory yields that the flow Φ of
π(v) − l − ry⊥ is defined up to time T ∗ > 0 and that, as a function of (t, s, y), it is
Hölder continuous with Hölder index δ = exp(−T ∗K) (see [13, Lemma 2.5]). It follows
that ω ∈ L∞(0, T ∗;C0,αδ(Ω)), and therefore v ∈ L∞(0, T ∗;C1,αδ(Ω)). Consequently, ω ∈
L∞(0, T ∗;C0,α(Ω)). Using a straightforward bootstrap argument, we conclude that v ∈
L∞(0, T ∗;Ck+1,α(Ω)). This yields ω ∈ L∞(0, T ∗;Ck,α(Ω) ∩ L1

θ(Ω)). If T ∗ < T , we may
construct a solution defined on an interval (0, T ∗ + ε) (for some ε > 0), which contradicts
the fact that T ∗ was maximal. We conclude that T ∗ = T .
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3.2.6. Proof of (3.16). First, we notice that (l, r, v) is obtained in the following way. Since
ω0 = 0, π(ω0) = 0 on R2, hence with (3.30) the vorticity ω is null as well as the circulation∫
∂Ω v · τ dσ. Thus (3.23)-(3.27) gives

v(t, y) =
(
∇Φj(y)

)
j=1,2,3

(
l(t)
r(t)

)
+

m∑
j=1

wj(t)∇Ψj(y).

It follows from Proposition 2.4 that (l, r) satisfies the (algebraic) ODE (5.32)-(5.34), whose
solution is unique.

Now consider a solution (l, r, ω) as constructed above. Following Section 3.2.5, we see
that for some constant C = C(‖ω0‖Ck,α(Ω), ‖ω0‖L1

θ(Ω), |l0|, |r0|) (also depending on the
geometry and wi), growing in its arguments, we have

‖ω‖L∞(0,T,Ck,α(Ω)) + ‖ω‖L∞(0,T,L1
θ(Ω)) 6 CN

where
N := ‖ω0‖Ck,α(Ω) + ‖ω0‖L1

θ(Ω).

Now, from (3.23)-(3.27), we easily infer that

‖v(t)− v(t)‖Ck+1,α(Ω) + ‖∇v(t)−∇v(t)‖L4
θ′ (Ω) 6 C

(
N + |(l(t), r(t))− (l(t), r(t))|

)
.

Injecting in (3.32), we deduce that

‖∇µ(t)−∇µ(t)‖L2(Ω) 6 C
(
N + |(l(t), r(t))− (l(t), r(t))|

)
.

Combined with (3.20), this gives

|(l̇(t), ṙ(t))− (l̇(t), ṙ(t))| 6 C
(
N + |(l(t), r(t))− (l(t), r(t))|

)
.

Hence the claim for |(l, r)−(l, r)| follows from Gronwall’s lemma. The proof of Proposition
3.1 is complete.

The next result is concerned with the uniqueness of the solution (v, q, l, r) of (3.1)-(3.8),
when the vorticity ω = curl v fulfills

ω(t, y) := π(ω0)(Φ(0, t, y)), (3.53)

with the flow Φ defined by
∂

∂t
Φ(t, s, y) = π(v)(t,Φ(t, s, y))− l(t)− r(t)Φ⊥(t, s, y),

Φ(s, s, y) = y.
(3.54)

Proposition 3.5. Let l0, r0, ω0, v0 be as in Proposition 3.1 and assume further that ω0 ∈
W 1,∞(Ω). Then the solution (v, q, l, r, ω) of (3.1)-(3.8) and (3.53)-(3.54) is unique in the
class (3.13)-(3.15). On the other hand, for any given initial data (l0, r0, ω0) as above, the
map w ∈ H2(0, T ) 7→ (l, r) ∈ C([0, T ]) is continuous.

Proof: Assume given two solutions (v1, q1, l1, r1) and (v2, q2, l2, r2) of (3.1)-(3.8), cor-
responding to the same initial data (l0, r0, v0) and to the same control w, in the class
(3.13)-(3.15), with ωi = curl vi fulfilling for i = 1, 2

ωi(t, y) := π(ω0)(Φi(0, t, y)),

where Φi denotes the solution to
∂

∂t
Φi(t, s, y) = π(vi)(t,Φi(t, s, y))− li(t)− ri(t)(Φi)⊥(t, s, y),

Φi(s, s, y) = y.
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We introduce the functions

v = v1 − v2, q = q1 − q2, r = r1 − r2, l = l1 − l2, (3.55)

which satisfy the following system

∂v

∂t
+ ((v1 − l1 − r1y⊥) · ∇)v + ((v − l − ry⊥) · ∇)v2

+r1v⊥ + rv2⊥ +∇q = 0, in [0, T ]× Ω, (3.56)
div v = 0, in [0, T ]× Ω, (3.57)

v · n = (l + ry⊥) · n, on [0, T ]× ∂Ω, (3.58)
lim
|y|→∞

v(t, y) = 0, in [0, T ], (3.59)

ml̇ =
∫
∂Ω
qn dσ −m(r1l⊥ + rl2⊥), in [0, T ], (3.60)

Jṙ =
∫
∂Ω
qn · y⊥dσ, in [0, T ], (3.61)

v(0, y) = 0, ∀y ∈ Ω, (3.62)
l(0) = 0, r(0) = 0. (3.63)

In order to prove that (v, l, r) = (0, 0, 0), we establish some energy estimate for (3.56)-
(3.63).

Multiplying (3.56) by v and integrating over (0, t)× Ω, we obtain that

0 =
∫ t

0

∫
Ω
vt·v dy ds+

∫ t

0

∫
Ω

((v1−l1−r1y⊥)·∇)v·v dy ds+
∫ t

0

∫
Ω

((v−l−ry⊥)·∇)v2·v dy ds

+
∫ t

0

∫
Ω
rv2⊥ · v dy ds+

∫ t

0

∫
Ω
∇q · v dy ds = I1 + I2 + I3 + I4 + I5.

We now study each integral term. We easily have that

I1 =
1
2

∫
Ω
|v(t)|2 dy.

Next, some integrations by part give that

I2 =
∫ t

0

∫
∂Ω

(
m∑
j=1

wjχj)
|v|2

2
dσds 6 C||w||C1([0,T ])

∫ t

0
||v||2H1(ΩR)ds

where ΩR = {y ∈ Ω; |y| < R} and R is chosen so that R > 1 + supy∈∂Ω |y|. Note that v
solves

curl v = ω,

div v = 0,
v · n = (l + ry⊥) · n,∫

∂Ω
v(t, y) · τ dσ = −

∫
Ω
ω(t, y)dy,

lim
|y|→∞

v(t, y) = 0.
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Pick a cutoff function κ ∈ C∞0 (R2) with κ(y) = 1 for |y| < R, κ(y) = 0 for |y| > R + 1.
Note that v = κv on ΩR, and that

curl (κv) = −∇κ · v⊥ + κω,

div (κv) = ∇κ · v,

κv · n =
{

(l + ry⊥) · n for y ∈ ∂Ω,
0 for |y| = R+ 1.

It follows from standard elliptic estimates that

||v||H1(ΩR) 6 ||κv||H1(ΩR+1)

6 C
(
||v||L2(ΩR+1) + ||ω||L2(ΩR+1) + |l|+ |r|

)
.

Therefore

|I2| 6 C

∫ t

0

(
|l(s)|2 + |r(s)|2 + ||v(s)||2L2(Ω) + ||ω(s)||2L2(ΩR+1)

)
ds. (3.64)

Let Φ = Φ1 − Φ2. Then
∂Φ
∂t

= (πv1)(t,Φ1(t, s, y))− (πv1)(t,Φ2(t, s, y)) + (πv)(t,Φ2(t, s, y))

−l(t)−
(
r1(t)Φ(t, s, y)⊥ + r(t)Φ2(t, s, y)⊥

)
with Φ(s, s, y) = 0.

Since π(v1) ∈ L∞(0, T ;W 1,∞(R2)), this gives for 0 6 t 6 s 6 T and |y| < R that∣∣∣∣∂|Φ|2∂t

∣∣∣∣ 6 C
(
|Φ(t, s, y)|2 + |(πv)(t,Φ2(t, s, y))|2 + |l(t)|2 + |r(t)|2

)
.

Thus, with Gronwall Lemma,

|Φ(0, s, y)|2 6 C

∫ s

0

(
|(πv)(τ,Φ2(τ, s, y))|2 + |l(τ)|2 + |r(τ)|2

)
dτ.

Therefore∫ t

0
||ω(s)||2L2(ΩR+1)ds 6

∫ t

0

∫
ΩR+1

|π(ω0)(Φ1(0, s, y))− π(ω0)(Φ2(0, s, y))|2dyds

6 C

∫ t

0

∫
ΩR+1

||π(ω0)||2W 1,∞(R2)

∫ s

0

(
|π(v)(τ,Φ2(τ, s, y))|2 + |l(τ)|2 + |r(τ)|2

)
dτdyds

6 C

∫ t

0

∫ s

0
[||π(v)(τ))||2L2(R2) + |l(τ)|2 + |r(τ)|2]dτds

6 C

∫ t

0
(t− s)

(
||v(s)||2L2(Ω) + |l(s)|2 + |r(s)|2

)
ds. (3.65)

Combining (3.64) to (3.65), we infer that

|I2| 6 C

∫ t

0

(
|l(s)|2 + |r(s)|2 + ||v(s)||2L2(Ω)

)
ds

On the other hand, we have that

I3 =
∫ t

0

∫
Ω

(v · ∇)v2 · vdyds−
∫ t

0

∫
Ω

(l · ∇)v2 · vdyds−
∫ t

0

∫
Ω

(ry⊥ · ∇)v2 · vdyds

= I31 + I32 + I33.
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We can estimate each part:

|I31| 6 ‖∇v2‖L∞(QT )

∫ t

0

∫
Ω
|v|2 dyds,

|I32| 6
∫ t

0
|l(s)|

(∫
Ω
|∇v2|2 dy

)1/2(∫
Ω
|v|2 dy

)1/2

ds

6
1
2
‖v2‖L∞(0,T ;H1(Ω))

[∫ t

0

(∫
Ω
|v|2 dy + |l|2

)
ds

]
.

and

|I33| 6
∫ t

0
|r(s)|

(∫
Ω
|y|2|∇v2|2 dy

)1/2(∫
Ω
|v|2 dy

)1/2

ds

6
1
2
‖ |y| ∇v2‖L∞(0,T ;L2(Ω))

[∫ t

0

(∫
Ω
|v|2 dy + |r|2

)
ds

]
.

On the other hand,

|I4| 6
∫ t

0
|r(s)|

(∫
Ω
|v2|2 dy

)1/2(∫
Ω
|v|2 dy

)1/2

ds

6
1
2
‖v2‖L∞(0,T ;L2(Ω))

[∫ t

0

(∫
Ω
|v|2 dy + |r|2

)
ds

]
.

Finally we have that

I5 =
∫ t

0

∫
∂Ω
q(l + ry⊥) · ndσds

=
m

2
|l(t)|2 +

J

2
|r(t)|2 +m

∫ t

0
l · (rl2⊥)ds

= I51 + I52 + I53

with

|I53| 6
m

2
‖l2‖L∞(0,T )

∫ t

0
(|l|2 + |r|2)ds.

Thus, we have that∫
Ω
|v(t)|2 dy +m|l(t)|2 + J |r(t)|2 6 C

[∫ t

0

(∫
Ω
|v|2 dy +m|l|2 + J |r|2

)
ds

]
which gives with Gronwall’s Lemma,

v = 0 in (0, T )× Ω and (l, r) = (0, 0) in (0, T ).

Using (3.56) we conclude that ∇q = 0 in (0, T ) × Ω. We have proved the uniqueness of
(v, q, l, r) in the class (3.13)-(3.15). Let us show now that the map w ∈ H2(0, T )→ (l, r) ∈
C([0, T ]) is continuous. Assume that wk → w in H2(0, T ), and let (vk, qk, lk, rk) denote
the solution of (3.1)-(3.8) and (3.53) associated with the initial data (v0, l0, r0) and the
control wk. Since

||wk||C1([0,T ]) 6 C||wk||H2(0,T ) 6 C,
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we infer from the bootstrap argument in the proof of Proposition 3.1 that

ωk is bounded in L∞(0, T ;L1
θ(Ω) ∩ Ck,α(Ω)),

vk is bounded in L∞(0, T ;Ck+1,α(Ω)) ∩H1(0, T ;L2(Ω)),

|y|∇vk is bounded in L∞(0, T ;L2(Ω)),

∇qk is bounded in L∞(0, T ;L2(Ω)),

and that (lk, rk) is bounded in W 1,∞(0, T ).

Extracting subsequences, we can assume that

wk → w in C1([0, T ]),

and that for some functions l, r, ω

(lk, rk) → (l, r) in C([0, T ]), (3.66)

ωk → ω in C([0, T ];L1
θ′(Ω) ∩ Ck,α′(Ω)),

for all 2 < θ′ < θ and all 0 < α′ < α. This yields for some fonctions v, q that

vk → v in C([0, T ];Ck+1,α′(Ω) ∩W 1,p(Ω)), for all p ∈ (2,∞),

vk
w−⇀ v in H1(0, T ;L2(Ω)),

|y|∇vk w∗−⇀ |y|∇v in L∞(0, T ;L2(Ω)),

∇qk w∗−⇀ ∇q in L∞(0, T ;L2(Ω)).

We can therefore pass to the limit in (3.1)-(3.8). We also notice that if Φk (resp. Φ)
denotes the flow associated with π(vk)− lk − rky⊥ (resp. with π(v)− l − ry⊥), then

ωk(t, y) = π(ω0)(Φk(0, t, y))→ π(ω0)(Φ(0, t, y))

pointwise. Thus (3.53) holds. We conclude that (v, q, l, r) is the unique solution of (3.1)
-(3.8) and (3.53) associated with the data (v0, l0, r0) and the control w in the class (3.13)-
(3.15) (with α replaced by α′). The proof of Proposition 3.5 is achieved.

4. Main result

From now on, the pressure will be denoted by q. It should not be confused with the
state vector q = (h1, h2, θ). We are now in a position to state and prove the main result
in this paper.

Theorem 4.1. Assume that the rank conditions (2.42) and (2.43) are fulfilled, and pick
any T0 > 0. Then there exists η > 0 such that for any (h0, θ0, l0, r0) ∈ R6 and any
(hT , θT , lT , rT ) ∈ R6 with

|(h0, θ0)| < η, |(hT , θT )| < η,

and for any ω0 ∈ W 1,∞(Ω) ∩ L1
θ(Ω) with θ > 2, if v0 denotes the solution of (3.12)

with wj(0) = 0 for 1 6 j 6 m, then there exist a time T ∈ (0, T0] and a control in-
put w ∈ H2(0, T,R2) with w(0) = 0 such that the system (3.1)-(3.11) admits a solution
(h, θ, l, r, v,q) satisfying

(h, θ, l, r)|t=T = (hT , θT , lT , rT ).

Proof. Let ω0 ∈W 1,∞(Ω)∩L1
θ(Ω), and write (q0, p0) = (h0, θ0, l0, r0), (qT , pT ) = (hT , θT , lT , rT ).

The proof is done in two steps. In a first step, we prove the result for ||ω0||C0,α , ||ω0||L1
θ
,

|l0|, |r0|, |lT | and |rT | small enough, and in a second step, we remove that assumption by
performing a scaling in time.
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Step 1. Let w be as in (2.68) for T = T0. We may pick a number η1 > 0 such that
w(q0, p0, qT , pT ) is defined for |(q0, p0)| 6 η1 and |(qT , pT )| 6 η1, with ||w||C1([0,T ]) 6 1.
Pick any initial state (q0, p0) = (h0, θ0, l0, r0) with |(q0, p0)| 6 η1. For any given (qT , pT , v0)
we denote by (h, θ, l, r, v,q) the solution of (3.1)-(3.11) and (3.53) corresponding to the
velocity v0 and to the control w = w(q0, p0, qT , pT ) (see (2.68)), and by (h, θ, l, r, v,q) the
solution corresponding to (q0, p0) together with the velocity v0 which solves

curl v0 = 0,
div v0 = 0,

v0 · n = (l0 + r0y
⊥) · n,∫

∂Ω
v0 · τ dσ = 0,

lim
|y|→∞

v0(y) = 0

and the (same) control w. Pick any α ∈ (0, 1). Obviously, W 1,∞(Ω) ⊂ C0,α(Ω). From
(3.16) we infer that there exists some constant C1 > 0 such that

||(l − l, r − r)||L∞(0,T ) 6 C1

(
||ω0||C0,α(Ω) + ||ω0||L1

θ(Ω)

)
(4.1)

whenever

|(l0, r0)| 6 1, ||ω0||C0,α(Ω) + ||ω0||L1
θ(Ω) 6 1, and ||w||C1([0,T ]) 6 1. (4.2)

Combined to the equations

ḣ = Q(θ)l, θ̇ = r,

ḣ = Q(θ)l, θ̇ = r,

this gives for some constant C2 > 0

||(h− h, θ − θ)||L∞(0,T ) 6 C2

(
||ω0||C0,α(Ω) + ||ω0||L1

θ(Ω)

)
, (4.3)

provided that (4.2) holds. Let f : B = {x ∈ R6; |x| 6 1} → R6 be defined by

f(xT ) = η−1
1 (q(T ), p(T ))

where (qT , pT ) =: η1xT .

We notice that f is continuous, by virtue of Proposition 3.5 and (3.9)-(3.11). Pick any
ε ∈ (0, 1). From (4.1) and (4.3), we deduce that for

|(l0, r0)| 6 1, (4.4)
||ω0||C0,α(Ω) + ||ω0||L1

θ(Ω) < δ, (4.5)

with δ small enough, we have that

|f(xT )− xT | < ε, for |xT | 6 1.

We need the following topological result.

Lemma 4.2. Let B = {x ∈ Rn; |x| < 1} and S = ∂B. Let f : B → Rn be a continuous
map such that for some constant ε ∈ (0, 1)

|f(x)− x| 6 ε ∀x ∈ S. (4.6)

Then
(1− ε)B ⊂ f(B). (4.7)
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Proof. We shall use classical results from degree theory (see e.g. [7, Appendix B] or [17]).
Assume that (4.7) is not true. Then there exists x∗ ∈ Rn with

|x∗| < 1− ε and x∗ 6= f(x) ∀x ∈ B. (4.8)

Let us introduce the continuous map H : [0, 1]×B → Rn defined by

H(s, x) =
{
f(2sx)− x∗ if 0 6 s 6 1

2 , x ∈ B;
(2s− 1)x+ 2(1− s)f(x)− x∗ if 1

2 6 s 6 1, x ∈ B.

We claim that H(s, x) 6= 0 for all (s, x) ∈ [0, 1] × S. Indeed, for any (s, x) ∈ [0, 1/2] × S,
we have f(2sx) 6= x∗ by (4.8). On the other hand, for any given (s, x) ∈ [1/2, 1] × S, we
have

|(2s− 1)x+ 2(1− s)f(x)− x∗| > |x+ 2(1− s)(f(x)− x)| − |x∗|
> 1− 2(1− s)ε− (1− ε) > 0

which yields the result. It follows from the homotopy invariance of the degree (see e.g. [7,
Proposition B.8]) that

deg (f(0)− x∗, B, 0) = deg (x− x∗, B, 0).

This yields a contradiction, since deg (f(0)− x∗, B, 0) = 0 by [7, Proposition B.10] while
deg (x− x∗, B, 0) = 1 by [7, (B.4) p. 380].

Thus, we infer from Lemma 4.2 that if (q0, p0, qT , pT ) ∈ R12 is such that

|(q0, p0)| < η1, |(qT , pT )| < η2 := η1(1− ε),

and (4.4)-(4.5) are satisfied, then there exists a control w = w(q0, p0, q̃T , p̃T ) for which the
solution of (3.1)-(3.11) satisfies (h(T ), θ(T ), l(T ), r(T )) = (q(T ), p(T )) = (qT , pT ).

Step 2. To drop the assumptions (4.4)-(4.5) (corresponding to a given time T0 > 0),
we use a scaling in time introduced in [6] for the control of Euler equations. Let (q0, p0),
(qT , pT ), and v0 be given data with

|q0| < η2, |qT | < η2.

We set pλ0 = λp0, pλT = λpT , and vλ0 = λv0. Then for λ > 0 small enough, we have that

|(q0, p
λ
0)| < η2, |(qT , pλT )| < η2, |pλ0 | 6 1,

and ωλ0 := curl vλ0 satisfies

||ωλ0 ||C0,α(Ω) + ||ωλ0 ||L1
θ(Ω) < δ.

By Step 1, there exists some trajectory (qλ, pλ) for the boat connecting (q0, p
λ
0) at t = 0

to (qT , pλT ) at t = T0, with corresponding fluid velocity vλ, pressure qλ, and control wλ.
Let us set

q(t) = qλ(λ−1t),

p(t) = λ−1pλ(λ−1t),

v(t, y) = λ−1vλ(λ−1t, y),

q(t, y) = λ−2qλ(λ−1t, y),

w(t) = λ−1wλ(λ−1t),

for y ∈ Ω and 0 6 t 6 T := λT0. Then (q, p) is a trajectory for the boat connecting (q0, p0)
at t = 0 to (qT , pT ) at t = T and corresponding to the initial fluid velocity v0.
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5. Appendix

5.1. Proof of Proposition 2.1.

Applying the operator curl in (1.18) yields

ωt + (v − l − ry⊥) · ∇ω = 0. (5.1)

Let ṽ(t, y) := v(t, y)− l(t)− r(t)y⊥ and let ϕ = ϕ(t, s, y) denote the flow associated with
ṽ, i.e.

∂ϕ

∂t
= ṽ(t, ϕ), ϕ|t=s = y. (5.2)

Following Yudovich [11], we introduce the time t∗(t, y) at which the fluid element first
appears in the domain, and set y∗(t, y) = ϕ(t∗(t, y), t, y). Then either t∗ = 0, or t∗ > 0
and y∗ ∈ ∂Ω with

∑m
j=1wj(t

∗)χj(y∗) < 0. Integrating in (5.1) yields

ω(t, y) = ω(t∗, y∗) (5.3)

which, combined to (2.1) and (2.3), gives (2.4). For (2.5), we compute the time-derivative
of the circulation using (1.18)

d

dt

∫
∂Ω
v(t, y) · τ dσ =

∫
∂Ω
vt · τdσ

= −
∫
∂Ω

[(v − l − ry⊥) · ∇v] · τdσ − r
∫
∂Ω
v⊥ · τdσ.

As
curl[(v − l − ry⊥) · ∇v] = (v − l − ry⊥) · ∇ω = 0,

we obtain by Stokes’ theorem∫
∂Ω

[(v − l − ry⊥) · ∇v] · τdσ = 0

provided that (v − l − ry⊥) · ∇v ∈ L2(Ω) ∩ C1(Ω) (see [19, Lemma 2.5]). On the other
hand,∫

∂Ω
v⊥ · τdσ = −

∫
∂Ω
v · ndσ = −

∫
∂Ω

(l + ry⊥) · n−
∑

16j6m

wj(t)
∫
∂Ω
χj(y) dσ = 0.

This completes the proof of (2.5).

5.2. Proof of Proposition 2.4.

We first express the pressure q in terms of l, r, v and their derivatives. Using (2.4), we
easily obtain

v · ∇v = ∇|v|
2

2
and − ry⊥ · ∇v + rv⊥ = r∇(y · v⊥) (5.4)

Thus (1.18) gives

−∇q =
∂v

∂t
+∇

(
|v|2

2
− l · v − ry⊥ · v

)

= ∇

 ∑
16i62

l̇iΦi + ṙΦ3 +
∑

16j6m

ẇjΨj +
|v|2

2
− l · v − ry⊥ · v


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hence we can take

q = −

 ∑
16i62

l̇iΦi + ṙΦ3 +
∑

16j6m

ẇjΨj +
|v|2

2
− l · v − ry⊥ · v

 . (5.5)

Replacing q by its value in (1.22) yields

ml̇ =
∫
∂Ω
qn dσ −mrl⊥

= −mrl⊥ −

 ∑
16i62

l̇i

∫
∂Ω

Φindσ + ṙ

∫
∂Ω

Φ3ndσ +
∑

16j6m

ẇj

∫
∂Ω

Ψjndσ

+
∫
∂Ω

(
|v|2

2
− (l + ry⊥) · v

)
ndσ

}
· (5.6)

Using (5.4), (1.19)-(1.20) we obtain∫
∂Ω

|v|2

2
ndσ =

∫
Ω
∇|v|

2

2
dy

=
∫

Ω
v · ∇v dy

= −
∫

Ω
(div v)v dy +

∫
∂Ω

(v · n)v dσ

=
∫
∂Ω

[(l + ry⊥) · n] v dσ +
∫
∂Ω

 ∑
16j6m

wj(t)χj(y)

 v dσ.

Using the following identity

(w · n)v − (w · v)n = −(v · τ)w⊥ ∀v, w ∈ R2, (5.7)

we obtain that∫
∂Ω

[(l + ry⊥) · nv − (l + ry⊥) · vn] dσ = −
∫
∂Ω

(v · τ)(l⊥ − ry) dσ

hence, using (2.5),

∫
∂Ω

(
|v|2

2
− (l + ry⊥) · v

)
ndσ = r

∫
∂Ω
y(v · τ)dσ +

∫
∂Ω

 ∑
16j6m

wj(t)χj(y)

 v dσ. (5.8)

Therefore, from (5.6) and (5.8), we obtain

ml̇ = −mrl⊥ −

 ∑
16i62

l̇i

∫
∂Ω

Φi ndσ + ṙ

∫
∂Ω

Φ3ndσ +
∑

16j6m

ẇj

∫
∂Ω

Ψjndσ

+r
∫
∂Ω
y(v · τ) dσ +

∫
∂Ω

 ∑
16j6m

wjχj

 v dσ

 . (5.9)
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Let us turn our attention to the dynamics of r. Substituting the expression of q given in
(5.5) in (1.23) yields

Jṙ = −

 ∑
16i62

l̇i

∫
∂Ω

Φiy
⊥ · ndσ + ṙ

∫
∂Ω

Φ3y
⊥ · ndσ +

∑
16j6m

ẇj

∫
∂Ω

Ψjy
⊥ · ndσ

+
∫
∂Ω

(
|v|2

2
− (l + ry⊥) · v

)
(y⊥ · n)dσ

}
.

Using (5.4) and the fact that div (y⊥) = 0 we obtain∫
∂Ω

|v|2

2
(y⊥ · n)dσ =

∫
Ω

div
(
|v|2

2
y⊥
)
dy

=
∫

Ω
(v · ∇v) · y⊥dy

=
∫

Ω

 ∑
16i62

vi∂iv

 · y⊥dy
= −

∫
Ω

∑
16i62

vi∂i(y⊥) · vdy +
∫
∂Ω

(v · n)(v · y⊥)dσ.

But
∑

16i62 vi∂iy
⊥ = v⊥, hence∫

Ω

∑
16i62

vi∂i(y⊥) · v dy = 0

and ∫
∂Ω

(
|v|2

2
− (l + ry⊥) · v

)
(y⊥ · n)dσ

=
∫
∂Ω

[(l + ry⊥) · n(v · y⊥)− (l + ry⊥) · v (n · y⊥)] dσ +
∫
∂Ω

(
∑

16j6m

wjχj)(v · y⊥)dσ

= −
∫
∂Ω

(l + ry⊥)⊥ · y⊥(v · τ)dσ +
∫
∂Ω

 ∑
16j6m

wjχj

 v · y⊥dσ

where we used again the identity (5.7). We conclude that

Jṙ = −

 ∑
16i62

l̇i

∫
∂Ω

Φiy
⊥ · ndσ + ṙ

∫
∂Ω

Φ3y
⊥ · ndσ +

∑
16j6m

ẇj

∫
∂Ω

Ψjy
⊥ · ndσ

−
∫
∂Ω

(l · y)(v · τ)dσ +
∫
∂Ω

 ∑
16j6m

wjχj

 v · y⊥dσ

 · (5.10)

Before expanding the bilinear terms in (5.9)-(5.10), we exploit the symmetries in the
shape of the rigid body and in the location of the control inputs in order to write only the
nonvanishing terms in the final system. Recall that we have assumed that S (hence also
Ω) is symmetric with respect to the y1-axis, i.e.

(y1, y2) ∈ S ⇒ (y1,−y2) ∈ S. (5.11)
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Lemma 5.1. Let Ω, g and Ψ be as in Lemma 2.2, with s > 1 and lim|y|→∞Ψ(y) = 0.
Assume that for some ε ∈ {±1}, we have

g(y1,−y2) = εg(y1, y2) (y1, y2) ∈ ∂Ω. (5.12)

Then

Ψ(y1,−y2) = εΨ(y1, y2), (y1, y2) ∈ Ω (5.13)

and

∫
∂Ω

Ψndσ =


(∫

∂Ω
Ψn1dσ, 0

)
if ε = 1,(

0,
∫
∂Ω

Ψn2dσ

)
if ε = −1.

(5.14)

Proof. Let Ψ̃(y1, y2) = εΨ(y1,−y2) for y = (y1, y2) ∈ Ω. Then Ψ̃ ∈ Ĥs+1(Ω) and it fulfills
∆Ψ̃ = 0 in Ω and lim|y|→∞ Ψ̃(y) = 0. On the other hand, for any y ∈ ∂Ω

∇Ψ̃(y1, y2) = ε(∂1Ψ(y1,−y2),−∂2Ψ(y1,−y2))
and n(y1, y2) = (n1(y1,−y2),−n2(y1,−y2)).

Therefore

∂Ψ̃
∂n

(y1, y2) = (∇Ψ̃ · n)(y1, y2) = ε(∇Ψ · n)(y1,−y2) = εg(y1,−y2) = g(y1, y2),

hence Ψ̃ ≡ Ψ, i.e. (5.13) holds. To prove (5.14), we notice that when ε = 1

(Ψn2)(y1,−y2) = −(Ψn2)(y1, y2) in ∂Ω

hence
∫
∂Ω Ψn2 dσ = 0. The proof of (5.14) when ε = −1 is similar.

Let s denote the orthogonal symmetry with respect to the y1-axis, and let

y′ = s(y) = (y1,−y2) (5.15)

be the point symmetric to y = (y1, y2). Then

n(y′) = s(n(y)), y′⊥ = −s(y⊥) and n(y′) · y′⊥ = −n(y) · y⊥ in ∂Ω. (5.16)

Recall that the functions χj fulfill the following symmetry properties

χ1(y′) = χ1(y), χj(y′) = −χj(y) for j > 2. (5.17)

An iterative application of Lemma 5.1 gives the following
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Proposition 5.2. y′ and s being as in (5.15), we have

(i) Φ1(y′) = Φ1(y), ∇Φ1(y′) = s[∇Φ1(y)] (5.18)∫
∂Ω

Φ1ndσ =
(∫

∂Ω
Φ1n1 dσ, 0

)
,

∫
∂Ω

Φ1y
⊥ · ndσ = 0 ; (5.19)

(ii) Φ2(y′) = −Φ2(y), ∇Φ2(y′) = −s[∇Φ2(y)] (5.20)∫
∂Ω

Φ2ndσ =
(

0,
∫
∂Ω

Φ2n2 dσ

)
; (5.21)

(iii) Φ3(y′) = −Φ3(y), ∇Φ3(y′) = −s[∇Φ3(y)] (5.22)∫
∂Ω

Φ3ndσ =
(

0,
∫
∂Ω

Φ3n2 dσ

)
; (5.23)

(iv) Ψ1(y′) = Ψ1(y), ∇Ψ1(y′) = s[∇Ψ1(y)] (5.24)∫
∂Ω

Ψ1ndσ =
(∫

∂Ω
Ψ1n1 dσ, 0

)
,

∫
∂Ω

Ψ1y
⊥ · ndσ = 0 ; (5.25)

(v) For 2 6 j 6 m, Ψj(y′) = −Ψj(y), ∇Ψj(y′) = −s[∇Ψj(y)] (5.26)∫
∂Ω

Ψjndσ =
(

0,
∫
∂Ω

Ψjn2 dσ

)
. (5.27)

Notice that
∫
∂Ω Φ2y

⊥ ·ndσ,
∫
∂Ω Φ3y

⊥ ·ndσ and
∫
∂Ω Ψjy

⊥ ·ndσ (j > 2) may be different
from 0.

(5.19), (5.21), (5.23), (5.25), and (5.27) will be used to simplify the linear terms in
(5.9)-(5.10). Let us focus on the bilinear terms in (5.9)-(5.10). Let us begin with

r

∫
∂Ω
y(v · τ) dσ = r

∫
∂Ω
y

 ∑
16i62

li∇Φi + r∇Φ3 +
∑

16j6m

wj∇Ψj

 · τ dσ.

Since τ(y′) = −s(τ(y)), we deduce from (5.18)-(5.26) that ∇Φ1 · τ , ∇Ψ1 · τ (resp. ∇Φ2 · τ ,
∇Φ3 ·τ , ∇Ψ2 ·τ) are odd (resp. even) functions with respect to the transformation y → y′.
Therefore

r

∫
∂Ω
y(v · τ) dσ

= r

{
l1

(
0∫

∂Ω y2∇Φ1 · τ dσ

)
+ l2

( ∫
∂Ω y1∇Φ2 · τ dσ

0

)
+ r

( ∫
∂Ω y1∇Φ3 · τ dσ

0

)

+w1

(
0∫

∂Ω y2∇Ψ1 · τ dσ

)
+

∑
26j6m

wj

( ∫
∂Ω y1∇Ψj · τ dσ

0

) . (5.28)
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On the other hand

−
∫
∂Ω

(l · y) (v · τ) dσ

= −
∫
∂Ω

(l1y1 + l2y2)

 ∑
16i62

li∇Φi + r∇Φ3 +
∑

16j6m

wj∇Ψj

 · τdσ
= −l1

l2 ∫
∂Ω
y1∇Φ2 · τdσ + r

∫
∂Ω
y1∇Φ3 · τdσ +

∑
26j6m

wj

∫
∂Ω
y1∇Ψj · τdσ


−l2

(
l1

∫
∂Ω
y2∇Φ1 · τdσ + w1

∫
∂Ω
y2∇Ψ1 · τdσ

)
. (5.29)

Finally, using (5.17) and (5.18)-(5.27), we obtain∫
∂Ω

(
∑

16j6m

wj(t)χj(y))v dσ

=
∑

16j6m

wj(t)

 ∑
16i62

li

∫
∂Ω
χj∇Φidσ + r

∫
∂Ω
χj∇Φ3dσ +

∑
16k6m

wk

∫
∂Ω
χj∇Ψk dσ


= w1

{
l1

( ∫
∂Ω χ1∂1Φ1dσ

0

)
+ l2

(
0∫

∂Ω χ1∂2Φ2dσ

)
+ r

(
0∫

∂Ω χ1∂2Φ3dσ

)

+w1

( ∫
∂Ω χ1∂1Ψ1dσ

0

)
+

∑
26j6m

wj

(
0∫

∂Ω χ1∂2Ψjdσ

)
+
∑

26j6m

wj

{
l1

(
0∫

∂Ω χj∂2Φ1dσ

)
+ l2

( ∫
∂Ω χj∂1Φ2dσ

0

)
+ r

( ∫
∂Ω χj∂1Φ3dσ

0

)

+w1

(
0∫

∂Ω χj∂2Ψ1dσ

)
+

∑
26k6m

wk

( ∫
∂Ω χj∂1Ψkdσ

0

) · (5.30)

We notice that the functions ∇Φ1 · y⊥, ∇Ψ1 · y⊥ (resp. ∇Φ2 · y⊥, ∇Φ3 · y⊥, ∇Ψ2 · y⊥) are
odd (resp. even) with respect to the transformation y → y′. It follows that

∫
∂Ω

 ∑
16j6m

wjχj

 v · y⊥dσ

=
∑

16j6m

wj

 ∑
16i62

li

∫
∂Ω
χj∇Φi · y⊥dσ + r

∫
∂Ω
χj∇Φ3 · y⊥dσ +

∑
16k6m

wk

∫
∂Ω
χj∇Ψk · y⊥dσ


= w1

l2 ∫
∂Ω
χ1∇Φ2 · y⊥dσ + r

∫
∂Ω
χ1∇Φ3 · y⊥dσ +

∑
26k6m

wk

∫
∂Ω
χ1∇Ψk · y⊥dσ


+
∑

26j6m

wj

(
l1

∫
∂Ω
χj∇Φ1 · y⊥dσ + w1

∫
∂Ω
χj∇Ψ1 · y⊥dσ

)
. (5.31)
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Gathering together (5.9)-(5.10) and (5.18)-(5.31), we derive the following system for the
controlled dynamics of the rigid body.

ml̇1 = mrl2 −
{
l̇1

∫
∂Ω

Φ1n1 + ẇ1

∫
∂Ω

Ψ1n1

+r

l2 ∫
∂Ω
y1∇Φ2 · τ + r

∫
∂Ω
y1∇Φ3 · τ +

∑
26k6m

wk

∫
∂Ω
y1∇Ψk · τ


+w1

(
l1

∫
∂Ω
χ1∂1Φ1 + w1

∫
∂Ω
χ1∂1Ψ1

)

+
∑

26j6m

wj

l2 ∫
∂Ω
χj∂1Φ2 + r

∫
∂Ω
χj∂1Φ3 +

∑
26k6m

wk

∫
∂Ω
χj∂1Ψk

 ,(5.32)

ml̇2 = −mrl1 −

l̇2
∫
∂Ω

Φ2n2 + ṙ

∫
∂Ω

Φ3n2 +
∑

26j6m

ẇj

∫
∂Ω

Ψjn2

+r
(
l1

∫
∂Ω
y2∇Φ1 · τ + w1

∫
∂Ω
y2∇Ψ1 · τ

)

+w1

l2 ∫
∂Ω
χ1∂2Φ2 + r

∫
∂Ω
χ1∂2Φ3 +

∑
26k6m

wk

∫
∂Ω
χ1∂2Ψk


+
∑

26j6m

wj

(
l1

∫
∂Ω
χj∂2Φ1 + w1

∫
∂Ω
χj∂2Ψ1

) , (5.33)

Jṙ =

−

l̇2
∫
∂Ω

Φ2y
⊥ · n+ ṙ

∫
∂Ω

Φ3y
⊥ · n+

∑
26j6m

ẇj

∫
∂Ω

Ψjy
⊥ · n

−l1

l2 ∫
∂Ω
y1∇Φ2 · τ + r

∫
∂Ω
y1∇Φ3 · τ +

∑
26k6m

wk

∫
∂Ω
y1∇Ψk · τ


−l2

(
l1

∫
∂Ω
y2∇Φ1 · τ + w1

∫
∂Ω
y2∇Ψ1 · τ

)

+w1

l2 ∫
∂Ω
χ1Φ2 · y⊥ + r

∫
∂Ω
χ1∇Φ3 · y⊥ +

∑
26k6m

wk

∫
∂Ω
χ1∇Ψk · y⊥


+
∑

26j6m

wj

(
l1

∫
∂Ω
χj∇Φ1 · y⊥ + w1

∫
∂Ω
χj∇Ψ1 · y⊥

) . (5.34)

This gives the result.

5.3. Proof of Proposition 2.12.

Let R = Span {φ(T, t0)Mi(t0)U ; U ∈ Rm, i > 0}. To prove that RT (A,B) = R, we
have to check that (i) RT (A,B)⊥ ⊂ R⊥ and that (ii) R⊥ ⊂ RT (A,B).
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(i) Pick any p ∈ RT (A,B)⊥. We aim to show that p ∈ R⊥, i.e. that p∗φ(T, t0)Mi(t0) =
0 for all i > 0. For any x ∈ RT (A,B) written as x =

∫ T
0 φ(T, t)B(t)u(t) dt with u ∈

L2(0, T,Rm), we have that

0 = p∗x =
∫ T

0
p∗φ(T, t)B(t)u(t) dt.

This yields p∗φ(T, t)B(t) ≡ 0. We claim the following: for all i > 0, we have

p∗φ(T, t)Mi(t) ≡ 0. (5.35)

We prove this claim by induction on i. For i = 0, (5.35) is obvious, since M0(t) = B(t).
Assume that (5.35) is true for i− 1. Derivating with respect to t in p∗φ(T, t)Mi−1(t) = 0
yields

0 = p∗φ(T, t)
(
−A(t)Mi−1(t) + Ṁi−1(t)

)
= p∗φ(T, t)Mi(t).

The claim is proved, and we infer that p ∈ R⊥.

(ii) Let p ∈ R⊥. From the proof of (5.35), we infer that

di

dti
[p∗φ(T, t)B(t)]|t=t0 = p∗φ(T, t0)Mi(t0) = 0 ∀i > 0.

Thus t 7→ p∗φ(T, t)B(t) vanishes everywhere, by analyticity. It follows that∫ T

0
p∗φ(T, t)B(t)u(t) dt = 0 for all u ∈ L2(0, T,Rm),

that is p ∈ RT (A,B)⊥.
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